W. Sierpinski.

no
~1
oo

on peut tirer du théoréme de Haus-

Le probléme s’'impose sil’
1a droite en &; ensembles G; non

dorif une décomposition de

vides et disjoints. . .
Vu que tout ensemble @ linéaire est somme de ®, en-

sembles G5 disjoints?), ce serait évidemment le cas si tous les en-
y ¢ =T ,— 5,
sembles (2a) seralent des G, Comme d’apres (2a) et(l)gfg_l’“ Ee

pour a<<2, les ensembles I devraient étre (pour a<<2) des en-

gembles Fs, Or, d’aprés ;nf théordme que j’al démon.tr.é en géné-
ralisant un théoréme de M. Lusin®), la suite transfinie {Ie}ecs
serait alors stationnaire, ce qui est impossible, les ensembles Iy(a<< Q)
étant tous distincts. ) \

Le probléme de démontrer sans faire appel & 1’hypot«hese. du
continu que la droite est somme de %, ensembles G5 non vides
et disjoints reste done ouvert.

7) W. Sierpifiski, Fund. Math. 10 (1927), p. 324 (Lemr:ue\ét).
8y W. Sierpinski, Fund. Math. 24, (1935), p. 309 (Théoréme II, dans

lequel il faut passer aux complémentaires).
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On the decomposition of manifolds into products of
curves and surfaces.

By

Karol Borsuk (Warszawa).

1. The sets E,,B,,...,HE, constitute a product-decomposition
of a space B, if the product B;xH,x...E,!) is a homeomorph
of E. We then call the sets E, topological divisors of E. A topological
divisor of F containing more than one point and not homeomorphie
to F is called a real topological divisor of E. A space which has
no real topological divisor is called topologically first.

Two decompositions #,, B,,...,E, and B, Bs,..., B, of E will be
considered as identical, if after cancelling their one-puncting terms,
they may differ only by their order?). It is easy to notice3) that
every compact space of finite dimension and finite number of com-
ponents is decomposable into a product of topological first sets.
The problem whether this decomposition is possible in one manner
only is, in the general case, unsolved. Except some trivial cases?),
so far as I know, only one partial result concerning this pro-
blem has been obtained. We mean the theorem that no polyhedron

1) That is the space whose elements are all ordered n-tuples (z;,%,,...,2,)
with z,e B, for i=1,2,...,n, and whose metrie is given by the formula:

n
ICITE RSB (3’1*?/2’-"’3/1131=I/E[0(“’z~yz)]2-

i=1

2) (Compare my paper Sur la décomposition des polyédres en produils car-
tésiens, Fund, Math, 31 (1938), p. 138.

3) L ¢, pp. 138 and 139.

4) In many simple cases the fact that B is topologically first is an imme-
diate consequence of its simplest topological properties. So it is, for example,
for a continuum containing points in which it is 1-dimensional, or for E con-
sisting of two non homeomorphic components.

Fandamenta Mathematicae. T. XXXIII. 18
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(of arbitrary dimension) can have more than one decomposition
into a product of sets of dimension <1°).

It is the purpose of this paper to give a further contribution
to this question. Especially, to show that a decomposition of any
n-dimensional manifold ¢) into a product of sets of dimension <2
is possible in one manner at most.

2. We begin by some elementar lemmas concerning open
subsets of R,7) and their topological divisors.

Lemvma 1. Let T be an open subset of R, and pel'. If f is
a continuous transformation of I' into a subset of R, and e a positive
number such that for every point x € R, with o(@,p)<e it is el and
o(w,f())<e, then p € f(I). ’

Proof. Let B denote the open m-dimensional sphere in R,
of center p and radius e. We denote by § the boundary of K. Then
S+ RCI'. Let us put for every s e§ and 0<I<1

fel@y=o+ 2t - [f(@)—2], if

fi@)={flz+ (2t—1)-(p—a)] if

It is easy to observe that f,(w) constitutes a homotopic defor-

mation of § over R, into the point f(p). It follows?) that there

exists @, e 8 and 0<t <1 such that fi(z,)=p. But, for 0<i<]
and x ¢ 8, we have

0<i<y,
1<t<L

olf+(t),p] = o(@,p) — elf(2), 2] > o2, p) —e=0.

Hence t,>} and consequently
P = fi,(@) = fl@ + (2t —1) - (p—2o)] € f(I).

Thus the lemma is proved.

5) 1. e., p. 189.

§) An n-dimensional manifold is such a continuum M, that for every p e M
there exists a neighbourhood ¥p of p in M homeomorphic to the Euclidean n-di-
mensional space R, .

7) We denote by R, the n-dimensional Euclidean number-gpace. The po-
int & of B, with the Cartesian coordinates ti,f,...,t» will be denoted by (1,12, ...,tn).

If o is a number, a-« denotes the point (a-t1,atp,...,ata). If &’'=(t],45,....1;) 8~

also a point of En, we denote by z-+-a’ the point (t1+t1',«t2+t§,...,t"—i—t’n)."
8) K. Borsuk, Sur un espace des transformations continues et ses appli-

cations topologigues, Monatsh. fir Math. und Phys. 38 (1931), p. 383.
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Lemma 2, Let I' be a homeomorph of an open subset of R,
and {f.} @ sequence of continuous transformations of I' into iis sub-
sets, convergent uniformely to the identity-transformation. Then for
every point p el there ewists a such number N, that pef,(I) for
every n > N.

Proof. Let h denote a homeomorphic transformation of I’
into an open subset I of R, and k" the transformation inverse
to k. Then the transformations hf,h~"! transform I” into its subsets
and in every dompact subset of I converge uniformely to the iden-
tity-transformation. Thus, if we put p’=h({p) and establish ¢ suf-
ficiently small, then there exists such a number ¥, that for every
n>N the transformation hf,h " satisties the hypothesis of the pre-
ceding lemma. From this we conclude that h(p)=p’e hf,.h"‘(I"’):hj,,(]"’). .
Hence p € f,(I") and the lemma is proved.

3. Theorem. Every l-dimensional topological divisor of an
open subset of R, is locally homeomorphic to K, ®).

Proof. Let A X B be a homeomorph of an open subset I" of K,
and let dim A=1. Since 4 X B is locally connected and locally
compact, we conclude easily that both sets A and B are also locally
connected and locally compact. Since dim (4 X B)=n and dim 4=1,
we infer1°) that dim B=n—1. We see at once that

(1) A is homogenously 1-dimensional and B is homogenously (n—1)-
dimensional.

For, if for any point (z,y) e A X B the dimension of 4 in »
would be less than 1, or the dimension of B in y less than n—1, then
the dimension of 4 X B in (z,y) would be less than n, which is not
true.

In order to show that a locally connected and locally eompact
set A is locally homeomorphic to R,, we have to prove!) that a
has the Menger-Urysohn order equal to 2 in each of ifs points.
We decompose this proof into two parts:

9) That is, each point of it has a neighbourhood homeomorphic to R,
10) W. Hurewiez, Sur la dimension des produils cartésiens, Annals of
Mathematics 36 (1935), p. 194. In his paper it is supposed, that 4 is compact,
but the hypothesis of local compactness of A is evidently also sufficient.
11y K. Menger, Kurventheorie, Leipzig-Berlin 1932, p. 267.
18*
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1. The Menger-Urysohn order of A in aed is >1.

