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Theorem 4. The curtesian product of a countable number of
countable regular spaces is perfectly normal.
==
Proof. Let P='R P,, P, being countable and regular. The
=1
spaces Py X...> P, (n=1,2,...) are countable and regular, hence,
as shown by Urysohn, perfectly normal and it suffices to apply
theorem 2.
Example 2. 1f the spaces P, ... X P, are completely normal,
honcd
the space 2 P, need not be completely normal. Choosing P,=P;
=1
for all @, where P, denotes the space of example 1, we may easily
show (analogously as for P,x P, in example 1) that P, > .. v P,

oo

are completely normal. On the other hand, the space B P,, where
r=1

P,=Py, is not perfectly normal, for its subspace P, is not. Hence

R P, is not ecompletely normal by theorem 3.

n=1
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On Area and Length.
By

L. C. Young (Cape Town).

1. This paper is concerned with intrinsic definitions of area
and of length. Although the definitions are new, they are obtained
by combining ideas which are quite familiar to anyone working
in this field: the ideas of Banach [1, 2] which have been the basis
of researches on area for twenty years [2, 14, 11, 12] and which
consist in effect in introducing our intrinsic definitions in a special
case (the case of a surface situated in a plane); and the well-known
theory of measure of Carathéodory [5,8]. Moreover the old
definitions, based on simplicial approximations, have long been
regarded as unsatisfactory: examples of space-filling curves which
constitute surfaces of zero area though of positive volume have
been known for forty vears; the examples recently produced by
Begicovith [3, 4] are even more conclusive.

The value of a particular definition however, depends mainly
on its usefulness as a tool, and in this connection thé Lebesgue-
Fréchet definition of area has rendered great services. It has shown
itgelf quite satisfaetory for Lipschitzian surfaces (often misleadingly
termed .rectifiable”) and has led to important semi-continuity
theorems in the Calculus of Variations. Above all, it has had suffi-
cient depth to serve as background to Banach’s fundamental methods
already referred to.

The greater part of these results and methods remain when
we adopt instead the present intrinsic definibions. We show in par-
ticular that the definitions agree for Lipschitzian surfaces. Moreover
the new definitions are framed for the purpose of developing tools

which are needed as & preliminary to the study of »generalized

18*
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surfaces” in parametric form in the Caleulus of Variations?), and
such a theory would go much further than the existing semi-con-
tinuity theorems. Finally as regards the Banach methods, they
play an even more fundamental part in the present theory, than
they do in the older theory of area.

It should be stressed that the present definitions concern
not only area, but also length, these two notions being treated
symmetrically in the definitions and also linked together by relations
which are based on the important theorem of Szpilrajn-Mar-
czewski and Bilenberg [15, 7L

In the case of length, the classical deﬁmtmns were $0 far con-
sidered satisfactory, but this is only because they were restricted
to curves obtained by the mapping of a segment: the boundary
of a surface given by the mapping of a general simply-conneeted
plane domain has no length in the classical sense, because the boundérY
of this plane domain need not be homeomorphic with a Jordan
curve, It is clearly desirable to possess a more general definition
of length than the elassical one.

Actually, the deeptst part of this paper concerns length rathvl
than area. We find it necessary to introduce two separate notions
of length, which we term the intrinsic length and the bomndary-
length, and we obtain a general theorem connecting the two.

We conclude the paper with generalisations of the results of
two recent notes [18, 19]. We extend to harmonic surfaces deﬁneﬁ
on an arbitrary simply-connected domain, the inequality A< KILd
between the area 4, the diameter d, and the boundary length L.
And we extend to surfaces of finite intringic area the lemma in the
theory of surfaces, proved in [18] for polyhedra.

After the greater part of this paper had been written, I leamed
from Besicoviteh that he intends to publish similar intringic defi-
nitions of area and to apply them to the Problem of Plateaun. The
final version of this paper has in consequence been strongly in-
fluenced by discussions with him during an all too short visit to
England from the Cape. I take this opportunity of thanking him.

1) Nevertheless my researches in the Caleulus of Variations have now
led me to the view that both the intrinsic ares and the Lebesgue-Fréchet area
are required as tools in this subject. This is borne out by some results of T. Radé
to appear in the Trans. Amer. Math. Soc. I take this opportunity of thankitig
Professor Radé for a numher of interesting and important comments.
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My debt.to Mr H. D. Ursell is even greater: the whole theory
of length ig the outcome of joint researches on Carathéodory’s theory
of prime ends [6], which we are publishing elsewhere [161.

2. Multiple systems. In a (finite-dimensional Cartesian)?)
space in which # is a variable point, a function M(z) whose values
are cardinal numbers will be said to define a ,,multiple system” M
of which it is the ,multiplicity function”. For our purposes, the
infinité values of 1(z) need not be distinguished from one another.

In the case in which M(z) assumes only the values 0 and 1,
we identify the notion of multiple system with that of set of points,
and the multiplicity function reduces to the characteristic function:
it takes the value 1 in the set, 0 oufside.

We define further the sum and the product of mmltiple systems,
by the sum and the product of the corresponding multiplicity fune-
tions, with the conventions that a produet in which one factor
vanishes is itself zero. In particular the product of a multiple system
and a set of points is defined.

If & is any additive class of sets B, we define its extension
to multiple systems as the class of the multiple systems M such that,
for each integer n, the class & includes the set M, of the points @
for which M(z)>=n.

If p(E) is any measure defined for sets B of an additive class,
we define its emtension w(M) to multiple systems, by the formula

(2.1) = f’ M)
=1

In particular we write pk(M) for the extension to multiple
systems of the %-dimensional Caratheodory measure u*(E) of a set E;
here p*(H) is the limit as e —0 of the lower bound of the expression

ep- 3 (ABm)*
m
for decomposition E =3 B, such that dE,<e, where dE, is the

. 14
diameter of E, and where ¢, is a constant <1:1=.1, 02=Z).

%) This restriction is not essential.
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(2.2) (Szpilrajn-Marczewski and Eilenberg). Let 8, denote the
spherical shell |m|=r. Then there is a constant e such that
(2.3) W (M) = ay [ k(M- Sp)dr .
[

Proof. It is sufficient, by addition?), in view of (2.1), to
establish (2.3) in the case in which M is a set of points . Writing
u*(B)=c,L*(E) we obtain the required result with ap=cri1/cr?),
from Theorem I of [7].

