THE INTEGRAL IN 4 BOOLEAN ALGEBRA
BY
R. SIKORSKI (WARSAW)

[n this paper I give a definition of Lebesgue’s integral in
a ¢-complete Boolean algebra?).

The main difficulty in the generalization of the theory of the
integral in an abstract space to the case of a Boolean algebra 4
lies in the necessity of replacing the notion of real point function
by another notion, which can be expressed in terms of the theory
of Boolean algebras. As a generalization of the notion of rveal
point function I consider in this paper MNjy-additive homomor-
phisms mapping the field B of all Borel sets of real numbers
in A2). The basis of the definition of the integral is that every
o-complete Boolean algebra A may be considered as a quotient
algebra X/I (where X is a o-complete field of subsets of a set 2/
and I is a o-ideal), and that every homomorphism f of B in A
is induced®) by a real function ¢ of a point of ¥ The integral
of a homomorphism fof B in 4 is then defined as the integral ol
the function ¢ which induces f,

It is characteristic for this kind of definition of the integral
that all the properties of the integral in a o-complete Boolean alge-
bra are immediate consequences of those of the integral in an ab-
stract space 2 This definition shows also that the generalization
of the theory of the integral in an abstract space to the case of
a Boolean algebra is in fact not essential, since the examination
of the integral in a Boolean algebra 4 can be always reduced to
the examination of the integral in an abstract space

Terminology and notation. 4 will always denote a o-complete
Boalean algebia") FElements of 4 will be denoted by A, 4,, 4,,...

1) Th1s subject has already been considered by olher writers, Sce c.g.
Carathéodory 3, Olmsted [5], Bischof (2], and Ridder |7].

%) The idea of the ‘application of R -additive homomorphisms of B in A
(as a generalization of the notion of a veal point function in the theory of the
integral) is due to Marczewski.

%) See the definition, p. 22.

‘) For o-complete Boolean algebras (or Boolean o-algebras) see Birkho!f
[1], p. 1, 29 and 88.
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The sum (joint) of a finite or enumerable sequence {4} of
elements of 4 will be denoted by 4,4 4,-}... or by X 4..

4" will denote the complement of the element Aded;
Ay A, will denote the product (meet) of the elements 4, and 4,.

|4] will denote the unit of A4, i.e. an element such that

If A,-dy=|A|, we say that 4, and 4, are disjoint.

A real non-negative function p(4) of element Aed, such
that y(gAn)———h;,u(An) for each enumerable sequence {4,] of

disjoint elements of 4, is called a measure on A.

B will always denote the field of all Borel subsets of real
numbers (-fco and —co being considered also as real numbers).
Elements of B will be denoted by B, B,, B,,...

A mapping f of B in 4 will be called a homomorphism if
f(B) == (f(B)) for each BeB and if f(ZBn)=%:f(Bn) for each enu-

n
merable sequence {Bn} of Borel sets.

Let X be a o-field %) of subsets of a set 2°. A real function
defined on 2 is called measurable (X) if ¢=*(B) is a homomor-
phism of B in X, i. e. ¢7(B)eX for every BeB.

A quotient algebra X/I is called a o-quotient algebra (of
the set ) if X is a o-field of subsets of 2 and I is a c-ideal®)
of subsets of &7 Elements of X/I are disjoint classes of seis XeX
such that two sets X,,X, belong to the same class if and only if
(X;— X)X, —X)el. The element of X/I containing an XeX
will be denoted by [X].

o-quotient algebras are obviously o¢-complete Boolean alge-
bras. Conversely, every o-complete Boolean algebra is isomorphic
{o a o-quotient algebra’).

1. Let 4 be a o-complete Boolean algebra. Comnsider a o-quo-
tient algebra X/I (of a set %), which is isomorphic to 4. Let h
be an isomorphism of X/7 on A. It is known?) that for each ho-

%) i, e. a complementative and epumerably additive class of sets.

" i e I is a class of subsels of % such that XeZ and X, X imply X,eZ,
and X eI (n=1,2,..) implies X,+X,+...el. .

"} See Loomis [4], p. 757 and Sikorski [8], theorem 5.3.

%) See Sikorski [9], theorem 3.1.
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momorphism f of B in A there cxists a measurable (X) function ¢
defined on 2 such that

@ f(B)=h(lp~"(B)])

We shall say that the function ¢ induces the homomorphism /.

for cach BeB.