Since 4 is homogenously 1-dimensional, the order of 4 in «
is >1. Let us suppose that it is equal to 1. Since 4 is locally con-
nected, there will exist, for every n=1,2,..., an open and connected
neighbourhood U, of ¢ in A of the diameter <1/n bounded in A4
by one point a,. Let us put

g @)= for med—U,
p,(@)=a, for e U,

Thus we obtain a continuous transformation ¢, of 4 into
A—U,CA—(a). The sequence {p } converges uniformely to the
identity-transformation of 4. Hence, putting

Fu@y)=(p,(@),y) for (z,y)ed xB,

we obtain a sequence {f,} of continuous transformations of 4 x B
into subsets of [A—(a)] X B uniformely convergent to the identity-
transformation. But this is impossible in view of the lemma 2 of
Nr. 2. Thus the supposition that the Menger-Urysohn order
of 4 in e is <1 leads to a contradiction. Thus 1 is proved.

2. The Menger-Urysohn order of A in ae A is <2.

For otherwise 4 would contain 3 simple arcs I,,L,,L, having,
except their endpoint @, no other points in common ). Let A,4,,
and A, denote respectively the interiors of the ares Ly, L+ L, and L,.
Since dim (4, X B)=n and every n-dimensional subset of R, contains
inner points?3), there exist such points ced, and be B, that the
point g=/(¢,b) is an inner point of A, X B. Let ¢ denote a homeo-
morphic transformation of A, info A, such that g(c)=a. If
we put p(z,y)=(p(x),y) for each (z,y) eA; X B, we obtain a homeo-
morphic transformation of 4, X B into 4,,xB mapping ¢=/(e,b)
into p;(a,b). Applying Brouwer’s theorem concerning the inva-
riance of region in R,*) we conclude that p is an inner point of
As,5 X.B. But this is false, because p=/(a,b) lies on the boundary
of the set A;XB, having no common points with A,,x B. Thus
the supposition that 2 is not true leads to a contradiction.

Hence the theorem is proved.

12) K. Menger, 1. c., p. 214.

*%) see, for example, K. Menger, Dimensionstheorie, Leipzig-Berlin 1928,
p."244.
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4. Corollary 1. Every 1-dimensional topological divisor of
any Euclidean region %) is either a simple closed curve or a homeo-
morph of R.

This results from theorem 3 and from the theorem that a se-
parable connected space, having the Menger-Urysohn order
equal to 2in all its points, is either a simple closed curve or a ho-
meomorph of RE,;!5). This last possibility falls off if we restraint
ourselves to the continua. Consequently, we derive also from the
theorem 3 the following

Corollary 2. Every 1-dimensional topological divisor of a n-di-
mensional manifold ®) is a simple closed curve.

5. Theorem. If A is a topological divisor of dimension =2
of & n-dimensional Buclidean region, then no simple arc cuts A.

Proof. Since A4 is locally compact and dim A >2, there exists
a curve8) ¢ nowhere dense in 4. Therefore ¢ X B is not dense in
A XB,s0 that dim (€ x B)<<n—113). Since further dim (¢ X B)>dim B?),
we conclude that
(2) dim B < n—2.

It is easily seen that if a simple arc L cuts 4 between two
points « and o, then I X B cuts 4 X B between the points (e, ) and
(a',B"), where B and B’ are arbitrary points of B. Thus it remains
to show that LxXB does not ecut 4xB between two points a,b
given arbitrarily in (A—IL)XB.

We can obviously assume that 4 X B is a subset of the boun-
dary 8, of a (n+1)-dimensional Euclidean sphere and that the
simple arc L is identical with the interval 0<{i<1.

Now we suppose, contrary to our theorem, that Lx.B cuts
the Euclidean region A4 X B between certain two points a and b.
Since dim B<n—2, A XB is not dissected by (0)xB between a
and b. Therefore there exists a simple arec K joining a and b in
(A—(0))x B. Let us put

(3) P= F[(xy)e K for some zed].
yeB

14) We understand by Huclidean region a homeomorph of an open and
connected subset of En.

15) ¥, Frankl, Uber die zusammenhingenden Mengen wvon hochstens
zweiter Ordnung, Fund. Math. 11 (1928), p. 97.

16) That is a continuum of dimensjon 1.
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Then P is a compact subset of B (the .projection” of the
arc K into B). Since B is locally compact, we infer that there exists
such a positive number &, that the set

U= [, [ely,P)<e]
yEB

has a compact closure T.

Now let T denote a boundary (in §,) of AXB. We put
M=(LxB)+T.8ince L xB is closed in 4 X B, the set M is cloged
in S,. Then M is compact and it cuts S, between a and b. Let us
put, for 0<{i<1 and p e M,

(4)  fdp)=p with yeB—U,
(5) 1) =[(—t+ " o, P)) -2, y] i p=(ny) with yeU.

if pel or p=(xzy)

It is readily seen that fy(p)=p for each p ¢ M, and that j,
is a continuous deformation of M over itself into the set f,(M).
But this last set does not cut §, between a and b. In order to prove
it, let us show that the simple arc K joining @ and b has no com-
mon points with it. For otherwise there would exist two points
p=(2,y) e K, and p'=(a",3")e M, 80 that p=F£(p’). By (4), (5) and (3)
it is y =y’ ¢ P. In virtue of (5) we conclude that p =f,(a',y")=(0,y’),
contradicting the hypothesis that p e KC[4-—(0)]x B.

On the other hand, it is known 1?) that there exists such a con-
tinuous transformation ¢ of §,—(a)—(b) into the boundary §,_;
of the n-dimensional Euclidean sphere, that ¢ is essential on evefy
compact subset of 8, which cuts 8, between o and b, and which
is not essential on every compact subset of 8, which does not cut S,
between ¢ and b. In particular, ‘there exists such a continuous
family {p} of continuous transformations of f,(M) into Sy—1, that
po=¢ and g, =const. Let us put, for every p e M

(P)=07,,(p)
v p)y=9, f{p) if

it 0<t<d,
<KL,

The family {y,;} is continuous and it joins the transforma-
tion y,=¢ with the transformation »,=¢,f,=const. Hence ¢ ig not
essential on M, and consequently M does not cut §, between a
and b, contradicting our hypothesis. Thus the theorem isestablished.

) K. Borsuk, Sur les coupures locales des variétés, Fund. Math. 32 (1939)
p. 292. ’
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6. Corollary. Let A be a topological divisor of dimension =2
of an Buclidean region. If U is an open connected subset of A, and B
a compact subset of a simple arc LCU, then U—E is connected.

For, let B denote such a point-set that 4 xB is an Euclidean
n-dimensional region. Since U x B is connected and open in 4 X B,
it is also an Buclidean n-dimensional region. Hence, by theorem 5,
U—L is connected. Let us suppose now that U~ F is not connected,
and let @ and G' denote two different components of it. Because
dim B<n—2, the set U is of dimensign >2 in each of its points.
Then L is not dense in U. Consequently there exist twopoints, pe G—L,
and p’ € @—L, between which E, and much more so L, cuts U,
which is impossible.

