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On multiplication of infinite series
by
A. ALEXIEWICZ (Poznan).

'The most general definition of the product of two infinite
series can be obtained as follows: denote by N the set of all
pairs (i,k) of positive integers, and let % be a sequence N;, N,, ...

of finite, mutually disjoint subsets of N such that N= S’ N

Given two infinite series " =
6] Dén,
n={
(2) 2 Ny
consider the series =
(3) 2tn
n=1

where E;T ”Z: imk; the series K(S) will be called the product of the

. 7
series (1) and (2) obfained by the method corresponding to the
sequence. N or simply by the method (N).

The method (%) will be called perfect if

) 1° ) for any series (1) and (2) the convergence of these two
series implies that of the series (3),

2° the sum of the series (3) is equal to the product of the
sums (1) and (2).

The me.thod (®) will be said to have the property (m,)
(res.p. (my)) if for any series (1) and (2) the convergence of the
series (1) (_resp: {2)) and the absolute convergence of the series 2)
(resp. (1)) implies the convergence of the series (3) to a sum equal
to the product of the sums of the series (1) and (2)
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If a method (B has both properties (m,) and (m,) we will
say that it has Mertens’ property.}

R. Rapo Y has given necessary and sufficient conditions for
a method (M) to be perfect. Rano considers only methods with
sets N; consisting of one element; the necessary and sufficient
conditions for the general case may be obtained easily from his
results. In this paper we give a simpler proof of Rapo’s theorem,
based on a different idea, and besides we shall characterize me-
thods having Mertens’ property. Our methods are based on the
consideration of certain bilinear functionals in Banach spaces.

1. Let X and ¥ be two Banach spaces?); a functional f(x,y)
defined in the combinatorial product XxY of these spaces is
called bilinear if it is additive and continuous in each variable
separately. Many theorems concerning linear functionals in Banach
spaces may be extended without difficulty to bilinear functionals.
For instance %)

Lemma 1. For any bilinear functional f(x,y) there exists
a constant A with

(1.1)

for all palues of x,y.

ey | Al iyl

The greatest lower bound of the numbers A in formula (1.1)
is called theé norm of the functional f(x,y) and will be denoted
by lIf(-,-)|xz. The norm may be defined also by the formula

(1.2) (3f(-,‘)]§x,17=ﬂxz gsflfyzaslif(x’y“:
= s x,y)|]=sup [sup flx.u)|].
sup, [ouplfi.w)l=sup, [sup, fix0)l]

Lemma 2. If {falx,y)} is a sequence of bilinear functionals
convergent in Xx Y, then the limit-functional is also bilinear.

1) R. Rado, The distribufive laro for products of infinite series, Quart.
Journ. of Math., Oxford Ser. 11 (1940}, p. 229-242.

?) For the definition of these spaces and some other concepts used in this
paper the reader may consult S. Banach, Théorie des opérations linéaires,
Monografie Matematyczne 1, Warszawa 1932.

%) Lemmas i-4 are well known. For their generalization see S. Mazur
and W. Orlicz, Einige Eigenschaften der polynomischen. Operationen, Erste
Mitt.. Studie' Math. 5 (1935) p. 50-63, Zweite Mitt., ibidem, p. 179-189.
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Lemma 3. If {fal,y)} is a sequence of bilinear functionals

such that Iimfa(x,y)<<-+occ in XxY, then I | fals,0) | izy << - co.
N-yoc’ n—ocs .

Lemma 4. If the sets X, and Y, are dense in the spaces X
and Y respectively, and {fu(x,y)} is a sequence of bilinear func-
tionals convergent in the set X,xY,, such that

(1.3) li_miifn<-,-);tx.r<+co,

then the sequence {f»(x,y)} is convergent everymhere.

It follows that a sequence of bilinear functionals is conver-
gent in the whole of XxY if, and only if it is convergent in
a set X,xY¥, (where X, and Y, have the same meaning as in
lemma 4) and the inequality (1.3) holds.