3. The Banach value-system M. Suppose that a con-
tinuous funetion f(w), whose values are points of w-space, is given
at the points w of a plane closed set W, or more generally, at those
of an absolute F, set, i. e. of an enumerable sum of closed compact
sets of any metric space 5).

We denote by M(z;f; W) the number (finite or -oo) of
points w of a subset W of W, which satisfy the condition f(w)=ex;
or, in other words, the upper bound of the number of points of
the finite subsets H, of W which consist of points w for which
flw) =z .

We write M(x) for M(z; f; W) and M and My for the systems
whose multiplicity functions are M(z) and M(z;f; W). We term M
and My the Banach value-system of f(w) in W, and in W respectively.

‘We observe %) that for an expanding sequence of sets W®WCW,,

3.1) M(e; f; W) = lim M(w; f; W),

and that, exeept possibly at the points 2 for which M(z) = oo,
(3.2) Miw; {3 Wo—W)=M(2)—M(w; f; W).

Moreover, we can take over from Banach [2, p. 226, Th.1]
the general lines of the proof of the following resuls:

(3.3) The Bamach multiplicily function M(z) is measurable (B).

3) The integral is an upper Lebesgue integral: this allows us to integrate
term by term a series of non-negative functions of 7. :

%} It is probable that this value of aj can be increased, and that the best
value of a; is 1 instead of ¢yle;=x/4.

. (3‘)9;“76 do not require any hypothesis about the nature of W, in (3.1)
an: W)
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Proof. Given £>0, we express W, as a finite or enumerable
sum of disjoint F'; sets W, of diameter <z, which we can take to be,
for instance, common parts of W, with the differences of a corres-
ponding number of spheres of diameter < which cover W,

The set E, of the values of f(w) for w in Wp, is an Fq set —ib

is an enumerable sum of sets of values of f(w) assumed in closed

compact subsets of W,.

Denote by M.(z) the sum of the characteristic functions of
the sets B, — it is immaterial to us that it depends on other things
besides £ Clearly M.(z) is measurable (B), in fact it is the limit
of an ascending sequence of upper semi-continuous functions; and
since the W, are disjoint, we have

(3.4) M (r) < M(a).

On the other hand, if « is fixed and N is any finite number
<M(x), we have for sufficiently small ¢

(3.5) N < Mo ()

because, reverting to the notation of the definition of M(z; 15 W),
there is an H. consisting of ¥ points, and these must lie in ¥ dif-
ferent sets T, if ¢ is.less than the mutual distances of these points.

From (3.4) and (3.5), M(e) is the limit of M,(z) as e—0, and
is therefore measurable (B).

We conclude the paragraph with the following results which
follow trivially from the definitions and from (3.1), (3.2), (8.3) when
we substitute in (3.2) W, and M(z;f; W,) for W, and M(z), and
in (3.3) any closed subset W of W, in place of W

{8.6) Let w(E) denvte a Caraihéodory measure for sets E of poinis x;
and let W, denote a Borel subset of W, such that M(z; f; Wi
is neasurable (B), and write E, for the set of z for which
M(x; f; Wy) =+oo. Then if p(B) =0, the - funciion of =
Mx; f; W) is measurable (p) whenever W is a Borel subset of
W,, and the expression p(My) is then an absolutely additive
junction of this Borel subset W.

In particular this is so if u(Mw,)<co or again if F, is empty.

Tn the Tatter case M{x; f; W) is measurable (B) whenever W is 2 Bo-

rel subset Wi
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4. Classical length and- area. Although we shall not
base our definitions of intrinsic area and length directly of the ideas
of Banach, which have just been developed, but rather on a modi-
fication of the Banach ideas due to Morrey [10], this is conve-
nient point at which to discuss the classical definitions of length
of a curve and of area of a Lipschitzian surface.

(+.1) In the case in which W, is a scgment, M) is the classical
length of the curve represented by f(w).

Proof. Let W, be the segment a<Cw<b of the axis of real
numbers, and let F be the set of the points @ of our curve, and let I
be the classical length. As a consequence of the definition of Cara-
théodory’s linear measure, we see that

() —f(a)].

Now divide W, into half-open or closed intervals (a,8) which
can be taken for the sets- W, of the proof of (3.3). Since the corres-
ponding set B, differs only by one point from the image of a segment,
it follows from (4.2) by addition for the various W,, that the ex-
pression,

(4.2) L>pi(E) >

L= pt (M) = 37 pt (Br)

—in which M, is the system with the multiplicity function M (z)—
lies between L and 3 |f(f)—f(q)].
- From (3.4), we gee that
I8 )] < pX( B)
and therefore that
L (M).
While from Fatou’s theorem, as ¢—0 by a sequence,

/ M(z)dpr <lm mf/M 2)dut
i e, (M) <liminf p(M,)
<L,

and this completes the pmof the substance of which goes ba,ck
to Banach [2, p. 228, Th, 2].
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We pass on to the proof of the following result:

(4.3) Theorem. Suppose flw) Lipschitzian on a bounded closed
plane set W,y Then for any Borel subset WCW,,

(4.4) @My = [ [17] duac
/.

where J s the vector whose components ave the Jacobians of the
pairs of components of f(w) with respect to the componenis u, v of w.
We recall that f(w) is termed Lipschitzian on W, if there exists
a constant K such that
(4.5) 1w )— ")} < K - jw'—ie"|
for every pair of points w', w" of W,.
We shall divide the proof of (4.3) into several stages.
Denoting by f(W) the set of the values «# which are assumed
by f(w) when w e W, we first observe that
(4.6) AW < K- u¥(W)
s0 that in particular p2f(W)]=0 when % W)==0. Here and in the
sequel, the constant K has a value which depends on the contexf.
The proof of (4.6) follows easily from the definition of Carathéodory
2-dimensional measure, and may be left to the reader.
We shall make use also of the following elementary lemma:
(4.7) There is a function ey of N only, which tends to 0 as N—-oo,
and which has the property that we can cover any elliptic disc,
possibly reducing to a segment or 1o a point, by not more than N
sets of points in such & manner thai

::i”_- 2‘ P—A < exD?

where d denotes the diameter of a covering set, D that of the

dise, and A the arca of the disc.