7. Let M be a metric space. Every set composed of n-41 points
(vertices) of M will be called an n-dimensional simplex of M. Each
of its subsets will be called a face of it. If its diameter is <, it is
called a e-simplex of M. By aoriented simplex we understand a simplex
for which an order of its vertices is chosen, while two orders are
considered as identical if they differ by an even permutation. The
oriented simplex of vertices aya;...a, (in the given order) will be
designated by A(aya...as). If we reverse its orientation, 4 will
be replaced by —A4. )

A finite aggregate of simplexes of M, containig also all faces of
its simplexes, will be called an absolute complex of M. Every absolute
complex is geometrically realisable, i.e. we can assume that all
vertices of its simplexes are points of an Euclidean space (of suffi-
ciently high dimension), and that the corresponding geometrical
simplexes do not cross one another, i. e. the common part of two
such simplexes is identical with the geometrical simplex determired
by their common vertices.

A linear combination of oriented n-dimensional e-simplexes
of M with rational coefficients will be called a n-dimensional algebraic
s-complex of M. In the well known manner?), we attach to every
n-dimensional e-complex » of M a (n—1)-dimensional algebraic
e-complex % of M, called the boundary of ». When the boundary %
identically vanishes, x» is a n-dimensional s-cycle of M. A cycle y
of M which is the boundary of an algebraic n-complex of M is cal-
led n-homologous on M to zero.

18) §ee, for example, P. Alexandroff and H. Hopf, Topologie, Berlin
1935, p. 167. .
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°
1
8. Let now M and M’ be compact spaces, x=3a;-4; be an
i==1

v
algebraic k-dimensional e-complex of M, and x'=3ar-Ay be an
=1

algebraic &'-dimensional e-complex of M. We denote by |4, respec-
tively by |47], the simplexes corresponding to oriented simplexes 4,
and A7. These simplexes, together with their faces, constitute an
absolute complex || of M, respectively an absolute complex |x'|
of M'. By virtue of the above remark on the geometrical realisation
of the complexes, we may assume that |x and || are the triangu-
lations of certain polyhedrons. Let P denote the polyhedron being
the product of these two polyhedronms. To simplicial decomposi-
tions |%| and |x'| of factors, corresponds a decomposition of P into
convex cells being products of simplexes (4, and |47|. Let us orient
the cell |4 x|4| in the following manner: if A=(aya,...a;) and
A'=(apai...ay), we attribute to the absolute cell |4|x|4’| the same
orientation as the orientation of the (%+%)-dimensional simplex
[(@0; @0) (@1, @0) .. (@, W0} { iy 1) ... (02, @) . Liet us denote the cell |4[x|4']
oriented in this manner by (4,4'). Now we define the product
of algebraic complexes » and x' as the (k-+-k')-dimensional cellular
complex (x,%’) given by the formula.

4

ai'a;"(AiyA;")'

1

b~

(%y3¢')=
=11

[

But this cellular complex may be replaced by a simplicial
algebraic complex of M xM'. Indeed, by a result due to H. Freu-
denthall®), every absolute cell |(4,47)| is simplicially decompo-
sable into simplexes of the form

(6) ][(“i07 “,i{)) (“1‘17 “%i) (aik+1¢" a';;ﬂ—k’)]"

where both sequences of indices 4g,iy,..., 554, and Uy By o vvy Togerry ATE
not decreasing, and i,<k, 4<%k’ for v=1,2,...,k+%'. By replacing
in (%,%’) every cell (4,4%) by the correspondent sum of these sim-
plexes suitably oriented, we arrive to a simplicial algebraic complex
of M, which we will denote by x X »'. Thus we have associated with
each pair z,%', in which » is a %k-dimensional algebraic complex
of M, and = a k'-dimensional algebraic complex of M v a (k-+k')-

¥) H. Freudenthal, Fine Simplizialzerlegung des Cartesischen Produktes
zweier Simplexe, Fund. Math. 28 (1937), p. 139.
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dimensional algebraic complex xx %' of the preduct-space M x M'.
It we recall the metric defined in the product M xM', we infer
from (6), that

(T) If = and ' are e-compleves, then =X x' is a e |/2-compler.

Let K be such an absolute complex of M, that among its sim-
plexes appears every simplex of the given algebraic complex x, and
let @ denote the geometrical realisation of K. Similarly, let K’ be
an absolute complex of M’ containing all simplexes of »', and let Q'
denote its geometrical realisation. Then the simplexes of xXx'
belong to a simplicial decomposition-of the polyhedron @ x @', and
the following conditions are accomplished:

1. If x and »' are cycles, xX =" is also a cycle®®).

2. If x is a cycle homologous to zero on K, and »' an arbitrary
cycle of K', then »Xx' is a eycle homologous to zero on @ X @' %),

3. If » is a cycle not homologous to zero on K, and x' a cycle not

homologous to zero on K', then » X ' is a cycle not homologous to
zero on § X Q'2).

9. A sequence {x; of cycles is called a k-dimensional true cycle
of M, if there exists such a sequence of positive numbers {¢;} con-
vergent t0 zero, that x, is a k-dimensional ¢-complex of M. If
wl={nl}, ¥¥={x?} are two true cycles of M, and % a* two rational
numbers, we denote by a4 a*x* the true cycle {alx!4a®?} on M.

A true cyecle {»;} is homologous to zero on M, whenever there
exists a sequence {z;} of positive numbers, convergent to zero, and
such that z; is #;-homologous to zero on M. If there exists such
a positive number ¢, that no eycle #; is e-homologous to zero on M,
then the true cycle {x;} is called totally unhomologous to zero on M.
In view of (7) and the condition 1 of Nr. 8, we infer that if x={x;}
is a k-dimensional true cycle of M, and # ={x{} is a k'-dimensional
true eyecle of M’', the sequence % Xz ={x;X»;} is a (k+&')-dimen-
sional true cycle of M xM’.

A true cycle y={y} is called a Vietoris cycle on M, if the
cycles x=vy, +1—y: constitute a true eycl'e hoxfmlogous to zer’o
on M. Since (v, X ¥y )=, X V) =y X ¥y —7) + V=) X7

20y Qee, for example, P. Alexandroff and H. Hopf, 1. c., p. 304.

21y 1. ¢., p. 307.

22y 1. ¢., p. 306 and 307.
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we infer from 2 of Nr. 8, that the product y Xy’ of two Vietoris
eyeles y and ' is also a Vietoris cyele. —

The Vietoris cycles oYy, are homologically dependent
on M if there exist rational numbers ay, gy ..., 0, NOL all equal to
zero, and such that the cycle a, -y, +a, -y, +...+a -y, is homologous
to zero on M. The maximal number (finite or not) of the k-dimensional
Vietoris cycles homologically independent on M is called the
k-dimensional Beiti number of M. We will denote it by p,(M).

10. Lemma. Let x={x} be a k-dimensional true cycle of M,
and &' ={xi} a k'- dimensional true cycle of M'. If 3 1s totally unhomo-
logous to zero on M, and x' total unhomologous to zero on M, then
the (k+4-k')-dimensional true cycle x X x' is unhomologous to zero
on M X M'. On the other hand, if either » is homologous to zero on M,
or »' homologous to zero on M', then xXzx' is homologous to zero
on MxM'.

Proof. At first, let us suppose that both cycles » and »’ are
totally unhomologous to zero. Hence there exists a sequence {e}
of positive numbers convergent to zero, and an >0 such that s,
and x; are e-complexes, and that none of them is e-homologous
to zero on M, respectively on M'. We may admit that ¢<<e for
i=1 . Let us denote by M; (respectively by M;) a finite subset
of M (1espeet1vely of M’) containing all vertices of x; (respectively
of «;), and such that

(8) each point pe M (respectively p'e M') is distant from M, (ve-
spectively from M;) by less than ;.