We will deal in the sequel with the following functional
spaces:

1° the space () of sequences x={&,} of real numbers such

that 231 |éa| <<-}-co, the norm being defined by the formula

ESYLAN
2% the space (r) of sequences x=1{£,} of real numbers such

that the series /; &, is convergent, the norm being defined by the

formula
lli=sup | Y &|.
“If we define the addition of elements and multiplication by
real numbers as usual, both spaces () and (r) are Banach spaces.

All the elements of the space () form a set which is dense
in (r). i

The functional g(x)= é,l &, is linear in both spaces (I) and (r).

It is easy to show that every functional of the form

flx) =§_z anéy

icm
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where a,=0 for n>m is linear in (r);

moreover, denoting by
llf()lim its norm, we have

m—i o
. f . . Y .
(1.4) s}f(' ) “H’(’) = .aMI_i—.'\_:i 3n_aﬂ+li=2 Qn— da+1|-
n= n=I1

Suppose that {as} is a sequence whose terms are equal fo
0 or 1; a segment a, api1,...,a of this sequence will be called
a gap of {an} if ax=ar=...=a=0, ai,=1, and either k=1

or k>1 and apy=1. Let f(x)=2 a.&. be a linear functional
n=1

in (r) such that a,=0 or 1 and almost all a,=0; denote by o
the, number of gaps in the sequence {an}. It is obvious that
2oL (Mn <2041,

2, Put Po=N,+N,+...-~Ns; we may consider the set Pa
as a set of points of the plane with positive integer coordinates.
Write also

N if (.k)ePr,
Eik 10 if (i,kinonePa:

then the n-th partial sum of the series (3) may be written In
the form

@.1) falx,y) ———é fﬁ-’,ﬁ.'fn;k,

where &ft==0 for i,k sufficiently large. The formula (2.1) defines
a functional fa(x,y) which is evidently bilinear in each of the
spaces (r)x(r), (%), {Ox(r). The sequence {fal{x,y)} is conver-
geni in the set ()X () to the functional f(x,y)=g(x)g(y) which
is bilinear in each of the spaces (r)x(r), (r)x(}), I)x(r). Since
the elements of the space (I) form a dense set in (1), using lem-~
mas 2—4 we get the following

Theorem 1. The method (%) has the, property (m,) (resp.
(my) if and only if for any convergent series (1)} (resp. (2)) and
any absolutely convergent series (2) (resp. (1)) the series (3) has
bounded partial sums.

The method (R) is perfect if and only if, (1) and (2) being
any convergent series, the series (3) has bounded partial sums*).

4) Thiiisi part of theorem 3 has been proved in a slighily different form by
Rado, loc cit.
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3. By lemma 3 and theorem 1, the necessary and sufficient
condition for the method (W) to have the property (m,) 1is the
boundedness of the sequence of norms {{|[fa(-,*)llmm}-

Let x be fixed. Then gu(y)=falx,y) is a linear functional
in ()); denote by

[ifatoe, )l = sup lfax.y)}
fyilst

the norm of this functional ; by formula (1:2) .

Ml o= xlgﬁlfn(xrml):

n
H¥L

computing the norm |[fa(x,-)lly we obtain

Lol g =sup |2 eéils
k=1,2,.. i=1

hence

B

Ul Mg = T g — IV m g,
. 2%l su sul el = suyj sul 1 A2, e
ol Vo =sup, sup | Delp&l=sup sup | 2eRE

since by formula (1.4)

IV mE | = Vel —gm |
Siug ] | 1%1 ik Eit1kls

we obtain

oo

(el ) o = sup ,2:183?_ & il
g =

k=1
This fact can be expressed as follows:

The necessary and sufficient condition for the method (N) fo
have the property (m,) is

lim sup el — el | <—co
n-yse k:-i,g... gi‘ ik l+1kl<+ :
This statement may also be expressed in an another form:
Consider the set P, and denote by gu the number of gaps
in the sequence &, &, ... Put

On == TNAX Qnk,.
k=1,2,..

thus g, denoting the greatest number of gaps in all the columns

of the set P,. Since Ean»s:Zig,:fe‘i;\‘)—e§21k1<§2@nk+1, we get
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Theorem 2. The necessary and sufficient condition for the
method (M) to have the property; (m,) is the boundedness of the
sequence {gn}-

Similarly, denote by on the number of gaps in the sequence
£, e, ... and put

Gnp=IDAaxX Oni.

