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TLes points £ avec f(&)>f(a), tout comme ceux avee f(&)<f(a),
constituant un ensemble partout dense, on a en vertu de la conti-
nuité de E(»)

T—a

2

- Bw) =

Mais c’est incompatible avee le théoréme suivant de Jacobs-

thal et Knopp [3]: si pour un ensemble E et pour tout intervalle I
on a
|BI] _
il const., '
ce Tapport est égal & 0 ou & 1 (c’est incompatible aussi avec le théo-
rdme de Lebesgue sur les points de densité).
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Cancellation laws in the arithmetic of cardinals.
By
Alfred Tarski (Berkeley, California, U.S.A.).

Dedicated to Professor Waclaw Sierpifiski
in celebration of his forty years as teacher and scholar.

In this paper I should like to outline a proof of the following
two cancellation laws for finite multiples of eardinal numbers:

I. Given a natural number m==0 and two arbitrary cardinals,
p and g, if m-p=m-q, then p=q.

II. Given o natural number m==0 and two arbitrary cardinals,
p and g, if m-p<m-q, then p<q.

Both I and I belong to those theorems of the arithmetic
of cardinaly which can be proved in an effctive way, without the
help of the axiom of choice, and which, as a consequence of the
strueture of their proofs, can be extended to a ecomprehensive class
©of abstract algebraic systems referred to as cardinal algebras?).

It may be noticed that the two . theorems discussed can be
derived as immediate corollaries from the familiar theorem of the
arithmetic of cardinals by which a finite muliple m-p (m =+0) of
an infinite cardinal p always equals p. The proot of this last theorem,
however, involves essentially the well-ordering principle; hence
the possibility of deriving I and IL from it will be disregarded in
the present discussion, for we ghall be interested only in arguments
which avoid any explicit or implicit application of the axiom of
choice.

1) The algebraic aspect of the problem will not be discussed in this paper.
See in this connection Tarski [1] and Tarski [2] (the figures in brackets
referring to the bibliography at the end of the paper). It may be mentioned that —
with one exception — the results gtated in this paper in a formal way (i. e.,
theorems and corollaries 1-14) can be extended %o arbitrary cardinal algebras,
and most of them are explicitly formulated in Tarski [2], Part I. Regarding
this one exception (Theorem 7), 8ee Footnote 16 below.
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An effective proof of I and IIL is by no means simple. Ag
a matter of fact, no such proof of Theorem IT and no detailed proof
of Theorem I have been available in the literature until recently.

Theorem I for m=2 was first proved by . Bernstein; for
the general case Bernstein gave only a rough 011’011119 of a Proot,
the. understanding of which presents some diffieulties?). Another,
very elegant proof of I in the case m=2 was published later by
W. Sierpifiski®); and a proof in the general case was found, bub
not published, by the late.A. Dindenbaum4). Theorem IT — from
which I can obviously be derived by means of the Cantor-Bernstein
equivalence theorem — was first obtained for m=2 by mysell,
and then extended to the gemeral case by Lindenbaum; the
proofs, however, were not published ). Recently Sierpinski hag
published a proof of I for m=2 5). ' '

A few year ago I found two different proofs of Theorem II.
(and herce also, indirectly; of Theorem I). One-of these proofs can
be obtained by analyzing the proof of the corresponding theorem
applying to-arbitrary cardinal algebras; the proof-of this algebraic
theorem is published elsewhere 8). The second. proof is just the. one
whiech I should like to present in this paper. It is in' a sense an
extension of the original proof given by me for m=2, and is
undoubtedly related to Lindenbaum’s proof for the general case.
Unfortunately, I am not in a position to state how close this relation
is. The only facts concerning Lindenbaum’s proof which I clearly
remember are the following: the proof was based on & weaker though
related result previously obtained by me, which will be given below
as Theorem 6; the idea used in an important part of the proof was
rather similar to the ome used by Sierpinski in the above-
mentioned proof of Theorem I for m=2. Both these facts' apply
as.well to the proof I am going to outline. On the other hand, my
proof will be based upon a lemma given as Theorem 7 , which seems

%) See Bernstein [1], pp. 122 ff.

?) See Sierpifski [2].

%) See Lindenbaum-Tarski [1], p. 305.

