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On parvient ainsi & I'égalité

e RO S ¢

: . X,
qui, rapprochée de la double inclusion (29), montre que les en-
sembles G* satisfont au théoréme B complété par (28).

9. Les suites finies X,,...,%,, dans (26) et (27). ne peuvent
pas étre remplacées par des suites infinies.

Pour s'en convaincre, on désignera par 1 Densemble des
nombres réels et par E celui des nombres rationnels:

E= (risTas . 2

Soit X,=(rs). On a
X, +X+-...=E,

FX)+FE) .1

Car la condition E-F(Xn) = X.=(r,) implique que I'ensemble
fermé F(X,) est non-dense. La somme F(X)+F(X) ... est donc

de I° catégorie au sens de Baire.

tandis que
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ON THE SEPARABILITY OF TOPOLOGICAL SPACES
BY
R. SIKORSKI (WARSAW)

1. Consider the following six properties of a topological
space ') &= .
(B) ¥ possesses a basis %),

(M) Every transfinite strictly increasing sequence of open sub-
sets of is at most enumerable ®).
(M) Every transfinite strictly decreasing sequence of open sub-
sets of . ¥ is at most enumerable. ' :
(I) Every isolated subset of ¥ is at most enumerable.
(D) & contains an'at most enumerable subset X mwhich is dense
in 24, ‘ ’
() Every class of mutually disjoint open subsets of & is at
most enumerable.
The following seven implications are true for any topolo-
gical space °): _
(M) (D)~ (S)
(i) ' + + +
(B) = (M) » (D)
If the space is metric, the implication (S)->(B) is also true, -

i, e. all the properties (B), (M), (M), (D), (D), (S) are equivalent.

1y A space is called fopological if it fulfils the three well-known axioms of
Kuratowski. See C. Kuratowski, Topolagie I (second edition), Monografie
Matematyczne, Warszawa-Wroclaw 1948, p. 20,

%) L. e. an-enumerable sequence of open sets such that every open subset
of @ is the sum of some subsequence of this sequence.

%) The property (M) is equivalent (for arbitrary topological spaces) to the
following propexty: every class @ of open sets contains an enumerable subclass
Gy such that X{G) = Z(G,).

4 1. e. X=2a, where X denotes the closure of the set X.

5 Cf.e. g E. Marczewski, Séparabilité et multiplication cartésienne des
espaces topologiques, Fundamenta Mathematicae 34 (1947), p, 127 - 143, see 1.2(i),
1,3() and (i), p. 130-133, See also C. Kuratowski, op. cit., p. 146.
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This equivalence does not hold for arbitrary topological spaces,
In particular, five examples mentioned by Marczewski®) show
that the implications (Z_‘_I)—>(B), (D) - (M), (D= (M), (8)—>(D) and
(S)—(I) are not true in general.

The purpose of this paper is to prove the following theorem:

() The implications (1) and their logical consequences are the
sole true logical connexions among the properties (B), (M),
(M), (D), (D), (S) of topological spaces.

2 Consider all the alternatives

(a) . (P1)+Pa+ +Pk
where (Pi) is one of the properties (B), (B)', M), M) (M), (M
(D, @Y, (D, (DY, (), (S, i=1,...,k, k<6, and the sign ’ denotes
always the negation.

One can easily verify that every alternative (a) is either
a logical consequence of the implications (i), or it implies, on
account of (i), one of the following alternatives 7):

4] (IH_(D!’ (2) (M )+-(M (5) (M Y- (D),
4 w+(M "+ (MY, —I—(M +(D + (D)8,
@ @)+ M)+ I+(D s) (B) (9) (S).

It is well known that every sentence which is formed from
the sentences (B), (M), (M), (I), (D), (S) and the logical signs of

negation and implication is inferentially equivalent to a conjun-
ction of a finite number of sentences of the form (a) #). Therefore,
in order to prove (¥) it is sufficient to show that the alternatives
1)-(9) are, in general, not true. This is evident for (8) and (9).
Thus we must construct seven examples of topological spaces
for which the following conjunctions are true respectively:

W o, @ oy ¢, o @y,
@) (B (M)(M), Gy () My Dy, ©) @Dy (S),
@ M) MY D)D)
%) E. Marczewski, loco cit,, p. 133.
™y This remark is due to A. Mostowski.

