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Approximation to functions by trigonometric
polynomials (II).
By
A. C. Offord (London).

1. The objeet of this paper is to give some criteria for the
convergence and strong summability of certain trigonometric po-
Iynomials introduced by Marcinkiewicz and Zygmund?), and
defined in the following way. Suppose

A7)

Fr——— 1=0,1,2,...,2n
M1 slyyaeey Sty

{1) &rp=

and that @y,44(u) ist a non-decreasing step function with jumps
2x{(2n-+1) at the 2n-+1 equidistant points x,. We define

sin (n4-4) (@—a;—u)
sin }(z—ax—u)

2n
@ Ie(eh=grg D et

=0

sm n—+4) {e—1
ff( ﬂDT ( )(1¢2H+1(1~1c),

so that I,(«,f) is equal to f(x) at the 2n--1 points x;+u. I u=0
they become the ordinary interpolation polynomials which we
denote by I,(z,f). We prove

Theorem 1. Let f(x) be periodic of period 2zt and write
(3) Af = E{fle+ )+ fla—t)—2f(2)}.

Then, if #>1, and if f(») satisfies either of the following con-
ditions

27 2
d
@ [ % [uiras<co,
o 0

1) Marcinkiewicz and Zygmund, 4.
17%
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or
27 a 2.71 vr -
(5) fm(jlﬁfirdm> <oo,
0 0

the polynomials Ing(@,f) converge to f(x) at almost all points of the
square 0 < 2a, 0 U<l o ) .

Theovem 2, If f(w) is such that
27

2
(6) f%/]ﬁ}‘]’(lw<oo ,
b

0
for some r>1, then

(7) Lim N% |l )2 =
at almost all poimis of the square 0o < 2mx, Ogu<2n.

If further {m} 1s a sequence of positive integers such thet
Npy1[Na=>y, where y is a fized number excecding 1, then I, (,f)
converges to f(z) at almost all points of the square 0<La < 2m, 0L u< 2o,

In § 5 we give some further conditions which imply the hypo-
theses of Theorems 1 and 2. In particular, we show that the hypo-
thesis of Theorem 1 -is satisfied when f(z) is the fractional integral
of order 1/r of a function of the Lebesgue class L*. We refer the
reader to § 5 for further details. '

2. To prove these theorems we make use of the following
result2). Let us write

) 27
"
and )
1 x4
=gz [ wa,
x—4

il

then we have

Theorem A. The interpolating polynomials In(w,fn), which

take the values f,, (w;) at the 2n+1 pomts % of (1), eonverge to f(x)
at almost all poinis. :

?) Offord 5, p. 508. Actually Anis defined' ‘a8 2K pn/(2n4-1) where K, is

an integer, which may depend on n, but Whmh is.such that A4, tends to zero
Here we use only the case Kp=1.
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Since
Tnul,f) = Infr—n,g),
where g(t)=g,(t) =ft-+u),

In,u('T:,fn) ZIn (fl'_‘ u, gn)y
where
E A,

1

Jn(t)=fall+u)=5= f fle+u) dr,

and so Theoremi A implies

Theorem A'. The interpolating polynomials I, u(a,fa) which
take the values fn(x-+u) at the 2n-+1 points x;-+-u converge to f(z)
almost everywhere.

Theorem 1 is included in the following result.

Theorem 3. If either of the conditions ( 4) or (3) of Theorem 1
is satisfied with »>1, théen

D Hnules ) —Loula, fa)lr
1
18 convergent.
Theorem 2 is included in the following resulf.

Theorem £. If f(x) satzsfzes eondmo'n (6) o] ’l‘hew em 2 with
r>1, then

% ]I"’”(ﬂ"j)—“Iﬂwu (-"-fn)lr

and

“l\/JB ”MS

‘lnku(l fl— nku(l 711]1}1

are concergent.

3. ‘We require the following Temmas.
Lemma 1. If r>1, thére exists ¢ number B;, depending only
on r, such that

21 27 2
/' / Lo, /) dudae < By [ () ;rd,.

b0

This lemma is due to Marcinkiewicz and Zygmund?).