We may consider M; (respectively M;) as an absolute complex
of M (respectively of M’) in which all subsets of diameter <e are
simplexes. Now, we see at once that the cycle x; is unhomologous
to zero on M;, and the cycle x; unhomologous to zero on M.

If the (k+%')-dimensional true cycle »xx' were homolegous
t0 zero on M X M’, there would exist such a sequence {n} of po-
sitive numbers, that for every ¢ there would exist in M x M’ an
nyeomplex 4, having s, x» as his boundary. In virtue of (8), we
can further assume (replacing, if it is necessary, 4 by a complex
obtained from it by a sufficiently small dislocation of vertices
not belonging to M;x M;), that all vertices of A lie on Myx M;.
For every ¢ sufficiently great each simplex of 4; is of diameter
<e. We conclude, from the definition of M, and M}, that if
(@500 250), (#3454 )y .. (24, 25,,) aTe vertices of a simplex of A;, then
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the points x;,®;,,...,®;,, constitute a simplex of the absolute com-
plex M;, and the pomts By iy ..a @), —a simplex of M; Then,
denoting by @; and @; the geometrical realisations of M; and M,
we conclude that the geometrical realisation of 4; is on the poly-
hedron Q;xQ;. Thus the cycle ;X xj=4 would be homologous
to zero on Q;x@;, which is impossible, in view of the property 3
of Nr. 8. Thus, the first part of the lemma is proved.

Suppose now that one of the true cycles » and »' is homologous
to zero, for example » is homologous to zero on M. Let £ be a po-
sitive number given arbitrarily. Thus for every 4 sufficiently great
the cycle x; is homologous to zero on Q;, hence, in view of property 2
of N1. 8, %; X x; is homologous to zero on @, x @;. Let us notice that
% X %; 18 a cycle of any simplicial subdivision X; of cellular decom-
position of the polyhedron @;x@; into cells being products of sim-
plexes of the absolute complexes M; and M;. We conclude that
in the subdivision X; there exists an algebraic complex 1; having
,:,Xx, as its boundary Since the diameters of the simplexes of X;
are <V &, we infer that the true cycle {wx;x»;} is homologous
to zero on M x M’, and the proof of the lemma is finished.

11. Theorem. If A X B is in the point (a,b) locally homeo-
morphic to R, and dim A =m, then there exists an open and connected
neighbourhood U of @ in A so that each compact subset B of U, con-
taining a true eycle » of dimension m—1 not homologous to zero on E,
cuts U.

Proof. Let U’ be an open and connected neighbourhood of a
in 4,and V an open and connected neighbourhood of b in B.If U’
and V are sufficiently small, the product U'xV is an Euclidean
n-dimensional region @. There exists further an open and connected
neighbourhood UC U’ of a in A4, so that every compact subset
of U is homotopically deformable to a on U'. We conclude that
it B is a compact subset of U containing a (m—1)- -dimensional
true cycle » not homologous to zero on F, there exists a compact
subset X of U, so that ECX and w is homologous to zero on X.

Let 49(C) denote, for every locally compact space C, the

Alexandroff-Pontrjagin dimension modulo 0 of . We have
A(@F)=dim G=n; ANTU')<dm A=m; A%(T)+4AV)=4%G)*).

23) See L. Pontrjagin, C. R. Paris 180 (1930), p. 1105-7.
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Consequently we have A%V)=n—A%U’')=n—m. Thus there
exist in ¥V such compact subsets ¥ and F CY, that # con-
tains a true cycle ' of dimension n—m—1 totally unhomologous
to. zero on F, and homologous to zero on Y. By the lemma 10,
% X' is a true eycle of B X F of dimension m—1+4(r—m—1)=n—2
which is unhomologous to zero on E X F, and homologous to zero
on every one of the sets X x ¥ and # x Y. By the theorem of Phra-
gmen-Brouwer, there exists in the set

0 = (XxF)+ (ExY)C @&

a true cycle of dimension n—2+1=n—1 unhomologous to zero
on ('24), It follows25) that ¢' cuts R, and consequently it cuts also
the region @. Hence there exist in @= U’ xV two such points (,f)
and (a',8’) that ¢ cuts @ between them. We can suppose at onee
that ' e ¥ —F. Since if f' ¢ F then «' ¢ U'—X and we can carry §’
beyond P without cutting € by (a’,’) during this dislocation.

Now let us suppose that B does not cut U’ and prove on this
assumption, that the points (e, ) and (a’,f’) may be chosen in such
2 manner that
(9) a0 e U'—X.

Indeed, if ¢V —X, then we can carry « beyond X without
cutting ¢ by (e,f) during this dislocation of a. If, however, fe ¥
and aeX, then aeU'—E and fe¥Y—F. Now, we choose a point
ae U’ —X in an arbitrary manner and we carry « to o in U'—ZB.
During this dislocation of « the point (a,8) will be beyond ¢,
since a remains in U'—F and f ¢ ¥ —F. Thus we can replace (a,f)
by (@,f) with ae U'—X, without change of (a’,f’). In the same
manner (o, /) may be replaced by (a',8') with a’ e U’'—X, without
changing (a,f). Consequently, we may admit that (9) is accom-
plished.

Now let us denote by I a continuum joining « with «’ in T'—FE
and by J a continuum joining g with '« V—F in V. The set

D =((a)xJ) 4+ (I X (8") +((a") )
is evidently a subcontinuum of ( U'xXV)—0, joining (a, ) with (a',8),

which is impossible, since ¢ cuts U’XV between these points.

) See K. Borsuk, Uber sphiroidale und H -sphéroidale Riume, Recueil
Mathém. Moseou 1 (43), 1936, p. 646.

%) See P. Alexandroff, Dimensionstheorie, Math. Ann. 106 (1932), p. 185.
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Therefore the assumption that E does not ent U’ leads to a contra-
diction. Hence E cuts U’. There exist in U'—E two different com-
ponents W, and W,. Since U’ is connected and locally connected,
each of them contains on its boundary the points of the compact
set HCU?®), consequently there exist two points, p,eW,-U—FE
and p,eW, - U—E, between which ¥ cuts T.

Thus our theorem is proved.

12. It is easy to see, that in the case when A x B is homeo-
morphie to B,, the latter proof holds if we put U=.4. Consequently
we can formulate the following

Theorem. If AxXB is homeomorphic to R, and dim 4 =um,
then each compact subset B of A containing a true cycle x of dimen-
ston m—1 not homologous to zero on E cuts A.

18. Theorem. Every 2-dimensional topological divisor of an
open subset of R, is locally homeomorphic to R,.

Proof. Let 4 be a 2-dimensional topological divisor of an
open subset of R, and a some point of 4. By the theorem 11, there
exists an open and connected neighbourhocd U of ¢ in 4 so that
each compact subset E of U, containing a true 1-dimensional cycle
{#;} not homologous to zero on E, cuts U. In particular:

(10) Ewery simple closed curve Q2 lying in U cuts U.

On the other hand, it results from the corollary 6 that no
clogsed subset B of ©, different from Q, cuts U. Then 2 is an irre-
ducible cut of U. We conclude ?7):

(11) Every simple closed curve Q lying in U is common boundary
in U for every component of U—Q.

