

Consequently, it suffices to prove then

$$A^i B^j \Phi(A, B) = A^i B^j \Phi(X^i, X^j)$$

or, in other terms,

(13)
$$A^{i}B^{j}\Phi(A,B) - A^{i}B^{j}\Phi(X^{i},X^{j}) = 0.$$

By the quasi-analyticity of Φ and the relations (9) and (10) we have

$$A^{i}B^{j}\Phi(A,B) \stackrel{\cdot}{\sim} A^{i}B^{j}\Phi(X^{i}X^{j}) =$$

$$= A^{i}B^{j}[\Phi(X^{i},X^{j}) \stackrel{\cdot}{\sim} \Phi(A,B)] \subset A^{i}B^{j}[(X^{i} \stackrel{\cdot}{\sim} A) + (X^{j} \stackrel{\cdot}{\sim} B)] =$$

$$= A^{i}B^{j}A^{i-i} + A^{i}B^{j}B^{i-j} = 0,$$

whence the equality (13).

By Lemma 1 we obtain immediately the

Lemma 2. If for a quasi-analytical operation $\Phi(A,B)$ holds

$$\Phi(0,0) = \Phi(X,X) = 0$$
 and $\Phi(0,X) = \Phi(X,0) = X$,

then we have identically $\Phi(A,B) = A - B$.

Theorem. Suppose a binary quasi-analytical operation \circ is defined in a family F of elements of a Boolean algebra B such that the "empty" element \circ and the "universal" element X of B belong to F and that F is a group with respect to \circ , with "empty" element as unit. Then

(14)
$$A \circ B = A - B$$
 for each $A, B \in F$.

Proof. By group properties,

(15)
$$0 \circ 0 = 0$$
, $0 \circ X = X$ and $X \circ 0 = X$

By formula (12) of Lemma 1 and by (15) we have

$$A \circ X \supset (X - A)X(0 \circ X) = X - A$$
 for $A \in F$,

whence $A \circ X \neq 0$ for $A \neq X$. On the other hand, there is by group properties a $B \in F$ such that $B \circ X = 0$, whence

$$(16) X \circ X = 0.$$

By (15), (16) and Lemma 2 we obtain (14), q. e. d.

ON THE SYMMETRIC DIFFERENCE OF SETS AS A GROUP OPERATION

BY

HENRY HELSON (CAMBRIDGE, MASS.)

If M is a set of elements a, b, \ldots and M the field of all subsets A, B, \ldots of M, then M is a group under the point-set operation symmetric difference:

$$A \stackrel{\cdot}{-} B = (A - B) + (B - A).$$

Evidently the group is completely determined by the power of M, and is commutative 1).

Suppose M is a group with respect to some binary operation \circ . S. Ulam has asked what further conditions can be imposed on \circ to characterize the operation as symmetric difference. Marczewski has shown 2) that quasi-analyticity is a sufficient condition. The purpose of this note 3) is to give another such condition, related to the definition of binary G-operations of Marczewski⁴).

Le φ be a one-one transformation of M into itself. Define φ to be simple if $\varphi(a) = b$, $\varphi(b) = a$ for some pair of points $a, b \in M$, and $\varphi(c) = c$ for all other points $c \in M$; that is, φ simply inter-

^{&#}x27;) It follows by the known theorems on groups every element of which has order at most 2 (cf e. g. L. Pontriagin, *Topological Groups*, Princeton 1940, p. 19, Example 9) that every group of this type is isomorphic to the group of all finite subsets of a set (with symmetric difference as the group operation).

²⁾ This fascicle, pp. 199-202.

⁵) Written at the University of Wrocław while the author held a Sheldon Travelling Fellowship from Harvard University.