Conversely, every measurable (X) function ¢ defined on =
Y Y

induces a homomorphism f of B in 4 defined by the formula (i).
Two measurable (X) functions ¢, and ¢, induce the same homo-
morphism f if and only if?)

(ii) %’W. (%) @uix) e .

The above mentioned correcspondence between homomor-
phisms of B in 4 and measurable (X) functions permits us casily
to define the algebraic operations on homomorphisms, Let f, and
f» be two homomorphisms induced respectively by measurable (X)
functions ¢, and ¢,. We define the sum f,-f, the difference
fi—f., the product f,-f, and the quotient f,/f, as homomorphisms
induced by the measurable (X) functions ¢ g, @ —@an @1 ¢
and ¢,/p, respectively’). It is casy to show that the bomomor-
phisms f,-+fs, fi—F2 fi+fy and £/, do not depend on the choice
of the inducing functions ¢, and ¢,. They do not either depend
on the choice of the ¢-quotient algebra X/I isomorphic to A.

- We shall prove this fact only for the sum f=f,-+f, (the re-
maining cases can be proved in an analogous way). Let B(r) de-
note the set of all real numbers greater than a rational num-
ber r. It is easy to show that for r>0

)-—21} B{r—1r")
and for r<C(%)
FB) =2 Fo(BE N FulBlr — )+ {(+20)) - Fu = o))+ (=) Fol(-00))

(' denotes here an arbiirary rational number). Hence f(B(r) is
independent of the choice of the o-quotient algebra X/I. On the
other hand, if g, and g, are two homomorphisms of B in A, and
g1(B(r)) = g,(B(r)) for every rational number r, then g ==g,.

9) See Sikorski [9], theorem 4.5.

%) We define the elemeniary algebraic operalions on infinite real numbers
as in the book of Saks [7), p. 6.

1) For we assumed in the footnote 10 that (- o) (= ra) =0,
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Therefore the sum f,--f, is independent of the choice of X/Z.

Analogously we say that a homomorphism f of B in A is
(a) simple, (b) non-negative, if it is induced by a measurable (X)
function ¢ which is (a) simple™), (b) non-pegative respectively.
This definition does not depend on X/I since f is (a) simple,
(b} non-negative, if aud only if respectively (a) there exists a finite
set R==(r,,rg,...ra) such that f(R}=I[4[; B,)=14|, where
‘B, denotes the set of all real non-negatlve numbers.

If f is a homomorphism of B in 4 induced by a function ¢,

fo and f will denote homomorphisms induced respectively by

max (p(x),0) and max (—g(x),0)**). The homomorphisms fo and f are
non-negative, they do not depend on the isomorphic a-quohent
algebra X/I, and f= f f

Let now {f:} be an enumerable sequence of homomorphisms.

We say that a homomorphism f, is the limit of the sequence
fa if there exist functions g, (n=0,1,2,...) inducing f, such that

pp=limg,.

The method of generalization of other definitions from the
theory of the integral is clear.

IL. Let » be a measure on a given o-complete Boolean alge-
bra A, and let X/I and h have the same meaning as hefore.
The function

A0 = u(h(X]) for XeX

is a measure on X. In particular, if XeX-Z, then u(X)=0, and
consequently, by (ii), if two measurable (X) functions p; and ¢,

_induce the same homomorphism f, then

(iii) ;z();m (o) oy (%)) =

Let f be a homomorphisin of B in 4, and let AeA. Let ¢ be
a measurable (X) real function which induces f, and let X be an

12} A function ¢ is simple if p(X) isa finite set of finite real numbers. See
Saks [7), p. 7.
13) See ibidem, p. 13.
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element of X, such that 4=[X]. We say that the homomorphism
f possesses a definite integral (A,u) over 4 if the function ¢ pos-
sesses a definite integral!®) (X,z) over X

(iv) (X )quo dg.

The integral (iv) is independent of the choice of a represen-
tative X of 4 since A=[X]=[X,] implies u[(X— X)X, —X)|=0.
By (iii), the integral (iv) is also independent of the inducing fune-
tion ¢. The number (iv) will be called the definite integral (A, p)
of the homomorphism f over 4 and will he denoted by

) (4) Affdy.