Now, to prove our theorem, we apply a theorem of L. Zippin®),
by which, in order that a metric locally connected and locally com-
pact space U be a 2-dimensional Euclidean region, it is necessary
w) ¢, Kuratowski, Une définition topologique de la ligne de Jordan, Fund.
Math. 1 (1920), p. 43.

27y (1, Kuratowski, Sur les coupures irréductibles du plan, Fund. Math. §
(1924), p. 133.

%) L. Zippin, On Continuous Curves and the Jordan Curve, Amer. Journ.
of Math. 52 (1930), p. 340.
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and sufficient, that U should satisfy besides both conditions (10)
and (11) the following condition:

(12) U—Q contains exactly two components.

In order to prove this last condition, we will show that (12)
is a consequence of (10) and (11). More precisely, we will show:

(13) Let E be a connected, locally connected and complete space so
that every simple closed curve Q2 CE is an irreducible cut of E.
Then E— Q contains exactly two components.

Let us suppose that (13) is false. There exist in B— £ besides
two different components &, G, other components; their sum
be designated by G,. Since the boundary of every component
of F—{2 is identical with £, there exist two simple arcs L, and L,
having all their endpoints on £ and their innerpoints respectively
on ¢, and @,. There exists in L,+Q a simple arc L;CL, so that
Q'=Li+L, is a simple closed curve. Every component of G,—1I,
has its boundary contained in Q4 L;=0-+L;, but not contained
in Li, because no subset of L; cuts E. Consequently, every point of
¢, —L, can bec onnected in G,—L, with Q outside of L;. Similarly,
every component of G,—IL, has its boundary contained in Q4 L,,
but not contained in the set Li-Q-+Ly=(Li—G4)+L,, being a true
subset of Q. Consequently every point of G;—IL, can be connected
in Gy—1L, with Q outside of L;. All points of 2 being on the boundary
of every component of G, we conclude that the set

s+ (Gh—La) + (Go—La) +(2—L1) = Go+-[(Gh+ G+ 0)— 02’ ] = B— '

is eonnected, which is impossible, since Q' cuts E. Thus (13), and
consequently also our theorem, are proved.

14. In the case when 4 x B is homeomorphic to R,, we may
apply the theorem 12 instead of the theorem 11, and replace in the
proof of Nr. 13 the neighbourhood U by 4. In this manner we con-
clude that 4 is a 2-dimensional Eueclidean region. On the other
hand, the set 4, as a topological divisor of R,, is unicoherent ®®). Con-
sequently, A is homeomorphic to R,. Thus we arrive to the following

Theorem. The only one 2-dimensional topological divisor of
an Euclidean space is the Buclidean plane.

) That is, by all decomposition of 4 into two connected cloged subsets 4,
and 4,, the set 4,-4, is connected. It is evident that each topological divisor
of any wunicoherent space is also unicoherent.
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15. From the theorem 18 there follows:

Corollary 1. Bvery 2-dimensional topological divisor of a n-di-
mensional manifold is a surface0),

Corollary 2. If BE=AXB is in the point p=(a,b) locally
homeomorphic to the Buclidean n-dimensional space R,, and if a has
in A arbitrarily small neighbourhoods of dimension 2, then b has in B
arbitrarily small neighbourhoods of dimension n—2.

It follows evidently from our hypothesis, that there exist
arbitrarily small open and connected neighbourhocds of a in 4
and of b in B, and that every sufficiently small neighbourhood of a
in 4 is of dimension 2. On the other hand, for every sufficiently
small open and connected neighbourhood U of a in 4 and V of b
in B, the product U xV is an Euclidean n-dimensional region. Since
dim U <2, we have

(14) dimVz=n—2.

By the theorem 13, U is a 2-dimensional Euclidean region.
Hence there exists a neighbourhood U,CT of a in A being a product
of two simple open arcs L, and L,. There L, X L, XV is a n-dimen-
sional Euelidean region. It follows1%) that

(15) dim ¥V <<n—2.

Both relations (14) and (15) give our corollary.

16. We shall now investigate the algebraic side of the problem
of the decomposition into products, by establishing a simple re-
lation between the Betti numbers of space and the Betti numbers
of its topological divisors. We begin by some elementar lemmas.

Let P and P'CP be two polyhedrons. A cycle a (with rational
coefficients) of P will be called P'-cycle on P, if there exists in P’
a cycle o’ homologous to a on P.

Cycles ay,ay,...,a, of P will be called homologically indepen-
dent on P, whenever a homology of the form ajo;+ aq05+... 4 arar~0
on P, with rational coefficients a;, implies that all a; vanish.

A set ayyay,...,0, 0f P'-cycles homologically independent on P
will be called a P’-system on P. This P'-system is complete in the
dimension r, if all cycles a; are r-dimensional and every 7-dimensional
P’-cycle on P is homologous on P to some linear combination (with

30} That is a 2-dimensional manifold.
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rational coefficients) of aj,a,,...,a;. By omission in this definition
of the hypothesis concerning the dimension, we obtain the notion
of the complete P'-system on P.

It is easy to see that the number k of the cycles constituting
a complete r-dimensional P’-system on P is equal to the rank of
the factor-group £:/$;, where @, denotes the group of r-dimensional
Pr-cycles on P, and %, its subgroup constitued by the cycles homo-
logous to zero on P.

Hence all complete r-dimensional P’-systems on P are equally
numerons. Similarly all complete P’-systems on P are equally nu-
merous.

17. Let P,Q,P’CP and @'CQ be polyhedrons. We will now
prove the two following lemmas:

Lemmea 1. If ay,09...,a; is a P'-system. on P and By, fg...,5
a Q'-system on @, then the cycles a;x f; (i=1,2,..,k; §=1,2,...,1)
constitute a (P’ xQ')-system on P XxQ.

Proof. Sinece two homologies u~a' on P and f~p' on @
imply the homology axf~a'XB" on PXx@Q®), we see that the
cycles a;x f§; are (P'xX@Q’)-cycles on P x. On the other hand, the
homological independence of the cycles o; on P and the cycles §;
on @ imply %) that the cycles ;X f; are homologically independent
on PxQ. )

Lemma 2. Let aof,al,...,a denote (for r=0,1,...) a complete
r-dimensional P'-system on P, and fi,45,..., 8], denote (for s=0,1,...)
a complete s-dimensional Q’-system on Q. Then the cycles a;’xﬁ;‘,
with r+s=t; 1=1,2,...,k and j=1,2,..,l; constitute a complete
t-dimensional (P'xQ')-system on P XQ, and the cycles ap X ps, with
i=1,2,..,ks §=1,2,...,1; and v and s arbitrary, constitute o complete
(P'xQ")-system on P XQ.

Proof. By hypothesis, the cycles o, Ty oy )y Ay aly ey fy s
constitute a P’-system on P, and the cycles g3, 85,..., 81, f1,8%e-s Bty Biye--
a @-system on . It results, in view of the preceding lemma, that
the cyeles a7 X fif, with 0<{i<<ky; 0l 7,8=0,1,... constitute a

31) See P. Alexandroff and H. Hopf, I c., P. 304, formula (4).

