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Put o= efp— el O —ell— el A=) 4= (E)

ik n i

By formula (4.1) we have
3) ‘ [ (oMl =sup g, (%).

. lxfisst
We observe easily that the inequalities u(4,)<c and
pld)<c imply 6(Pn)<4c*; thus the supposition (4.4) implies
Eﬁy(An)—l—EEp(A;):—FOO. We may suppose without loss of ge-
n-oo nyeo
nerality that limu(4.)=-cc. Any perfect method having Mer-
n~yoo

tens’ property, we see that there exists a p such that (4,)<p
for n=1,2,... Hence by lemma 5 and (4.5) we get

E‘.lfn(-,')fi(r),(r)=+°°-

This is, however, impossible since by lemma 3 the sequence
{Ifal-,)ionn) must be bounded. Thus, we have shown that
Tim §(Py) << 4-co.
n—yoc

It is quite’ obvious that all the considerations of this paper
are valid also for series with complex elements.

(Recu par la Rédaction le 50. 11. 1942).
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An example in Fourier series
by
A. ZYGMUND (Chicago).

1. Let a,,a,,... be a sequence of real numbers such that
Zai converges, and let n;,n,,... be a sequence of positive inte-
gers such that n,./n,>3 for all k. The partial products ()
of the infinite product

oo

(1) [{t1ia, cosn,x)

r=1

are trigonometric polynomials,

k 123
p=Il(14ia,cosn, x) =14 2y, cosvx, we=n,+...Fn-Fn,
=1 =1

where the y, are either real or purely imaginary, since all the
terms obtained from multiplying out p, are distinct. The passage
from p, to p,., consists in adding to p, the polynomial p, ., —p;
whose all terms are of rank >>y,. Hence, making k—>oo, we
obtain, formally, a trigonometric series

2) 1+ 2y, cosyx,
p=1

the partial sums s,(x) of which have the property that 8,, =Py
The series (2) may be said to represent the product (1).

Since
k

1 1
1P < [T+ a2 < [T(1 +a2)F<+-o0,

»=1 =1

s

a sequence of the partial sums of the sexies (2)is uniformly bounded.
This shows that (2) is the Fourier series of a bounded function flx).
Studia Mathematica. T. X. 8
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For all this, see also Saex and Zyemuxp, 4. The products (1)
are the familiar F. Riesz products modified by the insertion of
the factor i.

2. Theorem 1. The series (2) representing the product

- .cos Skx)
3 1m0 %
(3) L];Ii ( +7' &
has the partial sums uniformly bounded but divergent at a set of
points rhich is of the second category (and so - of the pomer of
the continuum) in every interval.

The interest of Theorem 1 lies in the fact that in all pre-
viously known examples of Fourier series with uniformly bounded
partial sums divergence takes place in sets of points which are
at most denumerable. Theorem 1 naturally raises the problem of
what may be said about the measure of the set of the points
of divergence of the series representing (3).

Theorem 2. If kgai<—{—co, n, /n.2>3, the series 2
representing (1) converges almost everymwhere. If, in addition,
,;g‘a* |=-4-co, the series (2) diverges in a set which is of the se-
cond category in every interpal.

Thus, in particular, the series (2) representing (3) converges
almost everywhere.

The idea of the proof of the first part of Theorem 2 is not
new, and was used, for somewhat similar purposes, elsewhere
(see Zycmurp, 6). Owing, however, to the fact that the terms of

the product (1) are complex-valued some modifications of the
proof are indispensable.

3. To prove the uniform boundedness of the partial sums
of the series representing (3) is a simple matter. For in this case

Prs1 () —pp(x)=p () i(k+ 1)t cos3*+ = O (1/k),

since the p, are uniformly bounded. If one takes into account
that the nth Lebesgue constant is O (logn), and that the order
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of the polynomial p,,,—p, is 3*H43%|  43=0(3*), one
easily deduces that all the partial sums of all the differences
Prys Py are uniformly bounded. This together with the uniform
boundednes of the p, implies the uniform boundedness of all
the partial sums of the series representing (3).

The divergence part of Theorem 1 is a special case of the
second part of Theorem 2. To prove the latter we use the equa-
tion 14z=exp{z-+O(z]*} valid for small |z!. It gives

. X E
@) pla)= ﬁ(l +ia,cosn, x)=-exp {i;%‘ws nwx} . e};p{;() (@}

The last exponential tends, even uniformly in x, to a finite
limit distinct from 0. On the other hand, it is known (see Zyc-
nowp, 2), that if X|e|=-co, the partial sums of the lacunary
series

(5) gla” cosn, x
(even if we only had n,1i/n,>qg>1) are unbounde(.i at a set. E
of points which is everywhere dense. The set (?f points at which
a series of continuous functions is unbounded is of thevtype G,
and being everywhere densc in our case must necessarily be of
the second category. Since a,—0, the divergence of the p,, and
so also of the s, , in E follows.

It may be added that the proof of the rt?sult: Which we have
just used, on the divergence of lacunary series (5) is particularly
simple if n, /3> q where g is a number greater than 3 (see

ZyemuNp, 7, p. 77, or Zveuwp, 5, p. 130, Ex. 10). Thus the proof

of Theorem 1 simplifies if in (3) we replace 3* by _4’“, the more
o that the proof of Theorem 2 is also simpler if g there is
greater than 3 (see below).

