

THE INTEGRAL IN A BOOLEAN ALGEBRA

B'

R. SIKORSKI (WARSAW)

In this paper I give a definition of Lebesgue's integral in a σ -complete Boolean algebra 1).

The main difficulty in the generalization of the theory of the integral in an abstract space to the case of a Boolean algebra A lies in the necessity of replacing the notion of real point function by another notion, which can be expressed in terms of the theory of Boolean algebras. As a generalization of the notion of real point function I consider in this paper \aleph_0 -additive homomorphisms mapping the field B of all Borel sets of real numbers in A^2). The basis of the definition of the integral is that every σ -complete Boolean algebra A may be considered as a quotient algebra X/I (where X is a σ -complete field of subsets of a set \Re , and I is a σ -ideal), and that every homomorphism f of B in A is induced \Re 0 by a real function φ 0 of a point of \Re 7. The integral of a homomorphism f0 of B1 in A1 is then defined as the integral of the function φ which induces f1.

It is characteristic for this kind of definition of the integral that all the properties of the integral in a σ -complete Boolean algebra are immediate consequences of those of the integral in an abstract space \mathscr{X} . This definition shows also that the generalization of the theory of the integral in an abstract space to the case of a Boolean algebra is in fact not essential, since the examination of the integral in a Boolean algebra A can be always reduced to the examination of the integral in an abstract space \mathscr{X} .

Terminology and notation. A will always denote a σ -complete Boolean algebra 4). Elements of A will be denoted by A, A_1 , A_2 ,...

The sum (joint) of a finite or enumerable sequence $\{A_n\}$ of elements of A will be denoted by $A_1 + A_2 + \dots$ or by $\sum A_n$.

A' will denote the *complement* of the element $A \in A$; $A_1 \cdot A_2$ will denote the *product* (meet) of the elements A_1 and A_2 . |A| will denote the *unit* of A, i.e. an element such that $A \cdot |A| = A$.

If $A_1 \cdot A_2 = |A|'$, we say that A_1 and A_2 are disjoint.

A real non-negative function $\mu(A)$ of element $A \in A$, such that $\mu(\sum_{n} A_{n}) = \sum_{n} \mu(A_{n})$ for each enumerable sequence $\{A_{n}\}$ of disjoint elements of A, is called a *measure* on A.

B will always denote the field of all Borel subsets of real numbers ($+\infty$ and $-\infty$ being considered also as real numbers). Elements of **B** will be denoted by B, B_1 , B_2 ,...

A mapping f of B in A will be called a homomorphism if f(B') = (f(B))' for each $B \in B$ and if $f(\sum_{n} B_n) = \sum_{n} f(B_n)$ for each enumerable sequence $\{B_n\}$ of Borel sets.

Let X be a σ -field 5) of subsets of a set \mathscr{X} . A real function defined on \mathscr{X} is called *measurable* (X) if $\varphi^{-1}(B)$ is a homomorphism of B in X, i. e. $\varphi^{-1}(B) \varepsilon X$ for every $B \varepsilon B$.

A quotient algebra X/I is called a σ -quotient algebra (of the set \mathcal{Z}) if X is a σ -field of subsets of \mathcal{Z} and I is a σ -ideal 6) of subsets of \mathcal{Z} . Elements of X/I are disjoint classes of sets $X \in X$ such that two sets X_1, X_2 belong to the same class if and only if $(X_1 - X_2) + (X_2 - X_1) \in I$. The element of X/I containing an $X \in X$ will be denoted by [X].

 σ -quotient algebras are obviously σ -complete Boolean algebras. Conversely, every σ -complete Boolean algebra is isomorphic to a σ -quotient algebra 7).

I. Let A be a σ -complete Boolean algebra. Consider a σ -quotient algebra X/I (of a set \mathcal{L}), which is isomorphic to A. Let h be an isomorphism of X/I on A. It is known 8) that for each ho-

^{&#}x27;) This subject has already been considered by other writers. See e.g. Carathéodory [3], Olmsted [5], Bischof [2], and Ridder [7].

^{?)} The idea of the application of \aleph_0 -additive homomorphisms of B in A (as a generalization of the notion of a real point function in the theory of the integral) is due to Marczewski.