32) 1. ¢., p. 306 and 307, formula (10) and (11). In that hook are inv‘estiga.ted
merely the eycles with integral coefficients. But the eycles with rational coef-
ficients, which appear to us, differ from the latter merely by a numerous coeffi-
cient, which has no influence on its independence.
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(p’ ><Q')—syst(.=m on P\<Q In particular, the cycles ofxpf with
f'+s:t (jonstn‘.ute a t-dimensional (P’ xQ')-system on Px@. Then
it remains to prove, that every i¢-dimensional cycle y lying in
P’ x " is homologous on P to some linear combination of the last
cveles.

Obviously we can suppose that all P'-eycles af lie in P’ and
all @'-cyeles f lie in ', The cycles af, a"_{,...,a;;r being homologically
independent on P and constituting a complete P’-system, we se‘é
at once that this system can be completed by some r-dimensional
cycles homologous to zero on P to some system af,af,...,a7 , (m, =k
homologically independent on P’ and such that evéry 1‘»d1'.lmensional
eycle lying in P’ is homologons on P’ to some linear combination
of afyay,...,an . Similarly, the system g, B3, ..., 83, can be completed
by some s-dimensional cycles homologous to zero on ¢ to some
system /i, f,..., B, (n,21) of s-dimensional eycles in @', homo-
logically independent on @' and such that every s-dimensional cycle
lying in @" is homologous on @’ to some linear combination of
84, ﬂg,...,ﬁis. We conclude ) that every i-dimensional cycle y lying
in P'x@" is homologous on P'x@’ to some linear combination I" of
the cycles «aj>fj, where i<m,; j<{ng t=r-+s. Since «f~0 on P
for i>k,, and g7 ~0 on @ for j>I,, we infer3) that all cycles a; X B}
with >k, or j<i, are homologous to zero on P x . Consequently,
we can cancel in I" these cycles and we arrive in this manner to
the linear combination I of the eyeles afx B; with r <k, s <l,, which
is homologous to y on P xQ.

Since each cycle is a sum of eycles of homogenous dimension,
we infer at once that the eycles af x 87 with ¢<Ck,; j <l and r, s arbi-
trary, constitute a complete (P'X@Q’)-system in P x@. Then the
lemma 2 is proved.

18. A continuous transformation ¢ of a space E is called
retraction, if o(B)CE and @(p)=p for every p ep(H). Then we say
that ¢(E) is a retract of B. It iz known that many topological pro-
perties of B pass from F on its retracts. So it is for example with
separability, compactness, local compactness, connectedness, local
connectedness and so on. If =4 x B and a e 4, we obtain a re-
traction of B if we put ¢(z,y)=(a,y) for every (z,y) ¢ 4 X B. Since
the set @(¥)=(e,B) is a homeomorph of B, we infer that every
topological divisor of E is homeomorphic to some retract of E.
Fundamenta Mathematicae. T. XXXIII, 19
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A compact set 4 is called an absolute neighbourhood-retract, it
for every space EC4 it is a retract of some neighbourhood U of 4
in E. In particular, all polyhedrons are absolute neighbourhood-
retracts ). Tt is known®) that the property ,being an absolute
neighbourhood-retract™ is a topological invariant, and that every
retract of an absolute neighbourhood-retract is also an absolute
neighbourhood-retract. In view of the preceding we infer that all
topological divisors of any absolute neighbourhood-retract are also
absolute neighbourhood-retracts. On the other hand, the product
of two absolute neighbourhood-retracts is also an abgsolute neigh-
bourhood-retract 25).

19. Let us denote by @, the Hilbert parallelotype 36) and
by ¢, the following transtormation of Q.:

(16) @By @Byyey @ ) =@y Bogevey T 0,0,...).

Then ¢, is 2 retraction of @, into the n-dimensional parallelo-
type @,=2.(Q,)-

Lemma. Let P and P'CP be two polyhedrons lying in Qu, and r
a retraction of P XQ., to a subset O of P'X Qu, so that for every peP' X Qo
the sagment pr(p) lies in P X Qu. Then the m-dimensional Betti number
of € is equal to the mumber k of the cycles comstituting a complete

m~dimensional P'-system on P.

w Fngrre

Proof. We can identify every point y of P with the point
(#50,0,...) e P X@Q,. Let us put, at once, for every

P:(?ﬁwnwzr--:%w)EPXQ«:
and 01

o (p)=(y; (A—1)-2), (1—1)-Byy..., (1—1) 7.,
r{{p)==point dividing the segment pr(p) in the relation ¢/( 1—1).

33) K. Borsuk, Uber eine Klasse von lokal zusammenhingenden Riumen,
Tund. Math. 18 (1932), p. 227, 10.

3y 1, ¢., p. 223, 2.

35) 1. ¢., p. 226, 9.

) The Hilbert parallelotype is the compact subset of the Hilbert space
composed by all sequences {z;} with 0 <o, <1/i, i=1,2,...
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dltt is evident_ that. 0, 18 a continuous deformation of the
product P’x Q. on itself into the polyhedron P, during which the
product f,P X Qo is deformed on itself into P’ Similarly we see that r
18 a continuous ti ! into
o D conh deformation of the product P'xQ, on P x Q. into
Let y be a cycle, its sim i
7 v C) plexes belonging to some simplicial
deeompo.mtlon of P. By barycentrical subdivision of its simplexes
we obtain the cycle @ homologous to y on P. The iteration of
this Dprocess leads to a sequence yW,y®,... of the cyecles, constituting
2 Vle-tOI‘IS. cycle on P, of the same dimension as y. We denote
its Vietoris cycle by V7. It is evident that

If the eycle v is on P', the Vietoris eycle V¥ is also on P'.
(17) If y,'y aie two cycles of P and a,a’ two rational numbers, then
partd ?”__:w R + a' V;”.
(18) If y~y" on P, then V'~V on P and vice versa.
We see at once that

(19) Folr e'v.ea'y n-dimensional Vietoris eycle I' of P'x Q., there
exists in P’ a n-dimensional cycle y so, that I'~V" on P'%Q

For, by the deformation o, the Vietoris cycle I' is carried
to some Vietoris cycle on P’ homologous to I on P’'x Q.. Then
there exist n-dimensional cycles y;0f P’ 50 that I"=={y}}~T on P'xQ,.
We can assume at once (replacing, if it is necessa;y, ¥, by & eyci“e
obtained from it by a sufficiently small dislocation of its ;*ertices)
that the simplexes of ¥, belong to some simplicial decompositim;
of P. But for an index ¢ sufficiently great, the cycles ¢ are mutually
homologous in P’. Hence it suffices to put y:yy'., Wiﬁil ) sufﬁcie.nt]uv
great, in order to obtain I'~I"~V7 on P’me.l (

(20) If the cycles VY117, Ore homologically independent on P,

then the Vietoris eyeles V'LV72 ... .V are also homologically
independent on P X Q.. .

For the relation a;-V"14ay-V72+...+a¥"%~0 on P xQ, leads
by the deformation o, to the relation a, V7 ay Vb ay V7k~0
on P and, by (17), to the relation

V“1y1+a272+"'+“lz7'k~0 011. P.
19*
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In view of (18), we conclude that a -y, +a,-y,+...a,-v,~0

on P and, since y,v,,...,7, are homologically independent, we infer

that all coefficients «; vanish.