3) Mareinkiewicz and Zygmund 4, p. 155 eqn. (B) et seq.
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Lemma 2. If
x+4-3,
) pal0) = f f(t) di—f(z)
x—An

and if r>1, then there ewist absolute constants A;, A, A; and 4,
such that

N 2

27 kg
(10) 2‘ f pa@fas<a; % f \affda,
0

27

(th’u'vlrdx)1 <4 ftm/, (f |4f|rd z¢> ]

N'J bEd 2n 2

Y 4 f dt

% [ tm@rar<a, (% [iagran
109 b H

If further {ng} is a_sequence of positive integers such that
Mppafre =y >1, where y is some fiwed mumber exceeding 1, then

> f |ong(@)rda < 4, f f \a1lr da.

m<N O

(11)
and

(12)

(18)
Proof. We have
1 All
el < 5z [ o+ )+ Hlo—t)—21(a] at
0
and so, writting Af for the integrand, by Holder’s inequality,

n

A
Ipet@l < gz [ 141l

A, 2
L) o [1arras,

Whence

2
" 1
[ tvatoliras < 5
[
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and wiiting oft) for 5 (24, and a,=a(d,), we have
pnt

N 2w

: b4
;‘ J ton(@)]r dz 2 (1) f at f |47} da:

Ay
f dtj Mﬂr(u+ cw at [w;r
o

A1
2z
<f alt) d fjAﬂ’dsr
Since a(t)<At_’ this is (10). The proofs of (12) and (13) are
similar.

To prove (11) we employ Minkowski's mequahby which in
its simplest asserts that, for a,,=>0 and 721,

. (%: (%; . )r)lffg;i 75; (g’ A ’n)hr'

‘We use @ form with mixed X and [.

Write -
14714z, 0<I<
gnla,t)= { 0 t>A,.t
Then
pa(@)] < [ galw,t)dt,
0
and
> F 1r y 2= z ri,’r
(3 [lotrafr< (3 [ao ([ atona))
\n=1 0

n=1 0

2 g N fﬁ R
< ' 3 .

i

Now

f,.i < Ar ]Aﬂr t-—r—l,'

n

29’ o=

At

where 4 is an absolute constant.
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Hence we:obtain -
F A o 2 2t

(3 [ i an) "< f 58 (f falraa)",

n=1 0 0 0 - ’
the desired:result, L

4 Proofs of Theorems 1 and 3. Wfite
ey
pe=3z [ o

Then .
T Lo (@, )L nulit, fr) =Ty (i, f— )

o . :;-—11 &3 Yn
and, by Lemma 1, (s )

2 2%

[ Enaeypl v do < B [ fpa@)ir do.
R : A

Therefore, by Lemma 2,
21 2x

o v N ‘
/ / (2 lIn,u(mJf)"‘I;,,u(;U,fn)i")tl&E(ZM

0 0 n=1 .

N 2 2

Z ‘ t/‘ lIn,u(51’:7/%)1’”(21{(106
[

n=1

S

/

RS / Tpnl)|r d
i3

@ '
& f |47} e,
[

and .the second member is 7(44). Hence, since the integrand on the
left is a monotone inereasing function of N » We infer, by Lebesgue’s
theorem on the integration of monotone sequences, that

Bl’

A

. T

o

3 e, = Lyu@, folf

n=1

converges for almost all # and «. This is the co i
We infer also that nelusion of Theorem 3.

In,u(“'yf)“In,u('f:fn)

icm

Approximation to functions 265

tends to zero for almost all © and «. But, by Theorem A', I, ,(r,fa)
converges to f(z) almost everywhere, and hence so must also Toul,f).
This proves Theorem 1 under condition (4).
From (11) of Lemma 2, by a very similar argument, we can
show that Theorem 1 and Theorem 3 hold under econdition (5).
The proofs of Theorems 2 and 4 are similar. We have, as in
the proof of Theorem 3, o o :

N % 2w

1l [ s L
_}_J,ﬁ / f ol )= Inalecs 7 4 @

1 ¢ 0 .

N 2r 2 27
A , . at [ ;

<8 X% [ wairar <B f T ) i
1 0 o 0

and so the fixst conclusion of Theorem 4 follows. The second con-
clusion follows similarly from (13) of Lemma 2. :
Theorem 2 follows from Theorem 4 and Theorem A', since

N

:{: j‘ ?I,,',,(-",f)_‘f(-’f,); .

R . . -
<3 D e )—Tnalafal - Foll)
¥ <
N E 1
1N T
<(E 3 sl Tnatis ) " ol
& < ,
by Holders ineguality.