Proof of (4£7). We may suppose trivially that D=1, and if
is sufficient to prove that given e>0 we can cover the elliptic
dise (now possibly reducing to a segment) by not more than N(e)
sets in such a manner that

gZdﬂ——A<£,

where N(¢) is a function of ¢ only.
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To this effect we first cover the given elliptic dise 4 of dia-
meter 1 by an infinity of circles as covering sets, in such a manner

that
il 2 2 1.
& .A.<28,

we can do this, for instance, by using Vitali’s theorem to cover
almost all 4 by disjoint interior circles, and then covering the
rest of by further circles for which

g2¢12<%s.

By Borel's covering theorem, there exist a finite number
N(e,4) of the above two types of covering circles, which cover A.
Now take a finite series of elliptic discs 4, of diameter 1, each con-
tained in the following and differing from it in area by at most e
in such a manner that every elliptic disc of diameter 1 can be so
placed as to be contained in.a certain disc 4, of the series, and at
the same time to contain the preceding dise A, Writing N(e)
for the greatest of the numbers N(e, 4,), we cover 4 by the covering
circles of 4, and find that

1 .
T D P—A<getp(d—N)<e!

This completes the proof of (4.7) since the number .of the co-
vering circles is at most N(s). :
Proceeding with the proof of Theorem (4.3), we recall that
# Lipschitzian f(w) has almost everywhere partial derivatives f,
and f, which are the coefficients of a total differential df. This is
proved, for instanee in Saks [13, Chap. IX, Th. 14.2 p. 311; see
also Th. 14.5 p. 312, and Th. 12.2 p. 300]; the fact that the values
of f(w) are vectors clearly makes no difference. We could also sup-
pose f(w) Lipschitzian in a rectangle, or in the whole plane, by
replacing it by a suitable continuation. :
We chooge any >0 and we express almost all the Borel set W
a8 3 finite sum of disjoint Borel subsets W', in each of which the

differential exists and its coefficients, the partial derivatives of f,
have oseillation less than ie. '
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Almost every point of W is point of deusity of just one of- the W',
and for every circle € of sufficiently small radius o(0)< e with such
a point as centre, we have

w0 - W) >(L—z)- i O),
and for w in €W and in particular for w in C-W'
1f(ew)—glw) < 20(C);

where g(w) is a linear function of the components u, v of w, w;}fx:;;z
constant partial derivatives inOCWnoWhere exeeed in magnit

ial derivatives of f in C-W".
e P]i?l%i’S:]i}:a&Zorem,jwe ean covgr all.’ but plane meas.u;ege
of W by = finite number of such disjoint circles (J,,.’ Vgefvm o '
for the corresponding finite number of the sets_ GRW,}:, f)rde &,.,
and gn(w) for the linear function g(w) corresponding to the circle Cy.

‘We have
& U -
@ W—Q) <et ) 10— On)<e+7—; >, w(&n)< K.

i ing 0, we cover, by (4.7), each elliptic disc‘g,,((’,.) by
at mii;u;*bsz]é;gin t’he manuer explained, the integer _Z\"_Ibemgﬁh;i;oi]elxé
for small ¢ to be, for instance, the integral part of &, sg( i
expressions ef/N, &N and ey become .less than soxfn:h acoveﬁng
tends to 0 with e By increasing the d_lamet_ers ?:10 tﬁam s
sets to @*=d-}2:0(Cn), We cover all points dlstm;) : esi than o(Cn
from gn(Cn), and therefore we cover f(£,). We observe

¥ (@ — @) < K- Neg(Cop+ B -VHeal (VT &
<K-0e) [Ant ol o]

where A, iy the area of the elliptic dise ga(Cx) which is at mosb

KoealCalt — [ [ 1] dudr.
o

n

We thus find that

ad *2 Jldude + K -Bp
* S <fgf; |

where > Bn< K -0(); moveover each @* is clearly at most Ke.
" ) .
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By covering in this way the various f(2,), and by covering
further the set f(W—2) -~ whose 2-dimensional meagure is small on
account of (4.6) — by sets for which the sum of the squares of the
diameters is at most Ke, we obtain a covering of f(W) by sets whose
diameters @' are at most Ke and satisfy a relation of the type

g2.‘(1'2<ff|,f]dmzwr'ff-a(e), '

where 6(e)—0 as e—0. b
In this we increase the double integral by taking it over W,
and we make s—0. We obtain

(4.8) 2T j' (17| aude.
w

This Dbeing s0, we apply the irequality (4.8) to the subsets
of W obtained by a subdivision of W into disjoint F, sets W,, of
diameter less than e together with a set of plane measure 0. Ignoring
this last set, for which the relevant expressions both vanish, we
obtain by adding together the inequalities derives from (4.8) by the
substitution of W,, for W, and using the notation of paragraph 3,

[ M) dp2 < f [ 1T dudp;
w

heve M (2)—M(z) monotonely as e—>0 and therefore the left-hand
side tends to the corresponding intcgral of M(z), i.e. to uX(Mw);
eonsequently . :

w2(y) < [ [17] dude.
w

To prove Theorem (4.3) it remaing to be shown that this
inequality reduces to an equality. We need only show this in the
case W=W,, since the two sides are additive functions of the set W
and since their difference, which is of constant sign, is therefore
greatest in absolute value when W=W, Moreover, as already
stated, we may and we shall suppose that W, is a rectangle.

Thus we have now only to establish in the case in which W
is replaced by a vectangle R, the reverse inequality

12 M) > j f'[J| Aude.
R

Moreover, we need clearly only prove the weaker inequality

(4.9) w¥Ag) = [ [ 7] dude
w
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where. the integral is mow taken over a smaller range, consisting
of a set W (as we shall now term it) of points of R at which |J]
exceeds a certain fixed positive constant &, such that 7 is differentiable
at every point of ‘W.

Proceeding as earlier in this proof, given &> we express this
set W as a finite sum of disjoint Borel sets W’ in cach of which
the partial derivatives of f have oscillation less than &; and we again
cover all but plane measure ¢ of W by a finite number of disjoint
circular discs (', contained in R and of radins ¢{(,)<Ce¢, such that
if w, denotes the centre of C,, W, denotes that one of the sets W*
which contains the point w,, and g{w) denotes in (', the linear
function agreeing with f at w, and having there the same differential,
we have

12O W) > (1—e) ()

) —glw)| < &- 0( () for w in C,.