(21) If every n-dimensional P'-cycle of P is homologous on P Yo some
linear combination of the cycles ¥y ...,7, then every n-dimen-
sional Vietoris cycle I' of P'XQ., is homologous on P XQ, to
some linear combination of V° 7/1,V7‘1,...,V7'".

For by (19) there exists in P’ an n-dimensional cycle y so
that I'~V" on P’'xQ,. By hypothesis there exist rational
coefficients a,,ds,...,ar 80 that y~a, -y, +a,-v,+..a, -y, on P.
In view of (18) and (17) we conclude that

JRS 2 o NAREC W E L A R JPRS S TP 2k NS
on P xQ,.

Let now y,¥,...,¥, be a complete m-dimensional P’-system
on P. Then there exist m-dimensional eycles y),y5...;¥, in P’ 50
that y,~y; on P for i=1,2,...,k. Then },y},...,7, is also a complete
m-dimensional P’-system on P. The corresponding m-dimensional
Vietoris eycles V";,V"‘é,...,w;‘ lie on P’ and constitute, by (20)
and (21), a homologically independent system, so that every m-di-
mensional Vietoris cycle I' of P'x@Q, is homologous on P x Q.
to some linear combination of the form ay - Vibay Vi V7,
Let us denote ﬁy VZ:' the Vietoris cycle in which the retraction r
maps V7% If we suppose that the Vietoris cycle I'is on (, the
retraction r leaves it invaried, and the homology

i ! A
I~y Videay V2 4y V70

leads to the homology

! a"’ n,’
I'~apVilda,Viz4 . LapVik on C.

(22)

Thus we have proved that every m-dimensional Vietoris
cycle on (' is homologous on (f to some linear combination of the
m-dimensional Vietoris cycles V’,';,Vfé,.q.,V 7%, Hence the m-dimen-
sional Betti number of € is not greater than k.

On the other hand, the Vietoris cycles fo:' can be obtained
from V7 by the continuous deformation 7. Consequently Vl';NVy;
on PxQ, Since Vyi,Vyé,...,V";f are homologically independent
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on PxQ,, the Vietoris cycles Vi1 are homologically independent
on Px@., and consequently also on (. Hence the m-dimensional

3etti number of ¢ is not smaller than %. This completes the proof
of the lemma.

20. Theorem. If A and B are two absolute neighbourhood retracts,

m
then p, (4 x B) =30 (4)p, _(B) for every m=0,1,...
h=0
Proof. We can assume that 4 and B are subsets of the Hil-
I‘)ert parallelotype @,%). The transformation ¢, defined by the
tormula (16), maps @,, into an n-dimensiona) parallelotype @, =¢ (@),
and 4 into some closed subset ?,(4) of @ . Let A’ denote a sub-
polyhedron of @, , constituing a neighbourhood of ¢ (4) in @ so
that every point of A; is distant from 9(4) less than 1/n. It is
evident that the sets ‘
A= [To,(p) e 4]

PEQ,
are neighbourhoods ot 4 in @, and that

(23) lim 4= 4.
Similarly, there exists for every n=1,2,... a polyhedron B,CQ,
80 that the sets

B = lz[w,,(p) €B]

PEQy,
are neighbourhoods of B in @,, and that

(24) lim B} == B.

=00
By hypothesis, 4 and B are absolute neighbourhood retracts.
Then we infer from (23) and (24) that for a sufficiently great n=mn,
there exists a retraction ¢ of A into 4 and a retraction y of B,
into B. But 4, is a neighbourhood of 4 and Bj, of B. It follows,
in view of (23) and (24) that, for a sufficiently great natural k,,
we have
(25) po(p) C A, for every pedy in,
qy(q) C B, for every qeB.,.ix.

%) By the known ,Einbettungssatz® of P. Urysohn. See, for example.
P. Alexandroff and H. Hopf, L ¢., p. 81.


GUEST


294 K. Borsuk:

Now let us notice that the set A4, can be considered ag
the product of the polyhedron P’'==A4, . and of some subset Qi of
the Hilbert space, homeomorphic to @ itself. On the other hand,
the set 4, can be considered as the product of the polyhedron P 3P,
being a product of 4 and %, segments, and the set g itself. Si-
milarly the set B, is a product of some polyhedron ¢ by @, and
the set By s is a product of Q'=B,.1, CQ by @i. Thus, we infer
from (25) and the lemma 19 that the Betti numbers of the sets
A=¢(A,) and B=y(B,) are given by the relations:

(26) p,(A) =the number of the cycles constituting a complete m-di-
mensional P’-system on P.

(27) p,(B)=the number of the cycles constituting a complete mn-di-
mensional Q'-system on Q.

Now, let us put

O(p) = [p(@),p(y)] for p= (z,y)e Ay X B,.

Evidently @ is a retraction of A, xBj into Ax B and, in
view of (25), we have

pO(p) C A, X By, for-every peAnyu X Butn-

We see at once that there exists a homeomorphism trans-
forming Ay xBj into the product of the polyhedron P x @ and of
the set @%XQ% in such a manner, that the subset A, 15 XBj.ts, Of
A, xBy gets into the product of the polyhedron P'x@Q CPx @
and the set Q% x Q% itself. Thus, the lemma 19 leads us to the fol-
lowing conclusion:

(28) p, (A XB)=the number of the cycles constituting a complete
m-dimensional (P'XQ’)-system on PxQ.
By confrontation of the relations (26), (27) and (28) with the
lemma 2 of Nr. 17, we obtain our theorem.

21. Let us put, for every compact space 4 and complex
number z, .

‘BA(x) =2p"(_A).wn;‘
n=0
B () will be called the characteristic series of A. It all p,(4) are

finite and almost all vanish, B ,(«) is a polynomial — the characteristic
polynomial of A. In particular, we have this last eventuality in
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the case when A is an absolute neighbourhood retract ). Evidently,
all coefficients of each characteristic polynomial are non negative
integral numbers.

Using the notion of the characteristic polynomial, we ean
give to the theorem 20 the following very simple form:

Theorem. The characteristic polynomial of the product of two
absolute neighbourhood retracts is identical with the product of the
characteristic polynomials of factors.

22. Two compact spaces with the same characteristic series
will be ecalled homologically affined. In particular, compact spaces
homologically affined with the point coincide with those which
have the characteristic polynomial identical with 1.

Since, as we have already noticed, all topological divisors
of any absolute neighbourhood retract are also absolute neighbouxr-
hood retracts, we obtain, from the theorem 21, the following

Coroltary 1. Topological divisors of any absolute neighbourhood
retract A are absolute meighbourhood retracts, their characteristic po-
lynomials are divisors of P ().

Corollary 2. If an absolute neighbourhood retract has real
topological divisors mot affined with a point, then its characteristic
polynomial is decomposable into the product of two polynomials =1
having natural coefficients 39).

28. Among the absolute neighbourhood retracts are contained
all polyhedrons and also all manifolds ). Then the just obtained
results concern in particular the decomposition of these impor-
tant sets into products. In particular, we may apply these results
to investigate the decomposition of the n-dimensional manifolds
into products. We will prove the following

#) &, Lefschetz, On locally connected and related sets, Annals of Math. 35
(1934), p. 128. See also K. Borsuk, Zur kombinatorischen Eigenschaften der Re-
trakte, Fund. Math. 21 (1933) p. 98.