5. We shall now obtain some simpler sufficient conditions for

the convergence and summability of the trigonometric polyno-
mials I, ,(x,f). For this we make use of integrals of fractional order
defined by Weyl4). Throughout this section we take g(z) to be a pe-
riodic function of period 2z and mean value zero, and we write
f eqti, with e,=0 for the Fourier series of g(x).
4) Zygmund 6, p. 222. Zygmund considers funetions ‘of period 1 and
80 there is a slight formal difference. For the relation between the fractional
integral due to Weyl and that due to Riemann and Liouville see Zyg-
mund 6, p. 224.
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The fractional integral of order «, 0<a<<1 of g(x) is the
function

14 Gult) = Ifa) [ gy an

It is known that this integral converges for almost all .
Indeed

1 o0
Gul) =775 f 101 gla—1) i,
. 0

and since g(t) is periodic of period 2= and mean value zero, this
may be written

(15) Ga(w)= | gla—t) Pty dt,
/
where
f— 1 1 (2 v &— ] D L ne
(16) q’a(t)~mgﬂ {t Lo (t4 2) L L 4 (£ 200) 1—7{}9

for 0<i<<2m, and W,(t) is periodic of period 2z outside this range.
It follows at onee from (16) that W(t) satisties the following
inequalities

amn Pa(t)] <Al [We(t+h)— P ()] <A hte

It is also easy to see that the Fourier series of Golx) is

=2 o ~
(18) D e a=0.

‘We prove the following theorem.

-Theore'nlz 5. The hypotheses of Theorem 1 are satisfied whenever
f@) is a fractional integral of order 1/r of & funetion of L~

Corollary. This result holds in particular if the Fourier coeffi-
cients e, of f(w) satisfy 3 |np—1e,f’ < oo, 1<p<2.
—00
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Tt was proved by Hardy and Littlewood 5) that the Fourier
geries of a function which satisfies the conditions of Theorem 5
converges almost everywhere. We have therefore established a similar
property for the polynomials I,,(w,f). The case p =2 of the Corollary
is due to Marcinkiewicz and Zygmund §).

We require the following lemmas.

Lemma 3. If 1<p<<1/(1—u), 0<u<l,
2
[ 1Plh+1)—Palt) P dt < By phpe i1,
0

Proof. This lemma is well known 7). It follows easily from (17).
VWrite

2 & 2a—h gn
[+ Puatpit= [+ [ + [ =L+L+l
o 0 n 2a—h

By the first inequality df (17)

I
I, <4 [ e @t < Be,, e,
o

and similarly, since ¥e(t) is periodic,
I, < By,p hpte— 0+,
Also, by the second inequality of (17},
Z:T—}x
<Al | 13t < Bep hple—1)+1,
i
This completes the proof.
Lemmna 48). If f(x) is o fractional integral of order a 0<a<cl
of @ function glx) of LY, where q>2, then

2

at 2 27 »
| [dfftdr < B lg(ar)|a dis.
)

5) Hardy and Littlewood 1, p. 606 and p. 613.

¢) Marcinkiewicz and Zygmund 4, p. 166.

7) ef. Zygmund 6, p, 227 eqn. (1) et seq. o

8) The case ¢=1 of this Jemma is due to Marcinkiewicz 3.
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Proof. It is sufficient to prove the lemma for a bounded
function g(z), for, if ¢ is not bounded, we can write

_ 9@) lgl<n
I {n lg| >n

and then, having proved the lemma for g, (and the corresponding f,),
the desired result follows on taking the limit.
Consider the integral
l[ ; g

ol

We show that, when ¢=2,

L. < Bo([ |g ()P @),
and when ¢=co ’ )
Too e << By sup g(a)],

\jn*here the numbers B are independent of e. Now Af-i—« is a linear
?unctmnal of g defined for 0<Co<{2xn, 0<{t<2n. We can therefore
infer by M. Riesz’s convexity theorem that

2
Lo < B [ {gta)iran)
0
for 2<{g<oo, B being independent of e. Allowing ¢ to tend to zero
we get the required result, '
In the case g=2, we have from (18) that, if fc,,e"ﬂ-\‘, o =0
is the Fourier series of g(x), then the Fourier series o(‘;f flo) is

o
J .
e, =0,
and so that of Af is
AR &
2 (m") € (GO ni—1).