Moreover we observe that if h(w) denotes the orthogonal pro-
jection of f(w) on the plane of the elliptic (non-singular) dise ¢(C)
for w in C,, then a fortiori

{£.10)

Finally, if J, denotes the value of J at w,, we have |J —Jnj< Ka.
This being so, let E, denote the set of points of the elliptic
dise g(C,) whose distance from the bounding ellipse is at least eg(Cy).
Clearly the plane measure of g(Cp)—E, is at most Heo(Cy)%. Thus

i) —g(w)] < e ol () for w in C,.

[ [ dude <Ee+ 3 [[ 17)aude
w " Whea

<Ke+ 3 [ [ (ai+ Ke) aude

% WnCn

< Eet S [ [ (] + Ko)dude
r ‘Cn

=_K£+ He +2 #2[9( Cn)]

<Ke+Ket+Ke 3 0(Cal+ 5 18[Enl;

n

and moreover
u(Mp) = 3 2 Ca)] 2 3 6 [HCn)].
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Hence to prove (+.9), and so to complete the proof of The-
orem (4.3), it is sufficient to show that h(C,) contains H,. This last
result follows, in the case E,==0, from the fact that by (4.10), the
topological index, at any point z, of ,, of the mapping

0<i<1

2=g(w)-+1t-[h(w)—g(w)] where

i eontinuous in ¢ and so constant and equal to unify.

5. The Morrey value-system M*. We shall now modify
the ideas introduced in paragraph 3, by using the methods of Moxr-
rey [10], see also T. Radé [11]. We shall suppose that the continuous
function f(w) whose values are points of z-space, is defined at the
points w of a bounded plane closed set W,.

Two points of W, will be termed equivalent if they lie on a same
connected subset of W, throughout which f(w) is constant. The
set of all the points equivalent to a given point will be termed an
dlement of Wy; it is either a single point or a continwum.

A set whose common part with W, is a sum of elements will
he termed a whole sef. :

(5.1) In any neighbourhood of an element o there is a whole closed
set K which contains o further neighbourhood of w.

Proof. Let # be the constant value of f(w) on w and let H,
be the closed subset of W, consisting of the points w for which
Jf(w)—z|<1/n. Let Qs be the continuum consisting of the points
digtant from o by not more than d, where 4 is chosen so small as
function of n; that Q;W CH,: this is possible by continuity.

We denote by K, the maximal continunm (or saturated conti-
nuum according to Janiszewski: it exists by [9] p. 21, Th. II)
such that . '

0sCH,COs+4H,.

We may suppose that 4 is a decreasing function of », in which
cagse Qs and H, contract as n increases, and therefore K, contracts.
The common part JTK, is thus a continuum ([9] p. 20, Th. I)
contained in Wi+ &5, and therefore in W, since §—0 as n-—>co;
it iz also centained in H, for all », and this requires f(w) o be con-
sbant on it with the value r. Since ITK, contains o, this is only
possible if

ITK, = w.
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Hence for large enough n, the set K=K,, which contains
a neighbourhood of o, can be made to lie in any previously given
neighbourhood of w.

It only remains to verify that K is a whole set. To see this,
let o' be any element for which Ko's=0. Then o'CH, since H, is
whole, and therefore the set K-+ o’ is a continuum containing Qs
and contained in Qs H,, so that, by the maximal property,
E+4+o'CK, i.e. K-+o'=K. This requires o' to be contained in K,
and so completes the proof.

‘We are now in a position to proceed with definitions analogous
to those of paragraph 3. We denote by E} any finite subset of W,
which consists of non-equivalent points w for which f(w)=x.

For any subset W of W,, we denote by

* (5 f5 Wmoa w, M*x; /3 W),
the upper bound of the number of points of the varions EY contained
in W. We write M*(z) for M*(z; f; W,).
We observe that for any expanding sequence of whole subsets
of Wy

(5.2)

or simply by

M¥(ws £; 3 W) = lim M¥(z; f; W)

and that for a whole subset W of W,
(5.3) M¥(@; f; Wo—W) =M*(2)—U*(; /; W)

except possibly at the points # for which M*(z)= oo
Furthermore we have the following result:

(5.4) The Morrey multiplicity function M*(x) is measurable (B).

Proof. We proceed as in the proof of (3.3). Given £>0, we
can — on aceount of (3.1) and of Borel's covering theorem — cover
W, by a finite number of whole closed sets K each of which has
all its points at a distance <e from an element. By forming the diffe-
rences of the sets K -W, we can therefore express W, as a finite
sum of disjoint whole F, sets W, such that every pair of points
of W, arve distant <e from an element.

The set X, of the values of f(w) for w in W, is an F, set. We
denote by M¥z) the sum of the caracteristic functions of the
sets H,, and we observe that M%) is measurable (B) and that

(5.5) MHa) < M¥(a).

(=13
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On the other hand, if » is fixed and N is any finite number
< M*(z), we have for sufficiently small ¢ ‘

(.6) N < M2a)

because there must be an E} consisting of N points, and these must
lie in N different sets W, if ¢ iy sufficiently small, sinece no two
points of E} can be simultaneousty at an arbitrarily small distance
from an element ¢), ' o

From (5.5) and (8.6), M*(w) is the limit of M*(z) as ¢~>0, and
is therefore measurable (B).

We denote by @ the smallest additive class of whole sub-
sets of W, which includes all whole ', subsets of W,. (An additive
class of sets is one which includes among its members the difference
of any two members and the sum of any enumerable selection of
members). ,

We write M* and M¥% for the systems whose multiplicity
functions ave M*(w) and M*(w;f; W): we term thege systems the
Morrey value-systems of fw) in W, and in W respectively.

We have then the following resulty. B

(8:7) Let w(B) be a Carathéodory measure in w-space, and Suppose
that (M*)<oco. Then : : s

M 3 W)

is measurable (u) whenever W belongs to W; and (M) is an
absolutely additive funciion of the scts W of .

