ELEMENTARY INEQUALITIES BETWEEN THE EXPECTED
VALUES OF CURRENT ESTIMATES OF VARIANCE
BY
H. STEINHAUS (WROCLAW)}

The inequalities I refer to in the title are statements about
the so-called Bernoullian, Lexian and Poissonian schemes, which
are commonly employed to explain differences between empiri-
cal and theoretical variance. They are to be found in most texi-
books on probabilities and statistics, .

Nevertheless, when faced with a particular problem about
the spacial distribution of leucocytes in human blood, I was com-
pelled to answer questions of the haematologists to whom cer-
tain rule-of-thumb simplifications in the usual computations
appeared suspect. As I have found nowhere a fairly complete
exposition of these important inequalities I consider their elemen-
tary character rather as an argument in favour of the publication.

Preliminary remarks, definitions and statements. Let x be
any randoin variable and E(x) its expected value; if y is a ran-
dom variable too, and a and b constants, we have

) . E(ax-+by)=a-E(x)--b-E(y).
If x and y are independent, we have
@) E(xy)=E(x)-E(y).
The expréssion
G - o) = E(x?) — (Ex)?
is called the true variance of x.
The true variance has obviously the following properties:
(4) v(ex)==cp(x) for any constant c,
5) p(x+y)=0o(x)+v(y) for independent x, Y
6) E(x—c) > n(x) for aﬁy constant ¢,
the sign of equality beiﬁg valid in (6) only for e=E(x). Tt follows
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@) . op(x)=E(x—Exp.

All these properties can be got immediately from (1), (2) and (3).
If a, a,, ..., an are constants, we put’

® o=t a1 5a)
mi=y ! mi=;’
and we get
9 v(a) =0,
the sign of equality bolding only if a;=a,=..=an.

We call v(a) the arithmetical variance of the finite set {a;}.

To simplify the notations we will designate by a the mean of aj:
I '
(10) a=- gl as,
and we will extend this notation on random variables; as to the

natural number m it will be n in some cases and N in others,
the subscript j becoming respectively k and i.

Let us denote, for instance, by x, the number of segmented
leucocytes encountered among n leucocytes chosen at random on
a blood preparation; we can put

(11) x=u,+u,-+..74Un,

the u being independent random variables assuming the values
1 and 0 only.

We call the procedure yielding x an experiment; it consists
of n trials. .

We can imagine this experiment being repeated N times and
giving the values x;; x,, ..., xy respectively for x. The set x: e‘nab?es
us to compute the experimental variance and to compare it with
the true variance; such comparison is a means deciding between
different hypotheses underlying the computation of the true va-
riance. ) )

We shall need the identity

N N
(12) X (e — % =22 —NZ*

i=

-

N
1
resulting directly from x=y g,: x5


GUEST


314 C 6OMMUNICATI ON S8

Hypotheses. We have to examine the three most important:
the Bernoulli scheme (B), every w. in (11) having the same probabi-
lity p of being { (and consequently the same probability g=1—p
of being 0); the Lexis scheme (L), when every experiment is per-
formed with a consiant probability p, but the value of p: chan-
ges from experiment to experiment; the Poisson scheme (P), where
the probabilities change from trial to trial, so that p; is the pro-
bability of u being 1, but the same conditions prevail in each
experiment, so that the probabilities do not change with i,

' Hypothesis B. Supposing p to be known let us compare
first the result of N experiments, with the true variance, by com-
puting the stafistical variance

(13) 5=%{(x1-np)z—l—ﬁ(xz——np)“—[—...—l—(xN-—np)E}.