Hence

27

19 o “ \ (’ vz
f LR e :.‘.—{2 {n);'” (cos nt—1)2

o
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Now
(eos nt—1)% x{lwcos Gy
f feos W=Dt ,[”W‘I"'
2 0
Hence
o 2
l‘é,c < Ba j =B, [ gir)? da
—o0 0
as desired.
Again
1\Le A
Ige<< i(luu ) supl 1£2
and so ’ v
Hm I, < sup -j{;f:
g>oo ll |

where A is independent of s. Now, by the case p=1 of Lemma 3,

27
[flr+t)—fla)) < / Tgta—l | Falu+1)—Welu) du

’/\

B 1% sup g{a).
Hence

B < Besup 1g(lv3;;

sup | ‘ 1“

as desired. The lemma is therefore proved.

Proof of Theorem 5. If 73>2, we have only to put g=r
and ¢=1/r in Lemma 4 and the result follows. I 1<r<2, let g be
defined by 1-+1/g=1/r and let Gy (x) be the fractional mtec'ral of
order 1 of g(x) Then, in view of (18), f(x) will be the fractional
integral of order 1/g of Gyfx). But, by a theorem of Hardy and
Littlewood?), since g(w) belongs to I and 1/r>4, Gs,(x) belongs
to La. Hence f(x) is a fractional of order 1/g of a function G, (x) of La.
Since ¢>2, ’rhe desired result again follows by Lemma 1. '

The Corollary follows, since the convergence of 2‘({11{1 iea)?

where 1/p+1/p’=1, implies that #17e, are the Fourier coefﬁ(}ems
of a function of I¥, p’>>2, and the fractional integral of order 1/p’
of this function is ;f(ar ‘

9) ef. Zygmund 6, p. 227.
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6. Finally we have

Theorem 6. The hypotheses of Theorem 2 are satisfied whenever
f@) is @ fractional integral of positive non-zero order of a Lebesgue
integrable function.

Proof. Let us take f(») to be a fractional integral of order
a>0 of a function g(»). Choose p so that 1< p<<1/(1—a). Then
ple—1)>—1, and we have by (15)

27

fla—kt)—fl) = ‘/ " gl {Pelut t)—We(u)} du.

[

Therefore, if 1/p-+1/p'=1,

e+ t—Fe)P < (f [g(a—— )] dae )""‘"'f. |glr—1)] [P (14 1)— Vo) P du
] d

9

< B / |gle—10)| [Pl 2+ 1) — W) [P Aty
0

where B depends on g and p only. Hence

2 . 27
f [fa+t)—f@)p do < By [ |Palt+1)—Pa(u)lp du
0 0

< Bz iﬁ,

where §>0, by Lemma 3. It is now evident that the hypothesis (6)
of Theorem 2 is satisfied and the theorem is proved.
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Complete normality of cartesian products.
By
Miroslav Katétov (Praha).

All spaces we consider are Haunsdorff spaces.

Theorem 1, Let m be an infinite cardinal. Let P and @ be
spaces such that P X Q is completely normal?). Then either every subset
of Q with potency <m is closed or the pseudocharacter?) of every closed
subset of P is <.

Proof. Suppose there exists an MCQ with poteney <<m and a
be M—M. Let FCP have pseudocharacter >m. Let us put

A=F XM, B=(P—F)x(b).

Then ACF xQ, BCPX(b) whence 4 and B are separated.
Hence there cxists an open GDA such that GB=0. For each y e M
let @, denote the set of all # ¢ P such that (»,y) €@ Clearly ye M
implies G, open, G,DF. The potency of the family {¢,} being <m
we have [] G+F. Choose c¢]]G—F. For any ye M we have

M - .
then (c,'yy) ¢ ¢, whence (¢,b) « @ implying the contradiction GB=0.

1) A topological space is ealled completely normal if any two separated
gets 4, B (i. e. such that AB L AB=0) are contained in disjoint open sets.

Tt is easy to show that a topological space is completely normal if and
only if it is hereditarily normal, i. e. every subspace is normal.

2) Let S be a space, let MCS and let 9 be a family of neighborhoods of
the set 3. The collection 9l is said to be a complete family of neighborhoods of 3
if there exists, for any neighborhood H of the set M, a set 4e% such that
MCACH. The collection 9 is said to be a pseudocomplete family of neighborhoods
of M if the intersection of all 4 e is equal to .

The minimal potency of a complete (pseudocomplete) family of neigh-
borhoods of a set 3 in a space S is called the character (pseudocharacter) of M
in & and is denoted by x(IM) or more_explicitly by yo(M) (respectively, by
w(M) or pg(H)).
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