) It is to be noticed, that there exist polynomials decomposable in more
than one manner into product of polynomials, which are not decomposable
in this manner, For example, we have (14 )- (14 -+ 42%)=(1+ 2z) (1+ 12 2x3),
while none of the factors on both sides of this identity is decomposable into
product of polynomials with natural coefficients.

10) See 8. Lefschetz, 1 c., p. 121, th. II and X. Borsuk, 1. ¢, p. 227,
10 and p. 240, 32.
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Theorem. No n-dimensional manifold M can be decomposed
in two different manners*t) imto a product of topologically first
sets of dimension <2.

Proof. In view of the corollary 2 of Nr. 4 and the corollary 1
of Nr. 15, it remains to prove that a decomposition of M into
product of simple closed curves and topologically first surfaces is
possible in no more than one manner ). Let o denote the number
of closed curves (that is of terms homeomorphic to the circum-
ference §) appearing in the given product-decomposition of M,
§ — the number of terms homeomorphic to the projective plane P 42),
and y — the number of terms homeomorphic to the so called tube
of Klein K ). The other terms are either orientable surfaces
My, M,,..., M, different from the torus-surface (which is decomposable
into a product of two simple closed curves) or the non-orientable
surfaces Ny,Ny,...,N,, topologically different from P and . Thus M
is homeomorphic to the product

] A
(29) S PP K< [[ M x[[N,.
i=1 j=1

Now, let us notice that the Betti numbers of the orientable
surface with the Buler-Poincaré characteristic y are 1,2—y, 1, 0,...
and those of the non-orientable surface, with the same Euler-
Poincaré characteristic y, are 1, 1—y, 0, 0,...4). Consequently the
one- and two-dimensional topological divisors of M are topo-
logically determined by their Betti numbers, except in the two
following cases: 1° the homeomorphs of projective plane P, being
homologically affined with the point, 20 the homeomorphs of the
tube of Klein K and of the circumference S, being homologically
affined with one another. In other words, we have %P(w)‘sl and

41) That is, the not one-puncting terms in two such decompositions of M
can differ only by their order.

42) Projective plane is the non-orientable surface with the Buler-Poin-
caré characteristic y==1.

43) Tube of Klein is the non-orientable surface with the Euler-P oincaré
characteristic y=0.

44) See, for example, P. 41exandroff and H. Hopf, L ¢., p. 269.

icm

Decomposition of manifolds 297

Plw)=Pg(x)=1+x. The characteristic polynomials of the remain-
ing topological divisors of M are the following:
sJ.?Mi(m) =14-p(M)-&+a® with

Byfe)=1+p(N)-z,

pM ) =2,
with 0 :f':pl(Nj) =+=1.

M being homeomorphic to the product ( 29), we conclude from
this and from the theorem 21 that

(30) By l@) = (14 2)" HD P2 +a?]: ][N+ p (V) ).
=

Now it is easy to notice that every factor in this product is
indecomposable in the body of all rational numbers. Then the de-
composition of the form (30) is determined in one manner only.
Consequently, the terms M, M,,..., M; and Ny, Nyy..yN, are topo-
logically determined by M. It remains to show that the numbers
«, fand y are also determined by M. For this purpose let us observe

that the degree m of the polynomial P, (z) satisfies the relation

m=(aty)+

26 4-7.

But the numbers m, 6 and 5 ave determined by the polyno-
mial P,(z). Thus the number ¢;=m—238—» is determined by M,
and we have

(31) a-+y=C;.

Another relation between the numbers «, # and y follows from
the relation between the dimension » of M and the dimension of
topological divisors of M. We have namely n=a+ 2f-+2y+ 26+ 2.
Then, denoting by ¢, the number n—2(6+7) determined by M,
we obtiain

(32) a+2p+ 2%

In order to obtain a third relation between a, § and y, let us
ohserve that the Kiinneth formula%) determining the Betti groups
of the product of two polyhedrons implies that the 1-dimensional
Betti group of product of connected polyhedrons is isomorphic
to the direct product of the 1-dimensional Betti groups of factors.
Consequently, the 1-dimensional group of torsion T\(M) of M is

15) See, for example, P. Alexandroff and H. Hopf, L ¢., p. 308.
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isomorphic to the direct product of the l-dimensional groups of
torsion of the divisors of M. But, as we have already shown, the

é W
product Mo=[] M;x[[N; is determined by M, hence his 1-dimen-
=t =1

sional group of torsion T4(M,) is also determined. We have at once):
T4(8)=0, T,(P)=1,(K)=@, where @, denotes the group of the
rest modulo 2, containing two elements 0, and 1. Therefore

(33) Ty(M)=[G1"7x Ty(M,).

Let us denote by u the number of elements in the (finite)
group T4(M) and by u, the number of elements in Ty(M,). By (33),
we have p=2°"7.,, and consequently

(34) Bty=cy

where the number ¢, =1_g_//-1_g—:___21gm is determined by the manifold M.

Thus we have established three linear equations, (31), (32) and (34),
involving the numbers g, 8, y. Since the deferminant of these equa-
tions is equal to 1, the numbers «, f, y are determined. Thus the
theorem is completely proved.

We have determined all topological divisors of M using only
homological properties of M: the Betti numbers p,(M) and the
1-dimensional group of torsion T'(M). Consequently, we may state
the following

Corollary. Bvery n-dimensional manifold M decomposable into
product of sets of dimension <2 is topologically determined by his
Betti numbers p, (M) and his 1-dimensional group of torsion T',(M).

) 1. c., p. 208, (2) and p. 265, (4D).
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Sur un probléme de la théorie générale des ensembles.
Par )

Wactaw Sierpifiski (Warszawa).

1. A et B étant deux ensembies, désignons par 4 x B I’en-
semble de tous les couples ordonnés (a,b) ot ae A et beB.

A et B dbtant deux familles d’ensembles, désignons par
A « B la famille de tous lex ensembles A X B ol A e A et BeSB.

Nous direns qu’une famille d’ensembles jouit de la propriéeté
de Souslin ') si elle ne contient aucune sous-famille indénom-
brable d’ensembles disjoints (non-vides). M. E. Szpilrajn a posé
récemment le probléme suivant:

A et B étant deux familles densembles jowissant chacune de
la propridié de Souslin, la faomille A x B jouit-elle toujours de la-
dite proprieté?

En utilisant ’axiome du choix, je vais démontrer que la 7é-
ponse & ce probléme est négative.

En résolvant un probléme de M. B. Knaster, j’ai démontré
4 aide de Paxiome du choix 2) qu’il existe une relation symétri-
que R dont le champ E est indénombrable et telle que tout sous-
ensemble indénombrable de F admet deux éléments différents a
et b pour lesquels on a aRb, et deux éléments différents a, et b,
pour lesquels on a a, non Rb; 3).

1) D’aprés la dénomination de M. E. Szpilrajn; ef. le probléme de M.
Souslin, Fund. Math. 1, (1920), p. 223 (probleme 3).

2) W. Sierpifnski, Ann. Ee. Norm. Sup. Pisa 2 (1933), p. 285.

3) 11 résulte de laxiome du choix existence d'une suite transfinie
B={s}s.pde type £ formée de nombres réels différents. Soit R la relation
définie dans B comme il suit: xaRm[, signifie que a<f et z,<x; ou bhien que
a>g et z,>z,. On démontre que la relation R satisfait aux conditions requises.
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