5) See Sierpifski [3]. . . .
. %) In fact, in Tarski [2], pp. 30 £f. The a.lgebiaic proof referred to involves
& Testricted applieation of the axiom of choice, However, when specializing the
proof and applying it, not to abstract cardinal algebras, but specifically to
cardinal numbers, one easily notices that the use of the axiom of choice can be
avoided. Cf. in this connection op. cit., pp. 2391, as well as Tarski [1], §2~
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t0 be a.new result and which may present some interest in itself; it is,
however, by no means excluded that the proof of this lemma could
have been eagily -obtained by analyzing Lindenbaum’s argument.

Tt should be pointed out that — as opposed to Theorems I
and II —the general cancellation laws for products do not hold
in the arithmetic of cardinals: m-p=mn.q does not always imply
p=gq, nor does m-p<n-q always imply p<q (even if n==0). The
samme remark applies to the general cancellation laws for sums;
however, we shall come across certain particular cases of these
laws (Theorems 3 and Corollaries 4 and 5 below) which hold in the
arithmetic of cardinals and can even be obtained without the help-
of the axiom of choice. c '

We gshall use in this paper various familiar set-theoretical
notions and symbbls 7). In particular, given a function 7, we shall
denote by -D(f) the domain —the set of argument vlalues—— of f.
If 7 is biunique, then the domain of its inverse, D(f), obviously
coincides with the range (counter-domain)— the set of function
values — of f. The composition of two functions f and g will be
denoted as usual by fg. The composition is defined even if the range
of g is not included in the domain of f; in this case, however,
D(fg) is a proper part of D{g).

Given a set 4 and a function f, we shall denote by f(4) the
j-image of 4, i. e., the set of all function values f(z) correlated with
those elements @ ¢ A which are in D(f); in symbols

fA)=F [z edl
L@

(Thus, the functional notation is used ambiguously, but I believe:
that 1o confusion will arise from this ambiguity). The set A does

‘not have to be included in the domain of f; the set f(4) is always

included in the range of f. We shall apply various elementary
properties of images, e. g., the following ones:

f(ZA,):Z’ f(4,) for every system of sets A4y

A AR .

f(IT 49 =[] (&) for every non-empty system of sets Aj;

f(jfl——B);f(A)—Qf(B) for any sets 4 and Bj;

Ff(4)=4-D(f) for every set A; )
HA-FYB))=f(4)-B for any sets 4 and B.

7) For set-theoretical notions and results referred to or applied in this.
paper consult, for instance, Sierpifiski [1].
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The first of the above formulas holds for any arbitrary
function f; the remaining ones are based upon the assumption that f
is biunique — though the last two can algo be a,pphed to arbitrary
funetions, under an appropriate definition of ]‘~ (4).

The Roman letters 4,j,...,m,n,... Will represent arbitrary
natural numbers, and the German letters n,7p,... arbitrary cardinals.
The notion of the sum n-+p of two cardinals n and p is of course
agsumed to be known. In terms of this notion, the relations > and <

m
between cardinals, the sum ' n; of a finite sequence 1y,...,mn of
i==1

cardinals, and the m® multiple m-n of a cardinal n can be defined
in a familiar way; e. g, n>p means that there is a cardinal g for
which n=7p+ q. We shall freely apply various elementary theorems
eoncerning these notion whose proofs do not involve the axiom
of choice — such as the commutative and associative laws for
addition. Moreover, in the proofs of our fundamental theorems
we shall use (directly or indirectly) several results of a less elementary
character stated below as theorems and corollaries 1—7.

Theorem 1. If n<p and n>=p, then n=p.

This is, of course, the well-known Cantor-Bernstein equivalence
theorem.

Theorem 2. If n+p=n+q, then there are cardinals n, p'
and q' such that
n=n+p'=n+tgq’,

p=n'+p'y end g=n'-+q’.

The proof of this theorem iz published elsewhere 8).

Theorem 2 replaces to some extent the general cancellation
laws for sums, which —as was mentioned above —do mnot apply
to arbitrary cardinals. Ifs content can be described as follows:
if n+p=n-q, then p and q are equal up to certain cardinals p’ and ¢’
which are ,absorbed” by n (in the sense that n=n-+p'=u-+gq’).
Hence a related result for the inequality n+p<n--q can easily
be derived, but will not be formulated here ?).