0 H=1,2, 0

By symmetry we get

Theorem 3. The necessary and sufficient condition for the
method (W) to have Mertens’ property is the boundedness of the
sequences {gn) and {oa}.

4. A set Q of points (i,k) where i,k are positive integers
satisfying the inequalities a-<i<8, 2 <k pis called a rectangle.
By ©(Px) we shall denote the minimal number of non-overlapping
yectangles into which the set Pr may be decomposed.

_Consider the functional fn(x,y):;g‘eg',?&m, and let x be
fixed; then ‘the functional mn(y)zfn(x;y) is linear in (r) and its
norm is

oo

v_z]ll é’l (e — e, )& —ﬁé | l_géﬁ'ﬂ& 1

where o=l —eéll ;. Hence by formula (1.2)
2
p=1

Let the set P, be a rectangle: a<{i<{§; 1<k . Then:
for =1 we have

1, !
ame,.

oo
i=1

(4.1) iifn(',')ll(r),(r>=§u

1P
st

6‘&):1 for i=a,at1.....0.
o =0 for ka=u,
and if A>1 )
o =—1, o =1 for i=a,a+1....50.
om=0 for k+i—1, k+p.
The formula (4.1) gives

oo

oo : 8
| VL . DVAPE
“2) o)l =smp 2| Zonel< 2, |2al <4
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Suppose now that the set P, is decomposed into m=%(Py)
non-overlapping rectangles Q,, Qs ..., Qu. Write eff)=2ep) for

keQ; and &) =0 elsewhere. The formula faj(x,y féfﬁ.’i_’)ﬁnk

defines a bilinear functional in (r)X(r) and we have

Falee,y)= meo-y

Sinee by (4.2) [fui(-. ) mmn<<4, we get [[fa(-s){lmin<4m. Hence
by theorem 1 and Iemma 4 we obtain the followmg statement:

If Tim &(Py)<<-}oo-then the method (%) is perfect.
n-yee

Now we establish the converse proposition.

Denote by D the set of all infinite matrices 4=(du) such
that 65=0,+1 and almost all 8x=0, and consider the family
of all functionals in (r) of the form

‘P( ) (PA ;:2;1 ,g’laxkffi[
where deD. Given any 4={(6x)eD, let u(4) denote the number
of those k for which there exists an i such that 6z =+0; put also

(=18 62l .., OJ(A):Q%{“’"(A)'

Lemma 5. Given any numbers n and p there exists a num-
ber o(n,p) satisfying the following condition:

If 4 is an element of D such that p(4)>e(n,p) and o(d4)<p,
then there exists an element x=|{&}e(r) for which &=0,%1;
x| <1 and gy(x)>n.

Proof. We will prove this lemma by induction. It is obvious
that for n=1 and for arbitrary p we may put ¢(1,p)=1. Sup-
pose the lemma to be true for n—1 and for arbitrary p. Write
o(n,p)=p(n—1,p)-F p and suppose that u(4)>= g(n,p), e(d)<p
Let i, be the least integer i such that w(4)==0; thus dax==0 for
i<<i,. Since w:(4)< p there exist ai most p positive integers
kps kay s ky (P'<<p) with 840 # 0, Sir+0, ..., ity =0 and
Sie=0 for k==ky, ks, ..., kp. Let A, be the matrix obtained from A
by removing the rows 1,2,...,i,— 1 and the columns ki, k., ..., kp-.
It is clear that p(4,)> g(n-—i,p), o{4,) < p. By the assumption

icm
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there exists an element x"={£} e(r) such that &’ {1, &=0,%1
and q:m('x’}::;n—l, i e.