We have to answer the question whether s is an estimate
for the true variance p(x), i. e. whether E(s)=v (x). By (1) and (13)
we get
(14) E(s)=E(x;—np)?,

as B implies the same distribution for every x. By (1) and {11)
we get

(15) E(x)=E(u) 4 E(up) ... E (),
and by (5) and (11)
(16) 0 (%) = (1)) +0(uz) ... - o(ws),

the subscript i on the left of (15) and (16) being omitted pur-
posely. Now it results obviously from (3)

(17) E(u)=p, E@2)=p, D) =p—p=pq
(@=1—p; k=1,2,..n), and from (15), (16) and (17)
(18) . E(x)=np, o(x) = npq.
(18) and (3) give '
(19) E(x%)=n2p*4-npq,
and (14) gives
(20) E(s)=E(x*)—2np- E(x)+ n2p>.

(18), (19) and (20) imply
(21) E(s) = npg =p(x).
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Thus s is an estimate for the true variance.

There are only a few examples (in genetics, for instance)
where the theoretical p is known; in such cases we can com-
pute s by means of (13) putting'in the formula the experimental
set x; and compare s with v(x) as given by (18); a sensible dif-
ference between the two would be considered as an argument
against the hypothesis B. In most cases, however, p is not known
& priori and we are compelled to use instead the fraction de-
fined by the result of N experiments, i. e. the fraction of favo-
rable trials. This amounts to use ¥, the mean of all x, instead
of np, and 1—%/n instead of g. The question arises, how does
this procedure affect the variances; we must note that v(x) can-
not be computed by the exact formula (18) and the introduction
of quantities depending of the result of experiments, like x, turns
the expression npg into a random variable.

Let us denote by s, the purely empirical expression

(22) $e=N_'1'_T [("‘:1”:":)2’}"(""2—&)2—}"---+(xNT§)2J’

and let us compute the expected value' of the parenthesis [ ];
the identity (12) shows it to be equal to

N
(23) E ( ; ﬁ) — E(N®)=N-(Ex8) —N-E?),

and we have only to work out EG®), as E(x?) is already given
by (19). We get from (3) (4) and (5)

N : :
04 EG)—o@HE®F= o i)+ E@F = ot + (B
and from (23) and (24)
E[ |=N-E(x?)—o(x)—N-[E@x,)F
=N-p(x)—p(x)=(N—1)-p(x,).
(22) and (25) show immediately
(26) E(s))=vp(x)=npg,

i. e, the empirical s. being an estimate for the true variance.
The usual manner to test the identity (26) is to. replace

v(x)=npg by )
(27) pe=x(1—%/n);

(25)


GUEST


ettt gt e Sk e e

316 C OM MUNICATI ONS

v, is a random variable resulting from N experiments and it is
customary to compare s. with v, as if v, were the true variance.
It results from (27), (I18) and (24) however
E(p) =E(®) — E(@)/n = np — [E{x)P/n — v(x)/Nn
=np—np>—npq/Nn,

and

@8) E(ve)=npq—pq/N.
Thus we get from (26) and (28)

(29) E(s)=E(ve) + pa/N,

_ which formula proves that the customary comparison could create
an appearance of hypernormal variance; as the expected value
of s.—ve. is positive. Nevertheless the difference is in most case
too small to be taken care of.

Let us count segmented leucocytes in ten experiments, each
of them comptising 100 leucocytes of all kinds; let us assume
p=0.6, i. e, a theoretical probability of 0.6 for a lencocyte to be
segmented. Hence

n=100, N=10, ¢=04, npg=24, pq/N=10.024.

Thus the difference is only 1%,, of the quantity measured;
as the standard deviation is the square root of the variance, the
difference between the two standard deviations which could be
ascribed to the last term of (29), could alter only statements in
which the third decimal of the ratio of both deviations is signi-
ficant; in problems connected with the repariition of leucocytes
even the second decimal is beyond the attainable accuracy.

Hypothesis L. The probability is constant in every expe-
riment but it changes from experiment to experiment, p; being
the probability of success in every trial of the i-th experiment.