It follows immediately from the above mentioned definition
qnd from the consideration of part T that the integral (v) so de-
f%ned in a c-complete Boolean algebra possesses all the proper-
ties of the integral in an abstract space. All theorems on the in-
_tegral proved in Chapter I of Saks [t] are true also in the casc
of the integral in a o-complete Boolean algebra. We must only
modify accordingly several definitions from the theory of the in-
tegral in an abstract space ).

In particular, if a homomorphism f possesses a definite inio-
gral (4,4) over AeA, then

(vi) () [F dp= (&) [f dpi—(4)[} d.

There exists a non-decreasing ) sequence {fu} of simple non-

negative homomorphisms, such that f?——— him fo. B Ro=(r,,rys....rm.)
is a set of finite real numbers, such that fo(Rn) =141, we hav"(‘

@A) [fn di=Z ulA-fri) .

Hence (ALffnd;L does not depend on the choice of the iso-

) The texminology and notation from. t} i

! ) : he theory of the integral in a ~

stract 5s)p;:ce are in this paper the same as in Saks [7). ’ “l e
%) For instance, instead of additive functi

» 0 3 ons of a set we must consider

ﬂdle‘lVe functions of an element of A, instead of measurable functions we must
consider always homomorphisms of B in 4, ete.

") A sequence {f,} is non-decreasing if Fuy1~—Fy is non-negative (n=1,2,...}.
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morphic o-quotient algebra X/I. By Lebesgue’s theorem on the
integration of monotone sequences'), we find that the integral

() fdp==lim (4) [ fad
does not depend on X/I Analogously we infer that (4)[fdu. and
AO

consequently, by (vi), also the integral (v), do not depend on the
isomorphic algebra X/IL

We must still prove that in the case where the Boolean al-
gebra under consideration is a o-field X of subsets of an abstract
space ¥ the definition (v) coincides with the usual definition
of the integral in the abstract space 2 As a o-quotient alge-
bra which is isomorphic to X, we may select the algebra X/0
where 0 denotes the ideal containing one element only: the empty
set. Then [X]=(X) and a(X)=puX) for cach Xe¢X, By condi-

tion (ii) we obtain that the equation
(vil) f(By=¢~*(B) for cvery BeB

establishes a one-one correspondence between the class of all
homomorphisms f of B in X and the class of all measurable (X)

functions. By definition (v)
%) pdu=(X]fdp,

where f=¢~!. With respect to the correspondence (vii) the defi-
nition (v) is in fact a generalization of the definition of the inte-
gral in an abstract space.
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ON AN UNSOLVED PROBLEM
FROM THE THEORY OF BOOLEAN ALGEBRAS
BY
R. SIKORSKI (WARSAW)

Let X and I be respectively a o-field?) and a c-ideal of
subsets of a set < It is well known that the quotient algebra X/I
is o-complete. In some cases X/J is further a complete ?) Boolean
algebra. The latter is (rue, for instance, in two following cases,
where: i

(a) X is a o-field on which an enumerably additive finite
measure g is defined, and I is the c-ideal of all sets of measure
zero 3); ’

(b) X is the o-field of all subsets of a topological space*) =
which possess the property of Baire %) (or: X is the o-field of all
Borel subsets®) of < and I is the c¢-ideal of all subsets of the
first category in & .

Another kind of o-field which is often considered beside the
fields of measurable or Borel sets is the field S() of all subsets
of an abstract set ¥ 1f Iis a principal ideal, i. e.if I is formed of
all subsets of a set X{_ % then obviously $(Z)I=8(% —X) is.
complete.

') Terminology and notation are in this paper the same as in my paper
The integral in a Boolean algebra, this fascicle, p. 20-21.

%) A Boolean algebra 4 is called complefe, if for every class 4, A there
exists the least element containing all elements Ae4,.

4 More generally: let I be a o-ideal of a o-field X: if every class of
disjont sets XeX—1 is enumerable, X/I is complete.

1) A space is called topological, if it fulfils the four well-known axioms of
Kuratowski See e. g P. Alexandroff und H. Hopf, Topologie, Berlin,
1935, p. 37. -

5 A subset X of a topological space possesses the properly of Baire if
it can be represented in the form X=G-P—R, where G is open, and P
and R are of the first category. See C. Kuratowski, Topologie I, Monografie
Matematyczne, Warszawa - Lwow 1933, p. 49.

5 If X, is the field of all subsets with the property of Baire, X, is the
field of Borel sets, and 7 is the ideal of sets of the first category, then the
algebras X,/F and X/ are isomorphic.
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