8) See Tarski [2], pp. 181. (keeping in mind the remarks made in Foot-
note 6), or Tarski (1], § 1 (Lemma A in the proof of Theorem 2).
9) See Tarski [2], p. 19, Corollary 2.7.
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Theorem 3. If k-u+p<(k+1)-ntq, then p<n+qlo).
~-Proof: We apply induction with respect to k. The theorem
being obvious for k=0, we suppose that it holds for a given k=m;
we want to show that it also holds for k=m+-1. Thus, assume

(m—]—l) n+p<(m+2)-n+q.
Hence, for some cardinal r,

(m~+1)-n+p+r=(m+2)ntq,
and therefore i

1) n-(m-n+p-+v)=n-+[(m+1)-nt+ql
By now applying Theorem 2, with p and g replaced by

m-n+p+1r and (m+1)-n+q, respectively, we conclude from (1)
that there are cardinals w,p’ and g’ such that;

{2) n=nu+p'=nt+q,
3) m-n+p+r=n'+p
and

(4) (m+1)-n+qg=n'+q"

By (4) we have
(m=+1)-nt+q+p'=n"+q'+p;
hence, by (2) and (3),

(m~+1)-n+qg=q'+m-n+p+1,
so that finally
m-n+p<(m+1)-ntq.

The inductive premise, when applied to the latter formula,
gives at once
psn-+q.

Thus, our theorem holds for k=m-+1, and hénce also for
an arbitrary natural k. -

Corollary 4. If k-nt+p<k-n-tgq, then n+p<ntq.
Proof: For k=0 the corollary is obvious, and for k>0 it
follows from Theorem 3 (with % replaced by k—1, and p by n-+p)..

1) Theorem 3 was stated in Lindenbaum-Tarski [1], p. 303. A parti-
cular case of this theorem (k=1, ¢=0, equality instead of inequality..in the
hypothesis) had been previously established in Bernstein [1]; the theorem in
its general form can be rather easily derived from this particular case.
Fundamenta Mathematicae. T. XXXVI. . 6
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While in Theorem 3 we cannot replace the symbol < by =,
we can do this in Corollary 4 (which is & more symmetrie, though
weaker, form of Theorem 3):

Corollary 5. If k-n+p=Fk-n-tq, then n4-p=n--q.
Proof: By Theorem 1 and Corollary 4.

From Theorem 2 (with the help of Theorem 1) we can derive
gtill another consequence which — like Theorem 3 and Corollaries 4

and 5 —is related to the cancellation laws for sums. In fact, we

can eagily show that:
For every cardinal n the following three conditions are equivalent:
(i) n#=n-1 (i e, n is finite in the sense of Dedekind);
() n+p=n-+q olways implies p=q;
(ili) n4p<n+q always implies p<Lq™).
Theorem 6, If m==0, m-p<m-q, and p=q, then p=q.
Proof: By hypothesis there are cardinals v and s such that

@) m-ptr=m-q
and i
@) p=gq+s.

From (1) and (2) we obtain
: m-q+(m-s+r)=m-q+0,
and consequently, by Corollary 5, ‘

(3) qg+m-st+r=q+0=q.
Since m =0, formulas (2) and (3) imply
o p<q.

Hence, and from the last part of the hypothesis, the conclusion
follows at once by Theorem 1.

If we define the < relation as one which holds between two
cardinals p and q if, and only if, p<Cq and p=kq, then we can give
Theorem 6 the following equivalent form:

If m==0 and p<<q, then m-p<m- q2).
The proof of the equivalence is based upon Theorem 1.

1) Compare Tarski [2], p. 57.
1) In this form Theorem 6 is stated in Lindenbaum-Tarski [1], p. 305.
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It could seem at first glance that the cancellation laws for
finite multiples are direct consequences of Theorem 6. This i,
however, not the case since the trichotomy law (by which either
P<qorp=qior any two cardinals p and q) cannot be proved withous
the help of the axiom of choice, and hence is not available for our
purposes. The following theorem will make wp for the lack of the
trichotomy law in our further discussion:

Theorem 7. Let k=2. Let my,...,mp and My,...,ny be two finite
sequences of natural numbers, and P,,...,p, be . finite sequence of

cardinals, such that
& 3

2 ("77'1‘131):2 ("i'p,)-
=1 i=1
Then there are two sequences of cardinals, tiy...,ts and S1ye009Sky
satisfying the following conditions:
(1) py=r1,+s, for i=1,2,...,k;

k k

(i) 3 (mt)=23 (nr-1:) and 112> 1;
=t =t
% k

(i) ;(”li‘51)=§ (ny-51) and $,<5s.