4. We now pass to the proof of the first part of Theorem 2.
We temporarily assume that
(0) My sl 2> q >3

for all k. Let us set
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Since the ranks of all the terms of
pk+1—pk=iak+1pk COSMy 1y X
are >, the terms of the series (2) all vanish for g, <v <.
By (6). _
u’k/ﬂk>nk.+1(1—q—‘—q“g—--~)/nk(1+q"+-.-)>q—2>1

and so the series (2) has infinitely many gaps. The same holds
for the series

)

) 21 ¥, sinn,x,
=

conjugate to (2), whose partial sums we shall denote by §,(x).
Both (2) and (7) are Fourier series (the latter of the class L2?),
and so are summable (C,1) almost everywhere. Summability (C, 1)
implies however that the partial sums s, and §ﬂk corresponding

to the beginnings of the gaps converge (see e. g ZYGMUND, 5,
p. 251). In particular they are bounded almost everywhere.
Let us denote by t,(x) the partial sums of of the series

®) 1+§? 7,
by ta(x). Thus .
) t,(x) =3, (x)-+15,(x),

The function

sa(0) =5 {1,0) (=)

M(x)=sup,|t, (x)]

is therefore finite almost everywhere.

Almost all points x have the property that tﬂk(.x) and t, (— x)
both converge. Let us consider any such point x and let us set
M=Max{M(x), M(—x)}. Let 4 be so large that the following
conditions are satisfied:

Br—1

(10,_p |%1’}’,,eiwxl <4, 1<ty

B B
(11,) i%‘yveii”x|<A—2M, by < plpy 1=1,2, 0 k—1; =0,

We shall show that if |a|<1 (which is certainly true for
all k sufficiently large) and if A satisfies one more condition
independent of k, then (10— and (11x—) imply (104 and (11).
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Obviously,
) Fr—y
sﬂk(x)=(1 —I—é‘lyycosnvx)(l—'r—iak cosn,x)= -
Py

. 1.
= s[tk_1(x)+7'ak cos nkx‘f“g“lak ,’2:717,, [cos(r, —v)x—-cos(n,+)x].

Since n,+»>0,
R S .
(1) 4, ()=t Hisenstbia, Ty, femenfetestss]

k-1
Let us consider separately the two cases
(&) o <<A<<ny, b)) n, <A< g

In case (a), as seen from (12),

Z'}'ﬂv ei {np—»)x

t =t t—t tlig
w=np—2

2T Tpr—t® 2 ek DD
according as A<<mp—p_, or A>m—pm_. By (10,_,), the

absolute value of the last terms is <‘1?lak§_4. In case (b),

Pt
. 1. ;
ink == ink_i +ia e, t,= t.”k ~-——2—lakJ Enyjie‘("k""')x
g

for A>n, and the absolute value of the last term is again

< é la,|4. Hence

)ty <t laldtd, It l<glald

for g, <A<n, and n, <A<y respectively (the addition of e

on the right of the first inequality is actually needed for A=mn,
only). In particular, assuming that |e,| <1, we have
Jt2\<M+—;—A+1 for p_, <A<y

and obviously the result holds if x is replaced by —x.
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Suppose now that 4 is so large that
o M-—A1<4—2M.

Then, if p_ <p<py,

“r
|§yveipx] < }tﬂk[+1tﬂ_1[<M+M+éA-|—1 <A—2M.

If py_,<p<p, j<<k, then

129 # a
| Zpersl <X 2l <a—oM 2 M=A.
a 2 i+l

Similarly, if x is replaced by —x. Thus (10,_,) and (11,_)
imply (10,) and (11,) and so they are valid for all k. Since
twc(:tx) converges, and since a,—0, (13) implies that ¢,(dx)
converges. The same holds for s,(x) on account of the second
equation (9).

It remains to get rid of the assumption (6). Suppose that we
only have n,, ., /n,>>3. Let us split the product (1) into two, cor-
responding to » even and odd respectively. For each of these
subproducts the ratio of two successive n, is >9, and so each
of the subproducts converges almost everywhere. The same there-
fore holds for the whole product (1), so that the partial sums s,
of (2) converge almost everywhere. In virtue of the well known
theorem of Kurmner, the same holds for the partial sums 8,
of (7), and the rest of the proof remains unchanged (see Kurrner, 1,
or Haror and Rocosmski, 2). The result is stated there for the
sequence of all the partial sums of a given trigonometric series, but
it holds, with proof unchanged, for any fixed subsequence of
the partial sums (see Mancwsiewicz and Zyomunp, 3).

5. Remarks. 1. Theorem 2 remains unchanged if in (1) we
replace a,cosn,x by

a,cosn,x—B, sinn,x=¢, cos(n,x+0), 2, >0,

v

provided 21' p2<<co in the first part of the theorem and Yo, = oo
= p=1

in the second.
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2. For the sake of completeness we shall brieﬂf7 consider

the behavior of (1) when Z:af,——— co. Let us also assume, for sim-

plicity, that a,— 0. Then the produét (1), and so also the series
(2) representing it, diverges almost everywhere. For otherwise,

in the formula .
3

3 3 E
plv)= exp{iZav COSnvx—ﬂ—%Zaicoszn"x—}—ZO(Laﬁis)}
i 1 1

the expression in curly brackets { } would tend to a finite limit
in a set E of positive measure. We can even assume that the
convergence is uniform. Integrating the expression in curly bra-
ckets over E and taking account of the fact that the numbers
fei""“’dx tend to zero, and that the sum of the squares of their
E

moduli is finite. we easily obtain that Za'f converges, countrary
to ‘assumption. =t

Tt is also easy to see that the resulting series (2) is mot
a Fourier-Lebesgue series. For then the partial sums s, of (2)
would converge in the mean of every order <<1 (see e. g. ZiG-
MoND, 5, p. 153). That would imply that a certain subsequence
of the p, converges almost everywhere, and an argument similar

to the one just used would give Yat<<oo.
»=1

University of Chicago,
Chicago, ., USA.
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