

ON MAPPINGS OF COUNTABLE SPACES

BY

M. KATĚTOV (PRAGUE)

In the present paper the following problem, due essentially to Banach 1), is solved for a very special case, viz. for countable regular spaces: to determine the topological spaces which admit of one-to-one continuous mapping onto a compact space. It is shown that a countable regular space possesses the above property if and only if it contains no dense-in-itself set (Theorem 3). This theorem follows from Theorem 1 which asserts that such a space admits of one-to-one mapping preserving the derivatives (in G. Cantor's sense) onto a locally compact space.

All considered spaces are Hausdorff topological spaces. A space P is called *dense-in-itself* if it contains no isolated point, *dispersed* if it contains no non-void dense-in-itself set.

Let P be a space. For any ordinal number ξ , P^{ξ} is defined by transfinite induction as follows: $P^0 = P$; if $\xi = \eta + 1$, then P^{ξ} consists of all non-isolated points of the space P^{η} , and if ξ is a limit number, then $P^{\xi} = \prod_{\eta < \xi} P^{\eta}$. P^{ξ} is called the ξ -th derivative of P. Clearly, every P^{ξ} is closed in P.

The first and the fourth of the following lemmas are well known, the two others are easily proved by transfinite induction.

Lemma 1. A space P is dispersed if and only if $P^{\xi}=0$ for some ξ .

Lemma 2. If $G \subset P$ is open, then $G^{\xi} = GP^{\xi}$ for any ξ .

Lemma 3. If f is a one-to-one continuous mapping of P, then $f(P^{\xi}) \subset [f(P)]^{\xi}$ for any ξ .

Lemma 4. Every countable regular space is 0-dimensional²). We introduce, for convenience, two auxiliary definitions.

A continuous mapping f of a space P into an arbitrary space is called an α -mapping if:

- (i) f is one-to-one,
- (ii) $f(P^{\xi}) = [f(P)]^{\xi}$ for any ξ ,
- (iii) f(P) is locally compact.

A countable space P is called an α -space if it admits of an α -mapping, or (which is the same since every countable locally compact space is metrizable, and therefore may be imbedded ³) into the space of real numbers) if there exists a real α -function on P

Lemma 5. Let $G_n \subset P$ (n=1,2,...p or n=1,2,...) be closed and open, and let every G_n be an a-space. Then there exists a real a-function f on $Q = \sum_n G_n$ such that, for any compact $B \subset f(Q)$, $f^{-1}(B) \subset \sum_{k \in P} G_k$ for some n.

Proof. Let $U_1=G_1$ and $U_n=G_n-\sum\limits_{k< n}G_k$ (for n>1). Then U_n are disjoint; every U_n is a closed and open subset of G_n , and therefore is an a-space (cf. Lemma 2). Let g_n be a real a-function on G_n . Evidently, we may suppose g_n such that, for any $x\in G_n$, $3^{-n}\leqslant g_n(x)\leqslant 2\cdot 3^{-n}$. Now let $f(x)=g_n(x)$, if $x\in U_n$. It is easy to see that f is continuous, one-to-one, and f(Q) is locally compact. If $B\subset f(Q)$, then, for some $n,\ y\geqslant 3^{-n}$ for every $y\in B$, whence $f^{-1}(B)\subset \sum\limits_{k< n+1}U_k=\sum\limits_{k< n+1}G_k$. By Lemma 2, we have, for an arbitrary ξ , $f(Q^\xi)=f(\sum\limits_n U_n\xi)=\sum\limits_n f(U_n^\xi)=\sum\limits_n [f(U_n)]^\xi=[f(Q)]^\xi$, for $f(U_n)$ are open in f(Q). This proves the lemma.

Theorem 1. Let P be a countable dispersed regular space. Then there exists a bounded continuous real function f on P such that:

- (i) f(x) = f(y) implies x = y,
- (ii) $f(P^{\xi}) = [f(P)]^{\xi}$, for any ξ .
- (iii) f(P) is locally compact.

Proof. It is sufficient to prove that P is an α -space. Denote by $S(\xi)$ the following proposition: if P is countable regular and $P^{\xi}=0$, then P is an α -space. Clearly, S(1) holds so that (cf. Lemma 1) we have only to show that:

¹⁾ Cf. Colloquium Mathematicum 1 (1948), p. 150, P26.