³⁾ See the definition, p. 22.

⁴) For σ-complete Boolean algebras (or Boolean σ-algebras) see Birkhoff [1], p. 1, 29 and 88.

i) i. e. a complementative and enumerably additive class of sets.

⁶) i. e. I is a class of subsets of $\mathfrak A$ such that $X \in I$ and $X_0 \subset X$ imply $X_0 \in I$, and $X_n \in I$ (n = 1, 2, ...) implies $X_1 + X_2 + ... \in I$.

⁷⁾ See Loomis [4], p. 757 and Sikorski [8], theorem 5.3.

⁸⁾ See Sikorski [9], theorem 3.1.

momorphism f of B in A there exists a measurable (X) function φ defined on $\mathscr L$ such that

(i)
$$f(B) = h([\varphi^{-1}(B)])$$
 for each $B \in \mathbf{B}$.

We shall say that the function φ induces the homomorphism f. Conversely, every measurable (X) function φ defined on \mathcal{D} induces a homomorphism f of B in A defined by the formula (i). Two measurable (X) functions φ_1 and φ_2 induce the same homomorphism f if and only if φ_1 0)

(ii)
$$\sum_{x} (\varphi_1(x) \neq \varphi_2(x)) e I.$$

The above mentioned correspondence between homomorphisms of B in A and measurable (X) functions permits us easily to define the algebraic operations on homomorphisms. Let f_1 and f_2 be two homomorphisms induced respectively by measurable (X) functions φ_1 and φ_2 . We define the sum f_1+f_2 , the difference f_1-f_2 , the product f_1 f_2 and the quotient f_1/f_2 as homomorphisms induced by the measurable (X) functions $\varphi_1+\varphi_2$, $\varphi_1-\varphi_2$, φ_1 φ_2 and φ_1/φ_2 respectively ¹⁰). It is easy to show that the homomorphisms f_1+f_2 , f_1-f_2 , f_1 , f_2 and f_1/f_2 do not depend on the choice of the inducing functions φ_1 and φ_2 . They do not either depend on the choice of the σ -quotient algebra X/I isomorphic to A.

We shall prove this fact only for the sum $f = f_1 + f_2$ (the remaining cases can be proved in an analogous way). Let B(r) denote the set of all real numbers greater than a rational number r. It is easy to show that for $r \ge 0$

$$f(B(r)) = \sum_{r} f_1(B(r')) \cdot f_2(B(r-r'))$$

and for $r < 0^{11}$)

$$f(B(r)) = \sum_{r} f_1(B(r')) \cdot f_2(B(r-r')) + f_1((+\infty)) \cdot f_2((-\infty)) + f_1((-\infty)) \cdot f_2((+\infty))$$

(r' denotes here an arbitrary rational number). Hence f(B(r)) is independent of the choice of the σ -quotient algebra X/I. On the other hand, if g_1 and g_2 are two homomorphisms of B in A, and $g_1(B(r)) = g_2(B(r))$ for every rational number r, then $g_1 = g_2$.

Therefore the sum f_1+f_2 is independent of the choice of X/I. Analogously we say that a homomorphism f of B in A is (a) simple, (b) non-negative, if it is induced by a measurable (X) function φ which is (a) simple 12), (b) non-negative respectively. This definition does not depend on X/I since f is (a) simple, (b) non-negative, if and only if respectively (a) there exists a finite set $R = (r_1, r_2, \dots r_n)$ such that f(R) = |A|; (b) $f(B_0) = |A|$, where B_0 denotes the set of all real non-negative numbers.

If f is a homomorphism of B in A induced by a function φ , f and f will denote homomorphisms induced respectively by $\max (\varphi(x), 0)$ and $\max (-\varphi(x), 0)^{13}$). The homomorphisms f and f are non-negative, they do not depend on the isomorphic σ -quotient algebra X/I, and $f = \hat{f} - f$.

Let now $\{f_n\}$ be an enumerable sequence of homomorphisms.

We say that a homomorphism f_0 is the *limit* of the sequence f_n if there exist functions φ_n (n=0,1,2,...) inducing f_n such that $\varphi_0 = \lim \varphi_n$.

The method of generalization of other definitions from the theory of the integral is clear.