Prooif. In the case in which W is a whole closed set, the func-
t.ion M*(x; f; W) is measurable (B) [and therefore measurable (@)]
since we can take W for the set W, of (5.4). Hence by (5.2) and
(5.3), remembering that w(E)=0 when E is the set of the values of @
for which M*(z)=o0, the assertions of (5.7) must hold good in the
case in which W belongs to the subclass ), of W consisting of the

smallest additive class of whole sets which includes all whole closed
subsets of W, ‘

%) This is really another application of (8.1): if w and w' arve distant less
than £ from an element wj then the element © which contains w has a neigh-
bourhood 0, (where 70 as £ > 0) which contains w’. If this is the case for all
€>0, we see that w' ¢ w, i. e. that w and W’ ‘are equivalent.
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To complete the proof it is sufficient to show that W, is identical
with 90, i. e. that every whole F, subset of W, belongs to W,7).
This is the case if we show that a whole F; set is an enumerable sum
of whole closed sets.

Since a whole set, which is an enumerable sum of closed sets W,
is also an enumerable sum of the sets W', where each W’ consists
of all the points w equivalent to points of one of the W, it is enough
to show that each W’ is closed.

‘We may suppose WCW,. Let ), be a sequence of points of W’
with the limit w’. We have to show that «' belongs to W’. Let w,
be a point of W equivalent to w, and let w be a limit of the se-
quence w,. Then w and «' are simultaneonsly at an arbitrarily small
distance from the element which contains «, and w«, (for some
large n). Hence by a remark already made 8), the point «’ is equi-
valent to the point w of W, and therefore w’ belongs to W',

This completes the proof.

(5.8) (i) Ij p(M)<oo, then p(M)=u(H*).
(i) If W, is @ segment, p(M)=p(3*).
(iii) If fle) is Lipschiteian, p{3)=u2(3%).

These vesults are immediate: (i) follows from the fact that
M(z) and M*=) can only differ at points at which the former is
infinite; (i) from the fact that on a segment the elements which
do not reduce to single points constitute an enumerable aggregate;
(iii) follows from (i) and from Theorem (4.3). )

We conclude this paragraph by observing that the notions
we have introduced are invariant under far more general transfor-
mations than those used in the classieal theory of curves and sur-
faces. :

Let us say that the continuous mapping f(w) defined on Wy
is transformed .approximately topologically” into a continuous
mapping g(z) defined on Z, of the z-plane, if there exist a whole
subsct W of W, and a whole subset Z of Z, such that

(a) outside W, the function f(w) takes at most an enumerable
number of values z, :

7) We leave unsolved the question whether 90 is the class of whole Borel
subsets.

8) See footnote §).
Fondamenta Mathematicze. T. XXXV, : 19
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(b) outside Z, the function g(z) takes at most an enumerable
numper of values #,

(e) there is a (1,1)-correspondence between the elements w in W
tor the function f(w), and the elements ¢ in Z for the function g(z),
such that

flw) = g(2)

whenever w and 2z Delong to corresponding elements o and Z.

Since the corrcsponding pair of multiplicity functions differ
for at most an enumerable number of values of #, we see that

(8.9) Morrey value-systems, derived from one another by an approwi-
mately topological transformation, have the same measure relative
to any Carathéodory measure which vamishes for enumerable sets®).

6. Boundary value-systems. Hven the general type of
transformation considered at the end of the preceding paragraph
does not cover the case of the transformation of boundaries caused by
conformal representation of the interiors of two simply-connected
domains. It is therefore necessary that we should introduce yet
a third kind of value-system, for which the fundamental elements of
the w-plane are neither points, nor wmeximal continua of constaney.

The place of these fundamental elements is taken by entities
introduced by Carathéodory [6], which ave termed prime ends.
We shall assume familinity with Carathéodory’s theory. As we
wish to establish certain relations between the two types of funda-
mental entities, we shall continue to use the word .element” in
its former sense. We shall retain also the notation and definitions
of the preceding paragraph.

We shall suppose in addition that W, is a finite continuum.

- Its complementary domaing are then simply-connected in the com-
plex plane of w: we shall suppose that there is a sclection of them,
not necessarily including all the complementary domains if there
are several of them, but including at least one domain, such that
the function f(w) which iy given and continuous'on Wy, is constant
on each prime end of each domain of the selection.

%) It is easily seen that two representations of surfaces whieh are »equi-
valent in the sense of Kerékjarté” [20, p. 765] can be obtained from one another
by an approximately topological transformation. In particular, the same is there-
fore true of representations which are equivalent in the sense of Fréchet. The

intrinsic area defined in paragraph 7 is thus independent of the selected repre-
sentation of -a Fréchet surface.
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‘ The symbol D will be used to denote any domain belonging
to the given selection. We define ¥(z;f; D) as the number of prime
ends of D throughout which f(a) assumes the constant value 3
the multiple system N(D), whose multiplicity function is N (@;7;D)
will be termed the boundary value-system of f for the ecomplemen-
tary domain D.

(6.1) Imvariance Theorem for boundary value-systems. Conformal
" transformation of D into the unit circle of the z-plane defines
o correspondence between the prime ends of D and the poinis
of the circumference of the unit eirele, such that, if g(e) denotes
jor lej=1 the value of f(w) on the prime end corresponding
- to &, we have
(i) g(z) is continuous jor |2|=1;
(i) N(x; f;.D) is the Banach multiplicity fumction, for the Ba-
nach value-system of g(=) on the circumjference |z|=1;
(iii) if either f or g be continued into the inierior of the relevant
domain, them the given conformal iransformation provides
a continuation of the other, such that if one function is uni-
formly continuous so is the other.

With regard to the above statement, it must be understood
that in (iii) if D is the infinite complementary domain, continuity
at the point at infinity of the w-plane is suitably interpreted.

Proof of (6.1). We denote by w=gp(2), a conformal representa-
tion of D into the unit circle |2]<1. We choose any continuation
of f(w) into D which is uniformly continuous in the closure of D;
such a continuation exists as is well-known, we denote it by the
same functional symbol. We denote further by P(0) the prime end
of D corresponding to the point z==¢®, and we write g(¢®) for the
constant value of f(w) for w in P(0). We shall show first that

(6.2) As z—¢® from within the civcle, flp(z)]— g(e¥).

Carathéodory [6, p. 350, Satz XIII] shows that if a sequence
of points # interior to the unit circle tends to €, then the cor-
responding sequence of the points (2) tends to the prime end F(f)
and vice-versa. Given any such a sequence of z, there is a sub-
sequence =z, so that the points w,=q(zs) tend to a limit w, and
this point w lies ou P(6) by Carathéodory’s theorem. Therefm:e .
the corresponding value of f(w) is g(e¥) by definition, and this

19*
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value iy, by continuity of f, the limit of the sequence f(1,) =f[g(2,)].
Hence every subsequence of the pointg f[p(2)] where z— ¢ from
inside the circle, containg another subsequence tending to §(6),
and this is only possible if [fp(2)]—>g(¢?). Thus (6.2) is proved.