²) P. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Mathematische Annalen 94 (1925), p. 262-295, Kapitel II, Satz II,

³⁾ Cf. C. Kuratowski, Topologie I (deuxième édition), Monografie Matematyczne, Warszawa-Wrocław 1948, p. 175.

1° if ξ is a limit number, and $S(\eta)$ holds for every $\eta < \xi$, then $S(\xi)$ holds,

 $2^{\circ} S(\xi)$ implies $S(\xi+1)$ for any ξ .

Ad 1°. Let ξ be a limit number and let $P^{\xi} = 0$. If $x \in P$, then, for some η , $x \in P - P^{\eta}$. Since P^{η} is closed, Lemma 4 implies that there exists a closed and open G_x such that $x \in G_x \subseteq P - P^{\eta}$. Since, by Lemma 2, $G_x^{\eta} = G_x P^{\eta} = 0$, and $S(\eta)$ is supposed to hold, every G_x is an α -space and therefore, by Lemma 5, P is an α -space too.

Ad 2°. Suppose that $S(\xi)$ holds and $P^{\xi+1}=0$. First, let P^{ξ} contain exactly one point a. Lemma 4 implies that there exists, for every $x \in Q = P - (a)$, an open and closed set G_x such that $x \in G_x \subset Q$. By Lemma 5, there exists an a-function f on Q such that, for every compact $B \subset f(Q)$, $f^{-1}(B) \subset \sum_{x \in M} G_x$, with $M \subset P$ finite, and therefore a non $e \cap f^{-1}(B)$. Hence f(Q) is not compact so that, by a well known theorem, there exists a compact space $R \supset f(Q)$ such that R - f(Q) contains exactly one point b. Let g(x) = f(x) for $x \in Q$, and g(a) = b. If $B \subset R = g(P)$ is compact, and b non $e \cap G$, then a non $e \cap G$. Hence f is continuous. By Lemma 3, $g(P^{\xi}) \subset R^{\xi}$, whence $b \in R^{\xi}$, and clearly $g \in G(Q)$ implies g non $e \cap G^{\xi}$. Thus $g \in G(Q)$, from which we easily deduce that g is an a-mapping.

Now let P^{ξ} be arbitrary. Since P^{ξ} is closed, $(P^{\xi})^{!} = P^{\xi+1} = 0$, and, by Lemma 4, P is 0-dimensional, there exists, for any $x \in P$, a closed and open set G_x containing x and such that the set $G_x^{\xi} = G_x P^{\xi}$ contains one point at most. Then every G_x is (as we have just shown) an α -space, and therefore, by Lemma 5, P is an α -space. This completes the proof.

Lemma 6. Let P be locally compact, and let $a \in P$. There exists a one-to-one continuous mapping of the space P onto a compact space T such that, for any ξ , $f(Q^{\xi}) = [f(Q)]^{\xi}$, where Q = P - (a). If, fore some β , P^{β} is finite and $a \in P^{\beta}$, then f is an a-mapping.

Proof. Let the topology of P be modified at the point a as follows: the fundamental neighbourhoods of a are the sets P-K, where a non ϵK , and K is compact. We obtain a space, evidently compact, which will be denoted by T. Putting f(x) = x for $x \in P$, we have a one-to-one continuous mapping of P onto T. It is easy to see that $f(Q^{\xi}) = [f(Q)]^{\xi}$ for any ξ . If P^{ξ} is finite and $a \in P^{\xi}$, then

 $a \in \overline{Q^{\xi}}$ for any $\xi < \beta$, whence $f(a) \in \overline{f(Q^{\xi})} = \overline{[f(Q)]^{\xi}}$ and therefore $f(a) \in T^{\beta}$. Hence f is an α -mapping.

Theorem 1 and Lemma 6 imply

Theorem 2. Let P be a countable dispersed regular space, and let, for some β , P^{β} be finite non-void. Then there exists a bounded real function f on P such that:

- (i) f(x) = f(y) implies x = y;
- (ii) $f(P^{\xi}) = [f(P)]^{\xi}$ for any ξ ;
- (iii) f(P) is compact.

A one-to-one continuous image of a dense-in-itself set is evidently dense-in-itself. It is well-known that a countable compact space is dispersed. Thus we obtain by Theorem 1 and Lemma 6

Theorem 3. A countable regular space P admits of one-toone mapping onto a compact space if and only if P is dispersed.