2511‘51‘ n—1.

kflq l—lﬂ—wi

We may suppose that &=£&=...=& =0. If there exisis

) for w thh a—!z&k

JEU¢O we have a>1, from

a k; (1<{j<p

7

which ¢,(x")>n. Suppose now that | L,é,k 5',—0 for j=1,2,....p"

For any x=1{&}e(r) we have

(43) Z }_4 lkfh Eélukfzn"_zaxkf *‘2 yaxkéz]
k:f:kj i=ig ke=k] kj i=it1
Denote by ¢, the first non-vanishing element in the sequence
(&), Put &,=1if & =—1, &=—1 if =41, {i=05= o= y=0
and §={¢; for'1—10+1 i;-+2,... We see that xfl <1 for x—~{§n}
and since & r, =+ 0, we have

‘Y(s;}\ E l—— (51 k Ez ’}‘.2511. El’—“i

=1

By (4.3) we get

6rl'§1 //wZ(er. EHIZ; :251k51=

k==kj =1

gyl =2

Mz

...
Ii

i

=1

+
v

| Doutilzt4-n—1)=
i=igr1

kol
o
&

Thus the lemma is proved.

Theorem 4 The method (W) is perfect if, and only if
Eﬁﬁ(Pﬂ)<+O: 5).

Proof. The sufficiency of this condition has already been
proved. Now let the method (3t) be perfect. Suppose that
(4.4) Tim ¢ (Pa) =co.

n-ee

5) This theorem was proved by Rado, loc. cit.
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Put o= efp— el O —ell— el A=) 4= (E)

ik n i

By formula (4.1) we have
3) ‘ [ (oMl =sup g, (%).

. lxfisst
We observe easily that the inequalities u(4,)<c and
pld)<c imply 6(Pn)<4c*; thus the supposition (4.4) implies
Eﬁy(An)—l—EEp(A;):—FOO. We may suppose without loss of ge-
n-oo nyeo
nerality that limu(4.)=-cc. Any perfect method having Mer-
n~yoo

tens’ property, we see that there exists a p such that (4,)<p
for n=1,2,... Hence by lemma 5 and (4.5) we get

E‘.lfn(-,')fi(r),(r)=+°°-

This is, however, impossible since by lemma 3 the sequence
{Ifal-,)ionn) must be bounded. Thus, we have shown that
Tim §(Py) << 4-co.
n—yoc

It is quite’ obvious that all the considerations of this paper
are valid also for series with complex elements.

(Recu par la Rédaction le 50. 11. 1942).
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An example in Fourier series
by
A. ZYGMUND (Chicago).

1. Let a,,a,,... be a sequence of real numbers such that
Zai converges, and let n;,n,,... be a sequence of positive inte-
gers such that n,./n,>3 for all k. The partial products ()
of the infinite product

oo

(1) [{t1ia, cosn,x)

r=1

are trigonometric polynomials,

k 123
p=Il(14ia,cosn, x) =14 2y, cosvx, we=n,+...Fn-Fn,
=1 =1

where the y, are either real or purely imaginary, since all the
terms obtained from multiplying out p, are distinct. The passage
from p, to p,., consists in adding to p, the polynomial p, ., —p;
whose all terms are of rank >>y,. Hence, making k—>oo, we
obtain, formally, a trigonometric series

2) 1+ 2y, cosyx,
p=1

the partial sums s,(x) of which have the property that 8,, =Py
The series (2) may be said to represent the product (1).

Since
k

1 1
1P < [T+ a2 < [T(1 +a2)F<+-o0,

»=1 =1

s

a sequence of the partial sums of the sexies (2)is uniformly bounded.
This shows that (2) is the Fourier series of a bounded function flx).
Studia Mathematica. T. X. 8
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