From (6.2) we deduce at once (i) of Theorem (6.1), since if
6—0, we can find an interior point # depending on 0 und tending
to e such that jp(2)]—g(e?) tends to 0.

Moreover, to complete the proof of (iii) of Theorem (6.1),
it is enough to show that if 2==y(w) is the inverse conformal transtor-
mation, and g(g) is continued into the interior of the unit eivcle
50 as to be uniformly continuous, then

(6.3) ds a point w, of D tends to a boundary point w, the value
Ilp(w,)] tends to flw).

In proving (6.3), we may suppose thab p(wy) tends to a limit,
by taking a subsequence if necessary. This limit cannot be an in-
terior point, for otherwise, by continuity Wa=q[y(w,)] would tend
to an interior point of D contrary to our hypothesis. Denoting
the limit by ¢?, Carathéodory’s theorem requives w to lie in P(0)
* 8o that Lim gly(w,)]=g(e?)=f(w) and (6.3) is established.

To complete the proof of (6.1), we need only observe that
the statement (ii) follows at once from the definitions.

As a corollary, it follows from (3.3) that

(6.4) N(; f; D) is measurable (B).

) We shall now give some important relations connecting the
expressions N(z; f; D) and § N(=z; f; D) with Morrey value-systems.
W? write W, (D) for the sum of the elements of W, meeting at least n
prime ends of D, and W, for the sum of the elements of W, meeting
at least n prime ends of the same or different complementary do-
maing D of the given selection. Then

(6.5) The following relations
‘values of x,

(a) N(@; f; D)=M*[z; f; Wy(D)]+M*[z; 5 Wo(D)],
{b) l;’ Niws f; D)=M*w; f; W)+ M*(w; f; W),

hold ewcept perhaps at enwmerably many

and the functions which oceur in them are all measurable (B).
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Proof. As regards measurability, we observe that by a well-
known theorem (Janiszewski [9] Theorem IX):

(6.6) WD) is closed.
Hence

(6.7) W,= 3 WD) is an F, set.
D

We observe also that W,(D) and W, are expressible as enume-
rable sums of closed sets of the type W(U,T’), where this last
expression denotes the sum of the elements of W each of which
meets two given closed bounded sets U, ¥ 10).«Thus

(6.8) Wo(D) and W, are F, sets.

The expressions which occur on the right-hand sides are theve-
fore measurable (B) on account of (5.4), (5.2), and of the fact, esta-
blished generally in the course of the proof of (5.7) but here obvious
directly, that the sefs concerned are enumerable sums of whole
closed sets.

Finally, (6.5) (a) and (b) follow at once from

(6.9) Wy(D) and Wy are enwimerable sums of elements at most.

And this last assertion is a eorollary of Ursell and Young [16]
Theorem I, since prime ends are here subsets of elements. Thig
completes the proof.

7. Intrinsic area, intrinsie length, boundary length.
As the traditional distinction bctween a curve and a surface iy only
partly relevant in a definition of length or area, in view of well-
known examples of curves of positive area, we prcfer to use the
neutral term .map”, or more precisely ,.continuons map”: we shall
mean by it the continuous mapping f(w) of a finite plane con-
tinuum T¥,. The same mapping applied to a subset W of W, defines
a submap on W, and we shall suppose that W is whole (mod W,).

We term intrinsic arce of a continuous map, or of a submap,
the 2-dimensional measure of the Morrey value-system defined
by the multiplicity function M*(z; f; W), or M*(x; f; W). Similarly
its intrinsic length is the corresponding 1-dimensional measure.

) Boundaries of subdomains determined by ..rational” eross-cuts. See [16].
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1t is, however, necessary o introduce a second notion of length
which applies to boundaries omly, and which does not in general
agree with the infrinsic length. The difference between the two
notions is a matural one: thus in evaluating the infrinsic length
of a figure which consists of a circumference together with a radiuy,
we add the length of the radius to that of the cireumfevence; but
we must add twice the length of the radins if we require the length
of the figure as @ boundary of the interior domain. -

In order to apply the theory of the preceding paragraph, we
require the following result:

(7.1) Suppose that the submap S defined by f(w) on the fiwed subset W
has finite intrinsic length L*8); and let D be any complementary
domain of W, whose boundary is included in W. Then the
funciion f(w) is constant on each prime end of D.

This is & Theorem of Ursgell and Young (16, or the abstract
in Bull. Amer. Math. Soc. 54 (1948)]. .

We can now define our second notion of length. Let §, be
the given centinuous map, and let D be a éomplemeuta'ry domain
of Wy. If there exists no submap 8 of finite intrinsic length, defined
by f(w) on a whole subset W including the boundary of D, then
we say that the boundary of S, on D hag infinite boundary-length.
If, on the other hand, at least one such submap & exists, then by
(7.1) the function f(w) defines a boundary value-gystem for the
complementary domain D, and the 1-dimensional meagure of this
boundary value-system is defined to be the houndary-length
(frontier-length) )

Lyr(Sp; D)

of the boundary of 8, on D. We shall sometimes write it L1, D)
or simply Ly (D).

) Applying (6.5) (b) to the selection of domaing D whose bownd-
aries lie in the fixed set W, we obtain

Theorem (7.2). Suppose that the submmap 8 of 8, defined by flw)
on the subset W has finite intrinsic length L*(8); them, for the comple-
mentary domeains D of W, whose boundaries lie in W we have

2 Lp(80; D) < 2-I¥(S).
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This follows at once from (6.5) (b), since an enumerable set
of # does not affect the 1-dimensional measure, if we observe thab
the right-hand side of (6.5) (b) cannot exceed 2M*(x;f; W) because
W,CW,CW, each of these sets being whole.

The theorem just proved may be again illustrated by con-
sidering the figure consisting of a circumference together with
a radius, in the case of the funetion f(w)=w. The ecirenmference
is the boundary of the outer domain complementary to the figure,
while the boundary of the inner complementary domain econsists
of the circumference together with twice the radius: the sum of
the boundary-lengths for the two complementary domains is thus
here just twice the intrinsic length of the figure.