⁴⁾ E. Szpilrajn-Marczewski, Annales de la Société Polonaise de Mathématique 17, 1938, p. 123-124. A binary G-operation is invariant under all one-one mappings of M into itself, and so is invariant under simple transformations. For an example of an operation defined in the space of integers invariant under simple transformations which is not a G-operation, define sets A and B to be equivalent just if one can be obtained from the other by a finite number of simple transformations, and set $A \circ B = 0$ or M according as A and B are not, or are, equivalent.

COMMUNICATIONS

205

changes a pair of points. Evidently, symmetric difference is invariant under simple transformations; that is, $\varphi(A \stackrel{.}{\cdot} B) = \varphi(A) \stackrel{.}{\cdot} \varphi(B)$. Assume now that \bigcirc is a group operation defined in M with the empty set as zero, invariant under simple transformations. Let A^* denote the inverse of A.

We first prove three lemmas.

Lemma 1. Either $A \cdot A^* = 0$ or $A \cdot A^* = A$.

For assume both false. Then there is some $a \in A - A^*$, and $b \in A \cdot A^*$. The transformation carrying a into b and leaving other points fixed is simple; but $\varphi(A \circ A^*) = \varphi(0) = 0$, while $\varphi(A) \circ \varphi(A^*) = 0$ because $\varphi(A) = A$, $\varphi(A^*) \neq A^*$. This contradicts the assumption that O is invariant under simple transformations.

Lemma 2. Either $A^* = A$ or $A^* = A'$ (where A' denote the complement of A).

If $A \cdot A^* \neq 0$, by lemma 1 we have symmetrically

$$A \cdot A^* = A$$
 and $A^* \cdot A = A^*$.

Hence $A = A^*$.

If $A \cdot A^* = 0$, and $a \in M - (A + A^*)$, we can choose any $b \in A^*$ (since we can suppose $A^* = 0$) and define a simple transformation φ carrying a into b and leaving other points fixed. Then φ transforms A^* into a different set, but leaves A and $A \circ A^* = 0$ fixed, a contradiction as before. Hence $M - (A + A^*) = 0$ and $A^* = A'$.

Lemma 3. For every A, $A \circ A = 0$ or $A \circ A = M$.

If $A^* = A$, then $A \circ A = 0$. Otherwise, by lemma 1, $A \circ A' = 0$. It follows that A is not 0 or M, and so if $A \circ X = M$, X is not 0 or M. Arguments like those used above show that X then has to be A or A', but since A' is the inverse of A, the lemma is shown.

By lemma 3, since $M \circ M = 0$, every element of M has order 2 or 4.

The following example shows that there may actually be elements of order 4 present. Take M the set of two elements a and b, with subsets $\{0\}, \{a\}, \{b\},$ and $\{a,b\}$ which we write simply 0, a, b and ab. Define \circ by the following table:

Then \circ is invariant under permutation of a and b, and a and b have order 4. However, assume now, not only that \circ is invariant under simple transformations, but that the following condition holds: for all A and B, $A \circ B \subset A + B$. Under these hypotheses we can prove the uniqueness of \circ .

Lemma 4. If
$$A \cdot B = 0$$
, $A \circ B = A + B$.

Unless A=B=0, $A \circ B \neq 0$. The operation \circ being invariant under simple transformations, if $A \circ B$ intersects A, evidently $A \subset A \circ B$, and similarly for B. By the new hypothesis on \circ it follows that $A \circ B$ can only be A, B or A+B. But the first two possibilities are excluded by group properties unless A or B is O.

Theorem. If \circ is a group operator on the subsets of a set M with zero the empty set, invariant under simple transformations, such that $A \circ B \subset A + B$ for all subsets A,B of M, then \circ is symmetric difference.

By lemma 3, every element is its own inverse. This fact and lemma 4 establish the following equalities:

$$A \circ B = [(A - B) + (A \cdot B)] \circ B = [(A - B) \circ (A \cdot B)] \circ B =$$

= $(A - B) \circ (A \cdot B) \circ (A \cdot B) \circ (B - A) = (A - B) + (B - A).$

Wrocław, May 1948.