Let us call p the mean of all p; and let us evaluate first the
expected value of the statistical variance:

(50) §== 71\7 [(x;—np)e 4 (e, —np)+... + ey —np)H,

E(g)= L 2: E(x;—np),
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E(x;—npP = E(x)) — 2np E(x;) -+ n?p?=n2p? + npiqi—2n* p:p + n°p*
where g: signifies 1—p; and the expected values have been taken
from (18) and (19). Thus we get
L X X 95 &,
E(s)=ZT/,~§ npiqi+n? (Ng,:p%— NPI_:‘ZIPH—?)

(31) &
=N~Z np:gi-+n°o(p),

fa==
o(p) being defined by

_1 o o o

(32) (=52 ri—p"

accordingly to (8). The case where all the p; are equal' being ex-
cepted by the hypothesis L. we know by (9 that o(p) is positive.
As the true variance o(x) of x; is np:q: by (18), we see on the
right side of (31) the mean variance o defined by

X X
(33) D= “é: D‘(xi)=Ni§ npiq:
augmented by n? times the numerical variance of the set {pi:

(34) E(s)=5% +n*o(p).

The knowledge of p is sufficient to draw from a set of ex-
periments the value of s as defined by (30), bl}t it gives no means
to compute 5. Let us therefore proceed as if we were in the

. Bernoulli case and had to evaluate the true variance correspon-

ding to a constant probability p; let us call it o(x); writing q
for 1—p we get .

35) . p{x) =npq.
(32), (33) and (35) give
1o &,
D(x)—ﬁ=n(ﬁ(1_ﬁ)—N£Pi(1—Pi)) =n(ﬁ,=2’ Pf—l’e) =no(p),

i e.

(36) o(x)=p+no(p),
which with (34) leads to
(37) E(s)=v(x)}n*—n)o(p).


GUEST


318 C OMMUNICATIONS

Thus we can expect for the statfistical variance s (putting
apart the trivial case n==1) a value exceeding the Bernoulli va-
riance p(x).

In many manuals of statistics the equality (37) is considered
as a proof of the hypernormal hehaviour of the empirical va-
riance under Lexis hypothesis. However, an experimental com-
parison of s with v(x) i1s impossible in most cases, as the defini-
tions of both quantities (30) and (35) do contain the unknown
theoretic p. Let us therefore take instead of s and o the quanti-
ties s, and ., already defivied by (22) and (27). We get as before
for the expected value of the parenthesis in (22)

* (38) El ]=E(§:E$)—-E(Nx2),
and from (19)
(39) E(d) =n*p2+ npig.
(38), (39) and (24) give
N N C, N
W0 Bl =Xt Y npg 3 o) — N[

2

N N N
=n2i§p?—N(§npi/N) —+1 —-I/N]-g_,lnpiqi
=nN-o(p)+N—1)5,

if use is made of (32) and (33). So (22) and (40) lead to

@) E(s) =0+ réo(p) s (N=1),
and — if we recall (36) — 'to .
: _ n*N
(42) ‘ E(se)hv(x)“l-D(P)'(N:I“n)-
Thus it results from (42), (37) and (36)
(43) E(s)) > E(s) > p(x) >b.

Let us now consider ve; (27) and (24) give
N
Elod =B — 1 Bz — np—L ( > D(x,)/Nz-{—E(a"cz)/Nz)

N 2 N N
— n J—
=”p——_7\7(,-§p") —é:p,-qi/Nz = an—glPt(h/Nz,
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as it rvesults from the identity

TR 5V
?§=ﬁ(1*f’)=N£Pr(1—N%1pi)—ﬁgpi/N—(i%pe)/N ,
and, with (35) and (36),
N . N
(44) () =0(x) —Zpiqi/ N*=0+ no(p)—2piqi/ N*.

