7% W. Sierpinski.

M. Mostowski a remarqué que notre théoréme résulte sans.

peine du théoréme suivant que MM. A. Lindenbaum et A. Tarski
ont publié sans démonstration en 1926 4):

St A, B, 0, 4, et O, sont des ensembles tels que ADBDC, 4,00,
A~A et O~y il existe un ensemble By tel que A4,0B,0C, ¢t B~B,.

En effet, soit MDP, M=m, P=p et m>mu2p. D'aprés m>n
il existe un sous-ensemble @ de M de puissance n ef, d’aprés nzyp,
il existe un sous-ensemble R de @ de puissance p. On a donc MOHQDOR
et R~P et, comme M>OHP, il existe, d’aprés le théordéme "de
MM. Lindenbaum et Tarski, un ensemble N tel que MDONDP
et ¥~¢, done N=n, c.q.f. d.

Il est & remarquer que notre théoréme cesse d’étre vrai lors-
gu’on y remplace les nombres cardinaux par les nombres ordinaux.
En effet, soit M un ensemble ordonné du type w-+1 et soit P son
sous-ensemble formé du dernier élément de M. On a done M =041,
P=1 et w-+1>0>1; or, il nexiste éyidemment aucun ensemble N
tel que MHONDP et N=w.

Notre théoréme est également en défaut lorsqu’on y remplace
les nombres cardinaux par les nombres de dimension de M. Fréchet.
En effet, soient 4, B, C et D quatre segments (fermés) de droites
dans le plan ayant wune extrémité commune, p, et soit
M=A4+B4+C+D, P=M—{p}, Q=4+B+C. dX désignant le

nombre de dimension de I’engsemble X, on a, comme on voit sans

peine, dM >dQ>dP (puisque dP=1, 1 désignant le nombre de
dimension de la droite), mais il n’existe aucun ensemble N tel que
MONDHP et dN=dQ.

Voiei encore un autre exemple de ce genre formé d’ensembles

linéaires dénombrables. Soit P Pensemble formé des nombres 1—%‘

1. .
et 2—;&, ot n=2,3,..., et soit M ensemble qu’'on obtient en adjoi-

N

gnant a I'ensemble P le nombre 1. Soit @ l'ensemble formé des

1 .
nombres l—ﬁ, ot n=2,3,... et du nombre 1. On voit sans peine

que dM>dQ>dP (puisque P est homéomorphe i Q—{1}) et qu’il
n’existe aucun ensemble N tel que MHYNOP et AN =dQ. )

%) C. R.Soc. Sciences et Lettres Vawovie (1 III, XIX (1926), p. 303,
th. 15, Quant & I'idée de la démonstration, voir mon livre Zarys teorii mnogodei,
t. I, 3-me éd. Warszawa 1928, p. 90, Tenvoi?),

T —
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On choices from finite sets.
By
Wanda Szmielew (Y4dz). .

This paper is closely connected with a paper published by
Mostowski in the previous volume of this journall). We shall’
call a class S of sets a n-class, if every set of this class has exactly
n elements. A function f(X) defined for X e § and such that f(X) e X
for X ¢ 8 will be called a choice-function for 8. Any set 4 such
that 4-X has exactly one element for every X ¢ § will be called
a choice-set for §.

We congider the following particular cases of the multiplicative-
axiom:

For every n-class of mutually disjoint sets there is a choice-set..

This proposition will be abbreviated as [n] and it will be sup-
posed that » is a natural number (i.e. a finite cardinal number
different from 0). I being a finite non-empty set of natural
numbers

M = (Myyeeay Bir)y

we shall abbreviate the conjuction [m;]&[m,]& ... & [m,] as [M].
Mostowski established in 1939 a necessary condition for the

derivability of the implication

® [H] > [n]

on the base of the Zermelo’s axioms of set-theory and he asked.
whether this condition is at the same time sufficient. This problem
is not solved as yet. The purpose of this paper is to establish another
condition (§) which is sufficient for the derivability of the foresaid

1) A. Mostowski, Fund. Math. 33 (1945). p. 137-168. Quoted helow as M.
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implication but which is stronger than the Mostowski’s necessary
condition 2).

Theorem 1. Let M be a finite set of natural numbers and n
a natural number and let us suppose that M and n satisfy the following
condition

(8) In every decomposition of n in a sum of primes

91::1)1+...+p3

there is at least one p, which belongs to M.

Then the implication (1) is derivable.

. Proof?). First of all, let us remember, that the axiom of choice
is equivalent to an apparently much stronger proposition namely
to the so called principle of choice?). This equivalence holds also
between the corresponding particular cases of the axiom and principle
of choice %), The proposition [#] is thus for any -n equivalent to
the following particular case of the principle of choice:

For any n-class 8 there is a function of choice.

In what follows we shall use simply the same symbol [n] as
an abbreviation of the just formulated proposition and we shall in-
terpret the symbol [A] in a corresponding way.

