Theorem (iv) can be deduced directly from (i). Namely, it is sufficient to pose $X_0 = \overline{X}$ and $X_1 = X$ in (i), and to denote by F the collection containing the set $\overline{X} - X + (x_0)$, where x_0 is a point of X, and all one-point sets (x), where $x \in X - (x_0)$.

By (iv) every open subset of a Euclidean space (or of the Hilbert cube) possesses the property (B).

LINEAR FUNCTIONALS ON DENJOY-INTEGRABLE FUNCTIONS

BY

A. ALEXIEWICZ (POZNAŃ)

1. All the functions appearing throughout this paper are defined on an arbitrary but fixed closed interval $\langle a, b \rangle$.

Denote by (D) the linear space composed of the Denjoy-integrable functions x=x(t), with the usual definition of addition and multiplication by real numbers. In this space we introduce a norm by the formula

$$||x||^* = \max_{a \leqslant s \leqslant b} |(D) \int_s^s x(t) dt|.$$

We consider two arts of convergence in (D). A sequence $\{x_n\}$ of elements of (D) will be called to be (*)-convergent to x_0 if $||x_n-x_0||^*\to 0$ 1); a sequence $\{x_n\}$ of elements of (D) will be called η -convergent to x_0 if the sequence $(D)\int_0^z x_n(t)dt$ is

10 uniformly bounded,

 2^{0} asymptotically convergent to $(D)\int_{a}^{s}x_{0}(t)dt$,

3° convergent to
$$(D) \int_{a}^{b} x_0(t) dt$$
 for $s = b$.

A functional F(x) defined in (D) is called additive if $F(\lambda x_1 + \mu x_2) = \lambda F(x_1) + \mu F(x_2)$, where λ and μ are arbitrary numbers. An additive functional will be called (*)-linear or η -linear respectively if, given any sequence $\{x_n\}$ (*)-convergent or η -convergent to x_0 respectively, we have

$$\lim_{n\to\infty}F(x_n)=F(x_0).$$

The purpose of this paper is to characterize the (*)-linear and η -linear functionals in the space (D).

¹⁾ The space (D) normed by this formula is not complete.

2. We shall denote by (M) the linear space composed of the bounded and measurable functions x = x(t). The norm being defined by the formula $||x|| = \operatorname{ess\,sup}_{a \le t \le b} |x(t)|^2$, (M) is a Banach space.

(C) will denote the linear subspace of (M) composed of the continuous functions and (\hat{C}) — the linear subset of (C) composed of the functions vanishing for t=a and being indefinite Denjoyintegrals.

Theorem 1. The general form of the (*)-linear functionals in (D) is

(1)
$$F(x) = (D) \int_{a}^{b} x(t) h(t) dt$$
,

where h(t) is a function of bounded variation, continuous at the right, and such that h(b)=0; the norm of this functional is

$$||F|| = \underset{a \leqslant t \leqslant b}{\operatorname{var}} h(t).$$

Proof. Given any element x = x(t) of (D), write

(2)
$$\hat{\mathbf{x}} = \hat{\mathbf{x}}(s) = (D) \int_{s}^{s} \mathbf{x}(t) dt;$$

by this formula an equivalence (i. e. an one-to-one and isometrical mapping) between the spaces (D) and (\hat{C}) is defined; thus $||x||^* = ||\hat{x}||$. Let F(x) be any (*)-linear functional in (D). Writing $\hat{F}(x) = F(x)$ we get a linear functional in (\hat{C}) for which $||F|| = ||\hat{F}||$. By the well-known theorem of Banach-Hahn the functional $\hat{F}(x)$ may be extended to the whole of (C) without altering the norm. Hence we have by the Riesz theorem

$$\hat{F}(\hat{x}) = \int_{a}^{b} \hat{x}(t) \, dg(t),$$

where g(t) is a function of bounded variation; we may assume g(t) to be continuous at the right and g(b) = 0; the norm of the functional is

$$||\hat{F}|| = \underset{a \leqslant t \leqslant b}{\text{var}} g(t).$$

If $\hat{x}_{\epsilon}(\hat{C})$, we get integrating by parts,

$$\hat{F}(\hat{x}) = -(D) \int_{0}^{b} x(t)g(t) dt.$$

Putting h(t) = -g(t) we obtain the formula (1) as $\hat{F}(\hat{x}) = F(x)$ for $\hat{x} \in (\hat{C})$. Hence any (*)-linear functional in (D) is of the form (1).

To prove the converse, it suffices to remark that, given any linear functional $\hat{F}(y)$ in (C), the formula $F(x) = \hat{F}(\hat{x})$ defines a (*)-linear functional in (D).

3. A sequence $\{x_n\}$ of elements of (M) will be termed η -connergent to x_0 if

1º
$$||x_n|| \le k$$
, 2º $\lim_{n \to \infty} \text{as } x_n(t) = x_0(t)$ 3) and 5º $x_n(b) \to x_0(b)$.

An additive functional F(x) defined in (M) will be called η -linear if $F(x_n) \to F(x_0)$ for any sequence $\{x_n\}$ η -convergent to x_0 . It follows easily by a theorem of Fichtenholz 4) that the general form of the η -linear functionals in (M) is

$$F(x) = \int_{a}^{b} x(t)g(t)dt + Bx(b),$$

where g(t) is a Lebesgue-integrable function.