Hence the difference E(s.)— E(p,) is positive, as shown by {41)
and (44):

. N
@) Ee—Bp)=nlp) (3 —n|+Spia ¥

The difference
N
E()— B(o) =0(p)-(n* )+ Jpiai/ N*

resulting from (37) and (44) is positive too, but it is the inequality
E(s))= E(v.) which is usually tested by experiments as both terms
can be experimentally determined; (45) proves that the hypothe-
sis of Lexis is sufficient to explain the empirical variance to be
systematically greater than the so-called theore?ic variance De
computed in the same manner as in the Bernoulli case. To sum-
marize, we have got the inequalities

(46) E(s)>E@>0v>E(®), ©v>D,

contained in (43), (44) and (45); as to E(ve)>p it 'i§ not .tr}le in

general, .but (44) proves it to be valid if n or Nis sufficiently

great. i .
Hypothesis P. The probability p: changes from trial to

trial but the same set px underlies every experiment.
We have now obviously by (15)

(47) E(x‘) =§1E(Uk) =k§n1pk = nﬁ (l=1, 2, ey N),

" .
denoting by p the mean ;é; pe/n. Tt follows immediately that

{48) E(x)=np
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N

denoting by % the mean 3 x:/N. It follows from (16) and (17) by
i= ’

replacing p by pr in (17)

(49) p(x;) —«2, D) —Zpk qr (g =1—px),
and from (4) and (49)
(50) ' p(x)== —]t—[ké,“pqu. ‘

From (47) and (49) we get
(51) E(x}) =k.§1pqu+ n?p?, (i==1,2, ... N),
and from (48) and (50)

Epk o/ N-Fn?p

The statxstlcal -variance s bemg defmed by (30) we wmte

ZE -~np)2]/N—21: {[2ei—

(52) EG)=

E(x)PP}/N
(53)

~ZU xi)/N-—Z Prqx

utilising (47), (7) and (49); the quantity o being defined l)y the
first equality (33) we get

(54) E(s)=n.

To compute E(s), s. being given by (22), we can utilise (23),
(24) and (25): .

(35) E(s)=p(x)=D,

the last equality. resulting from "all v(x;) being equal. Thus we
have E(s)= E(s¢) as in the Bernoulli case.
Let us define p(x) by (35) and compare it with :

(x)—v——npq~—2,pqu Vpx (1—-Zm/n)—Z'w—PZ'p,L

~Epi(Ep] ol

where v(p).ls an analogon to- (32): i has been replaced by k,
and N by n. We get from (54), (55) and (56)

57) E(s)=E(s)=0=0(x)—n-0(p).

(56)
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The inequality E(s)<<v(x) is usually brought forward in
textbooks as a reason why the hypothesis of Poisson is suited
to explain a systematic surplus of the so-called theoretic vari-
ance over the empirical one. This explanation, however, does
not apply to most examples, as they are worked out not with
the variance v{x) which presupposes the knowledge of p, but
with ve defined by (27). Now we bave by (27), (48) and (52)

E(ve)=E (%) —E(x)/n=np—2 prgr/ Nn—np*

(58) » =

=npg—2 pegi/ Nn,
i =1

and by (35) and (33) ’

(59) E(p)=0(x)—Db|Nn;

comparing with (57) we get therefrom

(60) E(s.)=E(pe)—n-v(p)-+o/Nn.
Thus the inequality

(61) : E(se) <<E(v.),

characteristic for the hyponormal dispersion, is not valid in the
Poisson case without supplementary assumptions. Nevertheless
it can be seen from (60) that it is valid for n or N sufficiently
laxge. The condition for the validity of the inequality (61) in the
Poisson scheme is

62) o(p) =5/ Nn¥;
as prge < 1/4 this condition is certainly fulfilled if
(63) o(p)=>1/4Nn.

In the example of leucocytes with N==10, n—-100 let us
assume for instance

pr=ps=...=pg=0.6;, p,=0.58, P1o=0.62;

this small arithmelical variance of the pr would already satisfy
the condition (63) and guarantee (61).
To summarize the case P we have got the inequalities

(64) E(s)=E(s)=0p <p(x), E{.)<<o(x)
and conditionally E(s.) << E(ve).
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