Let now M be a finite non-empty set of natural numbers and
let 7 be w natural number such that M and = together satisfy the
supposition of the theorem 1. It is to show that the implication (1)
is derivable. To do it we proceed by induction on u.

For m=1 the theorem is evidently true, because not only
the implieation (1) but already the proposition [n] is in this case
derivable.

?) This was written in 1939, During the war Maostowski found another
condition (D) which is wesker than (&) but is stil v
of (1), See M. theorems I and II. As these investiwations of Mostowski are
quite complieated and use concepts of group-theory, T think it not nnnecessary
to give a divect proot of sufficiency of wmy condition (8). ’

#) The first result of this kind, namely the proot of the implication [2] - [4]
was obtained by Mostowski. Tarski found later a simple and elementary
proof for this implication. The idea of Tarski’s proof is used in the proof of
theorem 1,

4) See e g, A, Schoenflies, Eutwickelung der Mengenlehre und ihrver An-
wendungen. Leipzig and Berlin 1913, p. 174,

%) Proof thereof is quite. the same as the proof of equivalence of the
axiom of choice and principle of choice in genersl case. See preceding footnote.

sufficient for the derivability -
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© We supposé now that n>1 and that the theorem 1 holds for

every natural number k<Zn. Two cases are to he distinguished zecor-
ding as #» is prime or not.

In the first case we immediately infer from the assumption

of the theorem that ne M. The derivability of (1) is therefore again

evident.
We pass now to the second case: n is not prime. We assume
that the proposition [M] is true:

(2) if me M, then for every m-class there is a choice-function.

It will be convenient to introduce a set N defined as follows.
A natural number » belongs t¢ N if in every decomposition of »
into a sum of primes r=p ... p  there is at least one p, which
belongs to M.

From the inductive assumption and (2) we: infer now that
in order to prove the theovem 1 it is sufficient to show that

(3)  if neN, then[n].

It is further easy to see that the inductive assumption implies
that ‘
(4) if 8is a class such that the cardinal number of any X e 8 is <n

and belongs to N, then there is a choice-function for S.

Indeed let ky,....k; be all natural numbers which are <n and
belong to N. Let 8; for 1<¢<l be the class of sets X ¢S whose
cardinal number is ¥ = k;. The clags § is thus decomposed in mutually
disjoint subclasses 8i,..., 8. According to the inductive assump’cion
there is a choice function g, for any of these subeclasses and we get
a choice function for the whole class § putting

g X)=g(X) for Xe S, i=1,2,..,0
Tn order to prove (3) let us suppose that
(5) nelN.

We have to show that [#]is true, i.e. that there is a ehoice
function for every n-class 7.
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As n=1 there is a prime p whichis a divisor of n. Let Ube a class
-of all sets X of the power X = such that every of them is contained
in a set ¥ ¢ I. From () we immediately see that p e M because n

may be decomposed into a sum of :;7— primes =p. Hence [p] occurs

in the conjunction [M]. The truth of [M] being postulated at the
beginning, we infér that [p] is true too. Now U is a p-class and
consequently there is a choice function, say g, for U.

Consider now any set ¥ e 7. As Y =n there are of course (;)

subsets X'CY which have the cardinal number p and belong there-
‘fore to U. For every such X the value g,(X) is defined as an ele-
ment of Y.

If y is any element of ¥ we denote by ¢(y) the number of such
XCY that T=p and go(X)=y. We decompoge now the set ¥
into a sum of two disjoint sets ¥ and ¥ as follows: an element
yeX will be assigned to ¥’ or ¥ according as q(y)=g(«x) for
every o ¢ Y or not. It is plain that ¥’ is non-empty. ¥*/ would be
empty only then, if ¢(y) were constant; this would imply that (Z)
is divisible by n. Itis an easy matter to show that this is impossible
because p is a prime which divides » ®) thence ¥'* is non-empty.

Put ¥'=n' and Y7 =n". We have n=n'+2" and n'%0
and n''#=0. It follows that one at least of the numbers »’ and »"

belongs to A" Otherwise there would exist by (2) and (5) decom-
positions

W=plto.tp, and ' =pl+..4+pl,

¢) Indeed, we have the following probably known lemma belonging to the
theory of numbers: If » is a natural number, and p aprime <n, then n divides

ny . .y .
(p) if and only ii p does not diride m. To prove the necessity, remark that

2
(Z;):n-_: Hn—1)...fn—p+1)]:pt. If (") is divigible by =, i.e. if (;):n it a na-
tural pumber, then p must be a divisor of the product (n—1)...(n—p 41}, i. e.,

of oue of its factors; evidentiy » cannot be then divisible by p. On the other side

we have p fl)= 'n(;:%) Hence, if n is not divisible by P, s0 must be (;“‘%)

Putting (;:%) =1lp we obtain (Z) =1n, i.e,, &) is divisible by n, q. e. d.
In the proof of theorem ] we use this lemma in one direction only.
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-of ' and »" into sums of primes which do not belong to M and we
would obtain a decomposition of »n

=Pt DD DY
with the same property which contradiets (5).