8) See e. g. A. Mostowski, Logika Matematyczna, Monografie Matema-
tyczne, Warszawa-Wroclaw 1948, p. 33.
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3. If &/, and &/, are two disjoint topological spaces, we define
in the set @/,+ G/, the closure operation by the formula

1 2
Y=Y.9+Y-.&, for YC G+

; .
where ¥ denotes the closure of a set Y &/: in the space &/,
i=1, 2. The topological space which we obtain in this way from
Y+, will be denoted by &/, FS/s. The sets @/, and Z/; are
both open and closed in @/;5%/,. Therefore:

(ii) The space TP, possesses one of the properties (B), (M),
(M), (I), (D), (8} if and only if both the spaces 2/ and &/, possess this
property.

Let now 2/ be an arbiirary topological space and let E be
an abstract enumerable set, &/-E=0. We define in - E the
closure operation by the formula
Y__{YV-Z@J—}—Y-E if the set Y-E is finite,

T \@~+E if the set Y-E is infinite,
where Y-/ denotes obviously the closure of ¥-2/in the space &.
The topological space which we obtain in this way from Z/--E
will be denoted by D(Z/).
(iii) The space D(Z/) possesses the property (D).
In fact, the set E is an enumerable dense subset of D(Z/).

(iv) The space D(Z/) possesses the property (M) or (M) respec-
tively if and only if the space G/ possesses this property.

In fact, the class of non-empty open subsets of D(Z/) is iden-
tical with the class of all sets G which can be represented in
the form

G=CGy+(E—E,),
where G, is an open subset of the space @ and E, is finite.

4. Now let us consider the four following topological spaces:
Q’Os 9(1’ 2 “a{ﬂ'

<¥, is the set of all ordinal number §<Q (i e. of first and
second class). For every «e2, let Q. denote the set of all
£¢¥, such that &<<o, and let Po=27—Q If X is a finite
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subset of &, obviously we set X=X. If XC & is 1nl1n1te, let
a denote the least ordinal number such that X Qo is infinite and

let X=X-+P,.. It is easy to prove that the so-defined closure X
satisfies the three axioms of Kuratowski
%, is a non-enumerable set with the closure operation

e {X if X is a finite set,
T \&, if X is an infinite set.
<, is a non-enumerable set with the closure operation
X—z{X if X is at most enumerable,
<, if X is non-enumerable.
&, is a non-enumerable set with the closure operation
X=X for.every XC X,
We may suppose that & 2;=0 and @ D(7) =0 for i=j,
$j=0,1,273. -
Then:
1° The space D(3) possesses the proper ty 1y.

In fact, D(Z%¥,) possesses the property (D) by (iii) and it
does not possess (I) since @ is an isolated non-enumerable
subset of D(Z)..

20 The space ¥, possesses the property (2).
* Since {Q.} is a non-enumerable increasing sequence of open

sets, .the condition (M) is not satisfied. The property (M) follows

from the fact that for every open set G & either G is at most
enumerable or &,— G is finite.

3% The space &, possessess the property (3).
The property (M) follows from the fact that every non-empty

open set is the complement of an at most enumerable set. Since

every enumerable set is closed, &, does not possess the pro-
perty (D).

4° The space & possesses the property (4).

. In fact, the class of all non-empty open subsets of &, coin-
cides with the class of all complements of finite subsets of &.

Therefore <, possesses the properties (M) and (M).
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Let {G,)} be any sequence of non-empty open subsets of this
space. &, being non-enumerable, the set G;: G, ... is non-empty.
The open set 2, —(x) is not the sum of a sub-
sequence of the sequence {G,}. Thus 2, does not possess the
property (B).

50 The space D(¥,) possesses the property (5).

D(%r,) possesses the properties (M) and (D) by 3%, (iv) and
(iii). Suppose that D(S¥,) possesses the property (M). By (iv) we
obtain then that ¥, possesses the property (M), thus by () the
property (D) also, in contradiction with 3°

6% The space S¥yFD(2;) possesses the property (6).