A functional F(x) defined in the linear subset (\hat{C}) of (M) will be termed η -linear if, given any sequence $\{x_n\}$ of elements of (\hat{C}) η -convergent to an element $x_0 \varepsilon(\hat{C})$, we have $F(x_n) \to F(x_0)$.

Lemma. Given any η -linear functional $\hat{F}(x)$ in (\hat{C}) , there exists a η -linear functional F(x) defined in (M) such that $F(x) = \hat{F}(x)$ for $x \in (\hat{C})$.

Proof. Let x_0 be an arbitrary element of (M), $\{x_n\}$ any sequence of elements of (\hat{C}) , η -convergent to x_0 . The limit $\lim_{n\to\infty} \hat{F}(x_n)$ exists for, given two arbitrary sequences $\{p_n\}$ and $\{q_n\}$

²) i. e. $||x|| = \inf_{E} |\sup_{x \in E} |x(t)||$, where E is any set of measure b-a.

³⁾ $\limsup_{n\to\infty} x_n(t)$ denotes the asymptotical limit of the sequence $\{x_n(t)\}$.

⁴⁾ G. Fichtenholz, Sur les fonctionnelles linéaires continues au sens généralisé, Recueil Mathématique 4 (1938), p. 193-214, especially p. 200.

293

icm®

of indices, the sequence $\{x_{p_n}-x_{q_n}\}$ is obviously η -convergent to 0; hence $\lim_{n\to\infty} [\hat{F}(x_{p_n})-\hat{F}(x_{q_n})] = \lim_{n\to\infty} \hat{F}(x_{p_n}-x_{q_n})=0$. We define

$$F(x_0) = \lim_{n \to \infty} \hat{F}(x_n).$$

To prove that F(x) is η -linear in (M), consider a sequence $\{x_n\}$ of elements of (M) η -convergent to x_0 (vid. 1^0 - 3^0 , p. 291). There exists a sequence $\{\hat{x}_n\}$ of elements of (\hat{C}) η -convergent to x_0 such that $\hat{F}(\hat{x}_n) \to F(x_0)$; for this sequence we have $\|\hat{x}_n\| \le L$, $\lim_{n \to \infty} \hat{x}_n(t) = x_0(t)$ and $\hat{x}_n(b) \to x_0(b)$. Given any n, we can choose a sequence $\{x_{n,l}\}$ such that

(i)
$$x_{ni}\epsilon(\hat{C}), \|x_{ni}\| \leq 2K, |x_{ni}(t)-x_n(t)| \leq 1/n$$

on a set of measure greater than b-a-1/in;

$$(ii) x_{ni}(b) = x_n(b).$$

Hence $\lim_{i\to\infty} \hat{F}(x_{ni}) = F(x_n)$. Choose m = m(n) so as to have

$$|\hat{F}(x_{nm})-F(x_n)|<1/n.$$

We observe easily that the sequence $\{x_{nm} - \hat{x}_n\}$ is η -convergent to 0. It follows that

$$\begin{split} &\lim_{n\to\infty} [F(x_n) - F(x_0)] = \\ = &\lim_{n\to\infty} [F(x_n) - F(x_{nm})] + \lim_{n\to\infty} [F(x_{nm}) - F(\hat{x}_n)] + \lim_{n\to\infty} [F(\hat{x}_n) - F(x_0)] = \\ = &\lim_{n\to\infty} [F(x_n) - \hat{F}(x_{nm})] + \lim_{n\to\infty} \hat{F}(x_{nm} - \hat{x}_n) + \lim_{n\to\infty} [\hat{F}(\hat{x}_n) - F(x_0)] = 0. \end{split}$$

Theorem 2. The general form of the η -linear functionals in (D) is

$$F(x) = (D) \int_{-\infty}^{b} x(t)h(t)dt,$$

where h(t) is an absolutely continuous function.

Proof. Given any η -linear functional F(x) in (D), put using the operation (2)

$$F^*(\hat{x}) = F(x).$$

 $F^*(\hat{x})$ being an η -linear functional in (\hat{C}) , there exists by the Lemma a functional F η -linear in (M), such that $F(y) = F^*(y)$ for $y \in (\hat{C})$. Conversely, given any η -linear functional F in (M), the formula $F(x) = F^*(\hat{x})$ defines an η -linear functional in (D).

Since $F(y) = \int_{a}^{b} y(t)g(t)dt + By(b)$, where g(t) is a Lebesgue-integrable function, we get for $\hat{x} \in (\hat{C})$, integrating by parts,

$$F^{\star}(\hat{x}) = F(\hat{x}) = \hat{x}(b)\hat{g}(b) - (D)\int_{a}^{b} x(t)\hat{g}(t)dt + B\hat{x}(b),$$
 where $\hat{g}(t) = \int_{a}^{t} g(s)ds$. Hence

$$F(x) = \int_{a}^{b} x(t) \left[\hat{g}(b) + B - \hat{g}(t) \right] dt.$$