We put now i(Y)=Y'if n' e N and WXY)=X" if n"”" ¢ N. To
every Y e T corresponds thus a non-empty subset h(¥)CY and
the cardinal number of this subset is <2 and belongs to N. Henece
denoting by &8 the class of all these subsets i(Y) where ¥ e T we
infer from (4) that there is a choice function g for the class §.
Putting f(¥)=g(h({Y)) for every set ¥ 7' one obtains finally a choice
function for the class 7. The proposition [n] is consequently true
and the number » satisfies the condition (3).

The inductive proof of theorem 1 is thus finighed.

The theorem 1 can be strengthened a little:

Theorem 2. Let M be a finite set of natural numbers and n a na-
tural number and let us suppose that M and n satisfy the following
condition

(87) For every decomposition of n into @ sum of primes

n=PiPat ot Py
‘there is « mumber i, 1<i<s and a natural number k such that k-p,
belongs to M.

The implication [M]—[n] is then derivable.

Proof. In order to derive this theorem from theorem 1 it is
of course sufficient to prove the following lemma:

The implication [k-n]—>[n] holds for every natural k and n.

Indeed, suppose that [%-n] is true and consider any n-class 8.
Tor every X ¢ § denote by X* the set of ordered pairs {z,7», where
zeX and 1<<i<<k. Let 8* be the class of all these sets X*. As this
is evidently an k-n-class, there is by [k -n] a choice function f* for $*
I now X is any set from § and it fHX*)=<x,i>, we put f(X)=a
and obtain so a choice function for the class 8. The proposition [n]
is therefore true.

From theorems 1 and 2 we may infer for instance that impli-
cations

2141, [(2,3)]~16], [(2,3)—~[8],
[(2,5)1—>[8], [6]—[8], [10]—~{8]
are all true.
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For any natural number m we use according to Mostowski
the symbol [1n]! as an abbreviation of the eonjuction [11&[2]&...&[m)].
Tt u is a natural number >1, we denote by p(n) the number p
determined by two following conditions:
(i) there is a decomposition of n inte a sum of primes in which p
is the smallest term;
(ii) there is no decomposition of # into a sum of primes greater
than p.
From theorem 1 we obtain now immediately the following

Corollary 3. If m and n are natural numbers such that mz p(n),
then the implication [m]'—[n] is true.

Mostowski has shown that also the converse theorem iy
true 7). The inequality m>p{n) is not only sufficient but also neces-
sary for the derivability ot the implication [m]!—[n]. Mostowski
derived further from the.corollary 3 a sufficient condition for the
truth ot the implication [m]!—[»1! and proved that this condition
is at the same time necessary ).

We conclude with the remark that conditions given in theorem 1
and 2 are by no means necessary for the derivability of the impli-
cation [ M]—[n]. For instance the implication [(3,7)]-[9] is true?)
but neither the assumptions of theorem 1 nor that of theorem 2
are satisfied.

) Ree M, p. 162,
8) M, theorvems VIIT,
o) M, theorem IX.
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On definable sets of positive integers *).
By

Andrzej Mostowski (Warszawa).

The celebrated paper of K. Godel on undecidable statements?)
had (among others) the effeet that several writers began to analyze
the notion of functions of natural argument taking on infeger va-
Tues ag well as related with them sets of positive integers. The chief
purpose of these endeavours was to formulate an exact definition
of what may be called ..calculable function®, i. e. guch fonetion f(n)
that there cxists a method permitting to caleulate the value of f(n)
for any given n in a finite number of steps. For sets we have the
corresponding notion of .calculable sets™ for which there is a finite
method permitting to decide whether any given integer is in set or
not. The solution of this problem given by Herbrand, Godel,
Church, Kleene and Turing?) suggested still other types of sets
and of functions. Soe. g. Rosser and Kleene found an interesting
clags of sets which they called ,recursively enumerable” %),

The aim of this paper is to show that the two above mentioned
classes of sets (and of funetions) form the beginning of an infinite
gequence of classes whose properties closely resemble those of pro-
jeetive sets?). Tor convenience of readers not acquainted with
papers referred to in footnotes?) and 3) I shall develop the theory
without using the notion of general vecursivity (the final section 6
is the only exception).

#) See note on the page 112.

1y (¢odel [3]. Numbers in brackets refer to hibliograply given at the end
of this paper.

2) (+odel [4], [5], Chureh [2], Kleene [9], Turing [21]. It is now custo-
mary to eall calculable functions and sets ,.general recursive”. An excellent
exposition of the theory of these functions is to be found in Hilbert-Ber-
nays [8], Supplement II, 392-421.

3) Kleene[9], Rosser [14]. Further development will be found in Post[12],

4) I shall refer to the exposition of the theory of these sets given by Ku-
ratowski[10].
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