II. Let μ be a measure on a given σ -complete Boolean algebra A, and let X/I and h have the same meaning as before. The function

$$\tilde{\mu}(X) = \mu(h([X]))$$
 for $X \in X$

is a measure on X. In particular, if $X \in X \cdot I$, then $\mu(X) = 0$, and consequently, by (ii), if two measurable (X) functions φ_1 and φ_2 induce the same homomorphism f, then

(iii)
$$\mu\left(\sum_{x}(\varphi_{1}(x)\neq\varphi_{2}(x))\right)=0.$$

Let f be a homomorphism of B in A, and let $A \in A$. Let φ be a measurable (X) real function which induces f, and let X be an

⁹⁾ See Sikorski [9], theorem 4.5.

¹⁰) We define the elementary algebraic operations on infinite real numbers as in the book of Saks [7], p. 6.

¹¹⁾ For we assumed in the footnote 10 that $(+\infty) + (-\infty) = 0$.

¹²) A function φ is simple if $\varphi(X)$ is a finite set of finite real numbers. See Saks [7], p. 7.

¹⁸⁾ See ibidem, p. 13.

element of X, such that A = [X]. We say that the homomorphism f possesses a definite integral (A, μ) over A if the function φ possesses a definite integral (X, μ) over X

(iv)
$$(X)\int \varphi d\bar{\mu}$$
.

The integral (iv) is independent of the choice of a representative X of A since $A = [X] = [X_1]$ implies $\tilde{\mu}[(X - X_1) + (X_1 - X)] = 0$. By (iii), the integral (iv) is also independent of the inducing function φ . The number (iv) will be called the *definite integral* (A, μ) of the homomorphism f over A and will be denoted by

(v)
$$(A) \int_a^b f d\mu$$
.

It follows immediately from the above mentioned definition and from the consideration of part I that the integral (v) so defined in a σ -complete Boolean algebra possesses all the properties of the integral in an abstract space. All theorems on the integral proved in Chapter I of Saks [1] are true also in the case of the integral in a σ -complete Boolean algebra. We must only modify accordingly several definitions from the theory of the integral in an abstract space ¹⁵).

In particular, if a homomorphism f possesses a definite integral (A,μ) over $A \in A$, then

(vi)
$$(A) \int_{A} f d\mu = (A) \int_{A} f d\mu - (A) \int_{A} f d\mu.$$

There exists a non-decreasing ¹⁶) sequence $\{f_n\}$ of simple non-negative homomorphisms, such that $f = \lim_{n \to \infty} f_n$. If $R_n = (r_1, r_2, \dots, r_{m_n})$ is a set of finite real numbers, such that $f_n(R_n) = |A|$, we have

$$(\mathbf{A}) \int_{A} f_n \ d\mu = \sum_{i=1}^{m_n} \mu(A \cdot f(r_i)) \cdot r_i.$$

Hence $(A)\int_A f_n d\mu$ does not depend on the choice of the iso-

14) The terminology and notation from the theory of the integral in an abstract space are in this paper the same as in Saks [7].

morphic σ -quotient algebra X/I. By Lebesgue's theorem on the integration of monotone sequences ¹⁷), we find that the integral

$$(A) \int_{A} f d\mu = \lim_{n} (A) \int_{A} f_{n} d\mu$$

does not depend on X/I. Analogously we infer that $(A) \iint_{A^0} d\mu$, and consequently, by (vi), also the integral (v), do not depend on the isomorphic algebra X/I.

We must still prove that in the case where the Boolean algebra under consideration is a σ -field X of subsets of an abstract space \mathscr{L} , the definition (v) coincides with the usual definition of the integral in the abstract space \mathscr{L} . As a σ -quotient algebra which is isomorphic to X, we may select the algebra X/0 where 0 denotes the ideal containing one element only: the empty set. Then [X] = (X) and $\bar{\mu}(X) = \mu(X)$ for each $X \in X$. By condition (ii) we obtain that the equation

(vii)
$$f(B) = \varphi^{-1}(B)$$
 for every $B \in \mathbf{B}$

establishes a one-one correspondence between the class of all homomorphisms f of B in X and the class of all measurable (X) functions. By definition (v)

$$(X)\int_{X}\varphi d\mu = (X)\int_{X}fd\mu,$$

where $f = \varphi^{-1}$. With respect to the correspondence (vii) the definition (v) is in fact a generalization of the definition of the integral in an abstract space.