Theorem (7.2) should alse be compared with the results of
Wazewski [17] which connect Carathéodory measure with the
length of a curve passing through a given set of points. We notfe
that boundary-length is a notion which may be expressed in terms
of the classical length of a closed curve: in fact, by (6.1) (ii), if g(»)
is defined as there, we see on account of (4.1) that

(7.8) If Lp(Sy;D) is findle, it is the classical length of the closed
curve deseribed by g(z) as z describes the circumference of the
unit cirele.

With the help of (7.3) we may now extend a theorem of [16]
t0 harmonic surfaces defined on arbitrary simply-connected bounded
plane domains. If f(w) is defined as a continuous function on the
boundary of a domain D and is constant on each prime end of D,
we term its harmonic interpolation in D the continuous function
in D which is harmonic in D and which agrees with f on the boundary;
the existence of such a function follows at once from (6.1) (iii) where
we suppose ¢ continued into the interior of the unit civele hy means
of the Poisson integral.

(7.4) If Lp($,D) is finite and has the value L, and if 4 denotes the
classical area (or the Banach area, or the intrinsic area) of the
surface defined on D by the harmonic interpolation of f, then

A< KLd,

where K is on absolute constant, and where d is the diameter
of the set of values of f on the boundary of D.
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It is enough, in view of the results of [19], to verify that 4 is
like I unaltered when we pass by conformal representation to the
corresponding functions defined on the unit circle. Now the Banach
area of the part of our surface which corresponds to the boundary
of D is zero, while that corresponding to D is, by definition, unaltered
when we make a (1,1)-transformation of D into another domain.
Moreover, since D ig the sum of an expanding sequence of closed
sets on which our harmonie interpolation is Lipschitzian, and since
the same holds in the unit circle, it follows from Thceorem (4.3)
that the Banach area is in both cases equal to the classical area
(expressed as a double integral over the dnterior of the velevant
domain). Finally the identity of these expressions with the intrinsic
area follows from (5.8) (i). This completes the proof.

8. Generalisation of a ,lemma in the Theory of
Surfaces® [18]. We consider a surface o, i.e. a continuous map
defined by f(w) on a vectangle R of the w-plane, and we suppose
that & has finite intrinsic area A, and that the boundary-curve
of &, defined by f(w) on the boundary of R, lies in a sphere S, of
radius ¢ and centre the origin. We denote by £, the maximal sub-
continuum of B which includes the boundary of R and is such that
flw) lies in 8, i. e. |f(w)|<r for all w of ©Q,. We denote by W, the
seb of the points of 2, for which |f(w)|=r, by X, the submap defined
by f(w) on W, and by L*(X,) its intrinsic length.

Clearly I*(X,) < (M*-8;), where M* is the Morrey value-
system defined by §. Hence (2.3) leads to

(8.1) Az [IMZ) .

Given >0, it follows that it we choose b=a- exp (1/¢) there
must exist a value r<b such that . L*(Z,)<ed/a,.

This being so, let W be the set obtained by adding to £, for
this particular value of 7, those of its complementary domains in R
in which the oscillation of f(w) is less than b—r; we denote by D
the remaining complementary domains in E. There can only be
2 finite number of such D: in fact D must either have a boundary
on which the oscillation of f(w) exceeds +(b—7), or else contain
(by uniform continuity) at least one circle of a certain fixed radius;
the latter case can only oeccur for a finite number of D at most,
and, since L*(X)<co, the same is true of the former cage.
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We denote by fe(w) the function equal to f(w) in W and to
its harmonic interpolation in each D; it defines on R a surface &,
situated in the sphere Sp.

The two surfaces differ on R at points at which the functions
flw) and f.(w) take different values, and at points which are contained
in different maximal continua throughout which they take the
saime constant value. All such points clearly lie in XD+ 2B, where B
is the sum of the elements of & which meet the boundary of D.
Since however, each BCW,, the image-set f(B)=f.(B) has length
at most L*(X;) and therefore zero area. Moreover, the diameter
of the submayp of &, on D is at most 2r, and its Banach area is there-
fore at most

K~2T~Lfr(D) .
by (7.4), where Lyp(D) denotes the relevant boundary-length., Hence,
using Theorem (7.2), the sum of these areas corresponding to the
various D is at most

OK LN E) < (2K ja)- e+ A.

From these facts we may conclude as follows:

Theorem (3.2). There is an absolute constant K such that any
suiface & of finite intrinsic area A and whose boundary lies in a sphere
of radius a, can be so modified as to lie in o sphere of radius
b=g-exp (1/e), the modification being made by replacing ils pare-
metric represeniation f(w) by its harmonic interpolation in a finite
number of simply-connected domains interior to the fumdamental re-
ctangle R, in such @ manner that the lotal area of these harmonie portions
of the mew swrface together with any poinis corresponding to clements
which have been altered by tha above medifications, is at most K.¢-A.

9. In the case of a surface represented parametrically on
a rectangle, there is agreement betwecn intrinsic arca, Banach
aren, Lebesgue-Fréchet avea, and the classical area given by a double
integral, whenever we arve given a Lipschitzian representation, or
again, when -we have a non-parametric representation which is
absolutely continuous in the sense of Tomelli: this follows at once
from (4.3) together with (5.8), and from the results of Besicoviteh[3]
together with what is wellknown, It is emphasized further by
Besicoviteh that such agreement ean be expected only in very
special eircumstances.
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All these definitions are at the present fime useful tools of
Analysis: the intrinsic area, besides heing more satisfactory from
the point of view of pure theory, has already led us to applications
of its own in the preceding paragraphs. This makes it all the more
important that we should study further the relationship between
the various definitions of area, particularly from the point of view
of inequalities between them.

In this connection we prove the following result:

(9.1) Suppose that the continuows vector function flw) has partial
derivatives fu, fo almost cverywhere in the rectamgle R of the
plane of w=u+iv. Then the intrinsic area of the swrface
x = fw) represented paremetrically on R is nol less than
the double integral .

/[{fu (fop—

Preliminary reduection. The integrand will aguain be written
for brevity |J|, where J is the vector Jacobian used in (4.3). We
observe that the double integralis unaffected by replacing its range R
by the subset @ of R in which the integrand exists and is not zero.
With the notation of paragraph 5, where R takes the place of W,
it is thus sufficient to prove that there is a whole subset W of Q

with the same plane meagure as @, such that p( M%) > / / N | dudv;

W
in fact we shall establish this relation with the sign of equality.
This will be the case if we prove:

(Fn- fol? dudo.