It possesses the property () by 3° (1), (i) and (iii). By 1°% 3°
and (ii) it does not satisfy the conditions (I) and (D).

7% The space 2,5 D(,) possesses the property (7).

It possesses the properties (I) and (D) on account of (i), (ii),
29 and 5° Since &, does not possess the property (M), and
D(&r,) does not possess the property (M) (see 2° and 5°), the space
<, ED(Z,) does not possess these properties on account of (ii).

The theorem (¥} is thus proved.

In order to prove only that the sole true implications
among the properties (By (M ) (M), (), (D), (S) are the implica-
tions (i) and their logical consequences, it is sufficient to show
that there exist topological spaces with the properties (1), (2),

(3) respectively. The examples D(Z}), 2. &, are, 1 think, more
elementary than the five examples given by Marczewski?).

5. The question arises whether the theorem () is true for
normal %) spaces, i. e.:
P51. Are the implications (i) and their logical consequences

the sole true logical connexions among the properties (B), (M),
(M), (D), (D) and (S} of normal topological spaces?

" See footnote °,
1) A space @ is called normal if for any disjoint closed sets X;, X, there
exists an open set G such that X, CG and G- X, =0.
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This problem is unsolved. It is known only that

(v) If 282", every topological completely normal'!) space

with the property (D) possesses also the property (I).

Suppose that a completely normal space contains an enumer-
able dense subset X, and a non-enumerable isolated subset Y.
For every set Y (¥, we have Y-(¥;—1Y)+7Y-(¥Y,—Y)=0. Thus
there exists an open set Gy such that ¥ (C Gy and Gy-(¥,— ¥)=0.
Let Xy=X,-Gr. If Y= Y,, then Xy = Xy, The one-one mapping
Xy maps the class of all subsets of Y, in the class of all sub-
sets of X, in contradiction with 2% << 2%.

1) A space & is called completely normal if for every two sets X;, X, such
thet X,-X,+X,-X;=0 there exists an open set G such that X, CG and G-X,=0.
A space & is completely normal if and only if every subspace X (C % is normal
(see e. g. C. Kuratowski, op. cit., p. 130, Remarques).
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REMARKS ON A PROBLEM OF BANACH
BY
R. SIKORSKI (WARSAW)

S. Banach has posed the following problem !):

When is it possible to define on a metric space X mith a metric
o (%, x,) -another metric g, (%, x,) such that

(1) if li_mg(xn, x)=0, then Ign 1 (2%0n, x)=0;

(2) the metric space X, mwhich me obtain from X by admitting
the function g,(x,, x,) as the metric is compact?

It is easy to see that Banach’s problem is cquivalent to
the question under what conditions a metric space X possesses
the following property:

(B) There exists a one-one continuous mapping f of X onto
a compact metric space Y.

It is clear that the geometrical imﬁge Ely=¢x)] of an ar-
xy

bitrary real function ¢(x) (0 x<1) possesses the property (B).
The function f is then the projection on the x-axis.

W. Sierpinski has consiructed a connected plain set §
which is both F, and G and which is the sum of an enumerable
sequence {I,} of mutually disjoint simple arcs %. The set S does
not possess the property (B). In fact, suppose that there exists
a one-one continuous mapping f such that f(S) is compact. Since
S is connected, £(S) would be a continuum. Since f is one-one,
the continuum f(§) would be the sum of the enumerable sequence
{f(I)} of mutually disjoint continuums, which is impossible *).

) See this volume, p. 150, P26.
?) W. Sierpifiski, Sur quelques propriétés fopologiques du plan, Funda-
menta Mathematicae 4 (1923), p.5. I, is the sum of the segment x=1/n, 0y <t
and of ihe part of the circle x?4-y*= 1/n* where either x<C0 or y<C0.

1) See W. Sierpifiski, Téhoku Mathematical Journal {3 (1918), p. 300, and
F. Hausdorff Mengenlehre, Berlin-Leipzig 1927, p. 162,
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