REFERENCES

[1] G. Birkhoff, Lattice theory. American Mathematical Society Colloquium Publications 25 (1940).

[2] A. Bischof, Beiträge zur Carathéodoryschen Algebraisierung des Integralbegriffs. Schriften des Mathematischen Instituts der Universität Berlin 5 (1941), Heft 4.

[3] C. Carathéodory, Entwurf für eine Algebraisierung des Integralbegriffs. Sitzungsberichte Bayer. Akad. Wiss. 1938, p. 27-38.

[4] L. H. Loomis, On the representation of o-complete Boolean algebras. Bull. Amer. Math. Soc. 53 (1947) pp. 857-760.

¹⁵⁾ For instance, instead of additive functions of a set we must consider additive functions of an element of A, instead of measurable functions we must consider always homomorphisms of B in A, etc.

¹⁰) A sequence $\{f_n\}$ is non-decreasing if $f_{n+1}-f_n$ is non-negative (n=1,2,...).

¹⁷⁾ See Saks [7], p. 28.

- C O M M U N 1 C A T I O N S
- [5] J. M. H. Olmsted, Lebesgue theory on a Boolean algebra, Transactions of the American Mathematical Society 51 (1942), p. 164-193.
- [6] J. Ridder, Zur Mass- und Integrationtheorie in Strukturen, Indigationes Mathematicae 8 (1946), p. 64-81.
- [7] S. Saks, Theory of the integral, Monografic Matematyczne, Warszawa— Lwów 1937.
- [8] R. Sikorski, On the representation of Boolean algebras as fields of sets, Fundamenta Mathematicae 35 (1948), p. 247-258.
- [9] R. Sikorski, On the inducing of homomorphisms by mappings, Fundamenta Mathematicae 36 (1949), p. 7-22.

ON AN UNSOLVED PROBLEM FROM THE THEORY OF BOOLEAN ALGEBRAS

BY

R. SIKORSKI (WARSAW)

Let X and I be respectively a σ -field 1) and a σ -ideal of subsets of a set \mathcal{L} It is well known that the quotient algebra X/I is σ -complete. In some cases X/I is further a complete 2) Boolean algebra. The latter is true, for instance, in two following cases, where:

(a) X is a σ -field on which an enumerably additive finite measure μ is defined, and I is the σ -ideal of all sets of measure zero ³):

(b) X is the σ -field of all subsets of a topological space 4) \mathcal{X} which possess the property of Baire 5) (or: X is the σ -field of all Borel subsets 6) of \mathcal{X} , and I is the σ -ideal of all subsets of the first category in \mathcal{X} .

Another kind of σ -field which is often considered beside the fields of measurable or Borel sets is the field $S(\mathcal{X})$ of all subsets of an abstract set \mathcal{X} . If I is a principal ideal, i. e. if I is formed of all subsets of a set $X \subseteq \mathcal{X}$, then obviously $S(\mathcal{X})/I = S(\mathcal{X} - X)$ is complete.

¹⁾ Terminology and notation are in this paper the same as in my paper The integral in a Boolean algebra, this fascicle, p. 20-21.

²) A Boolean algebra A is called *complete*, if for every class $A_0 \subset A$ there exists the least element containing all elements $A \in A_0$.

³⁾ More generally: let I be a o-ideal of a o-field X; if every class of disjont sets X & X - I is enumerable, X/I is complete.

⁴⁾ A space is called topological, if it fulfils the four well-known axioms of Kuratowski. See e. g. P. Alexandroff und H. Hopf, Topologie, Berlin, 1935, p. 37.

b) A subset X of a topological space possesses the property of Baire if it can be represented in the form X = G + P - R, where G is open, and P and R are of the first category. See C. Kuratowski, Topologie I, Monografie Matematyczne, Warszawa-Lwów 1933, p. 49.

a) If X_1 is the field of all subsets with the property of Baire, X_2 is the field of Borel sets, and I is the ideal of sets of the first category, then the algebras X_1/I and X_2/I are isomorphic.