(9.2) There is a seguelme of disjoint Borel subsets W, of Q such that
(i) each element R which meets W, reduces to o single point,
(i) f 4s Lipschitzian in each W,,
(iii) the set Q—X W, has plane measure zero,
For by (11) and (4.3) this would imply w2(M W) / / | | dudv,

W,

and by addition u( Wa, since (i)

= ff[J]dudv, where W=
implies My, =MY,.
Before proving (9.2), we shall establish a lemma which is

implicitely contained in a proof by Saks [13, p. 301] of a theorem
on approximate differentiability:
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(9.8) In order thal a finite fumction f(w) which is measurable on
a plane set @, be almost everywhere on Q approzimately deri-
vable with respect to cach of the wvariables w and v (where
w=1u-1iv), it is necessary and sufficient that almost all points
of @ be contained in the sum of a sequence of measurable sets R,
in each of which f is Lipschitzian. ‘

- Proot of lemma (9.3). It is clearly enough to prove the necessity
of this condition. We may further suppose, by the theorem proved
in Saks [13, p. 300, Th. 12.1], that f is approximately differentiable
almost everywheve in @. We denote, for each positive integer =,
by R, the set of the points %’ of ¢ such that, for every square in-
terval J of diameter dJ<(2/n which contains w’, at least 3/ of the
measure of J is occupied by points w which satisfy the condition
[f(w w')|<n-&J. (We follow closely the motation of Saks: J is
thus m sqmle, and no longer a Jacobian).

(learly almost all point of @ lie in the sum of the sets R,.
It remains to show that f is Lipschitzian in each R,.

To this effect, let w’ and w” be any two points of R, distant
legs than 1/n; and denote by J the square interval which circuns-
seribes the cirele with 0o’ and w'’ as extremities of a diameter. Since J
has diameter less than 2/n, it contains a point w for which neither
of the differences |f(w)—f(w’)] and |f(w)—Ff(w"’)| can exceed n-dJ — in
fact 1/2 of J consists of such points —and this is only possible if
") —flw)| < 2n- A <dn - [w'—w"

In the case in which f has on @ a finite upper bound M, this
completes the proof of (9.3), the Lipschitz constant in R, being
at most the greater of the numbers 4n and 2M -n. The general case
follows at once by means of a preliminary dissection of @ into a series
of sets in each of which f is bounded.

Proof of (9.2). Following Kuratowski, we term hereditary,
a property of a set, if every subset of this set possesses it also. 'We
ghall express a subset of @ which comprizes almost all points of @,
ag the sum of a sequence of measurable sets R, with certain here-
ditary properties. One such properfy may, by our lemma (9.3),
be taken to be: f is Lipschitzian in R,.

We remark that if each R, of such a dissection of @ has here-
ditary properties P and is almost entirely covered by a sequence
of sets with further hereditary properties P’, then there is a new
dissection of @ in which the new sets R, have the properties P’ in
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addition to the preperties P. In particular, we can and shall replace

any dissection of @ by another for which the scts R, are disjoint
and closed.

On account of a well-known result duc to Rademacher, we
may suppose that the Lipschitzian function which agrees with f

in R, has, at every point of R,, a total differential whose coctfi- ¢

clents are the partial derivatives of f. (See for instance [13, p. 811,
Th. 14.27).

Now in @, and therefore in R, the expression (1,)% (fo)2— (fur fo)?
does not vanish, whence neither does fy-cos 0--f,-sin 0 for any 0.
From the existence of a total diffcrential, it follows that we have
an inequality of the form

(9.4) [f(w)—f(w)| >

|w—aw’ . .
—17—1 where mds an nteger deponding on w

only, whencver w is a point of R, and w' a sufficicntly near

point of Ry.

Also, simply Dbecause the partial derivatives of f xist at
efach point of @ and therefore of R,, we have an incquality of the
orm ’ ‘ (

(9-5) {f(w)—f(w—+n)|<p-|h| where p is an integer depending on w
only, whc.ne'ver w is a point of R, and h is real or pure imaginary,
and sufficiently small. (The point w—h need not belong to R,).
From (9.4) and (9.5), it follows that each R, can be covered
by a sequence of sets with the hereditary property:

(9.6) Th_ere exist positive constanis a, b, e such that for every pair of
pornis w, w’ of the set, and for every real or pure vmaginary h
whose modulus is less than ¢, we have ‘

fw)~f(w)|>6-lw—w’| and |f(w)—Fw-+ )| <b-h.

It follows that we can choose the sequence of closed disjoint
subsletcs R, .of Q 80 that each st R, has the property (9.6), and in
addition fis Lipschitzian on it, in such a manncr that 3 R, covers
almost all points of Q. - /

To prove (9.2) it is row sufficient to show that these hypo-
theses on the R,, imply: -
(9.7) No point of densi?y of Ry, can be situated on & continuwm of

constancy -of f which does mot reduce to that single point.
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Tor if we prove this, then, if W, is a Borel subset of R, with
the same plane measure as R,, the sequence of sets W, has the
properties stated in (9.2).

To prove (9.7), suppose the contrary, and let w’ be a point
of dengity of R, situated on such a continuum of constancy. Then
for all small 7 there is a point w'’ of this continuum, situated on the
perimeter of the square interval of centre w' and side 2r. 'We denote
by w a point of B,, if any, situated on the side of this square whieh
contains w’’, or on one of the two relevant sides if w'* is a corner.

We may suppose r<<¢, 80 that if h=w"—w, the number b is
real or pure imaginary and we have [h|<e. Since f takes the same
constant value at the points w' and w”=w-h, it follows from.
(9.6) that

07 <a- [’ <|fw)—f(0")] = [far)—f(w+ B)] <B-|1.

Thus a segment of length 7-a/b of the perimeter of the given
gquare contains no point of R,. This implies that the mean density
of R, on the perimeter of any small square interval of centre w’
has an upper bound less than unity: since the same is then true
of the mean density in any such square, this contradicts the defi-
nition of w' as a point of density.

This establishes (9.7),and so completes the proof of (9.2) and
therefore of (9.1).
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