Proof: Without loss of generality we can clearly assume
that m;+n;=0 for i=1,2,...,k.
By hypothesis, there is a set P such that

k

(m," Pl)-_—Zl (ni'pi)‘

=

L

1) P=

e

I
A

Hence there exists a system of sets Pj; with 1<<i<<k and
1< i< my+ny, satisfying the following conditions:

k my kR ng
(2) p=3 EPiJ=_2 2 Pimetss
=1 =1 = =

(8) PyPyyp=0 if the ordered couples (i,§) and (¢,§) are not
identical, 1<i<<{#' <k, and either 1<<j<<m; and 1<)’ <<my OF
else 1<{j—m<<n; and 1<) —mp<ny;

(4) P =P: for 1<i<k and 1<F<mtm.

6*
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By (4), any two sets Py -and Pj; have the same power.
Consequently, there exists a system of functions fy; (where 1( i<k
and 1<j<my—+ny) with the following properties: oo

(8) each of the functions f,; is 'biunique;

(6) D{fy)=Pys and D(fij)=P,.
We can also assume that
(7) fulw)=wz for xelPy.

Consider all the functions ¢ obtained by iterated composition
from the functions f,; and their inverses fi;. Since the set of all
these functions g is at most denumerable and not empty, we can
arrange its elements in an infinite sequence gy, ¢,9,...)§m,... Thus,
{8) every funetion g, is a composition of finitely many functions

fo; and fi; and, conversely, every such composition is one

of the functions gp,.

From (2), (5), (6), and (8) we conclude:

(9) all the functions gn (m=1,2,...
(10) D(g,)CP and D(g;*) CP;

(11) for any ¢ and §, 1<<i<k and 1<7<mi+ N, thuc is @ positive
integer m such that fij==gm;

(12) for every positive integer m there is a posﬁnve integer » such
that g-l=g,;

(13) for any positive integers m and » there is a positive integer p
such that gng.=g,.

) are biunique;

We now define recursively an infinite sequence of sets

Qlme 7Qma by settmg

(14) Q1=P11'9I'1(.P21)

and [

(5) Qs =Py ZQi) 9m+1 2, 9,9,)) for m=1,3,...
We_ also put -

(16) R= Z,’gnPu‘EQm and S= P—R

m=1
(17) Ri,j=_P1,j'.R and S,',j—Px’j S for 1<Z<k and 1<_7<m1-|—'nvi;
.(18) =Ry and §=75; for i=1,2,...,k.
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We are going to show that the cardinals 1; and g; defined in (18)
satisfy all conditions stated in the conclusion of our theorem.
By (10) and (16).we have

a9y - P= R—I—S and R-S=0;
henée by (2) and (lx) B
Pij= R+ 8y and Ry;-8ij=0
(where 1<i<<k and 1§j<m,-+m).ﬂOiovn‘Seque.ntly, by (18),
(20) p=1+s for i=1,2,.,k.

From (13) and (16) we conclude that, for every positive
integer m, : : '

" gm(R)CER;
hence, by (12),
GRHRB)CR.
As is easily s.een, the two inclusions just stated give
(21) g (R)=R-D(g1) for m=1,2,3,..
Furthermore, we obtain from (9), (10), (16), and (21) .
9a(8)= g0 P) =g, (R)=P-D(g ") —
and hence ;
(22) ‘ g.(8)=8-D(g;1).
By (5), (6); (11), (17), and (21) we have .

fl,j(Ri,l)zrfi,j(Pi,l) 'fi,j(R)zPi,j'.:R=Ri,] ‘

- Bt CD(fus);

and we condude tha,t the sets Ry and Ri 7 wﬁsh 1<i<k and
1<j<m+n; have the same power. By using (22).instead of (21),
we obtain the same conclusmn for S,,l and Si ;- Therefore, by (18),

as well ag

(23) Rihi:r,- and /S,jzsg for 1<L<7\’; and 1<<j<<met-ny.

We also see from (17) and (19) that conchtlons (2) and (3)
are satisfied if we replace in' them thesets P and P;; by B and Ry,
or § and Sy, respectively. Hence, in view of (23), formula (1) will
also hold if P and p, ave replaced by R and 1;, or 8 and 5. Thus,
2 (g 50). K

k

(24) Smger Zl:’ (n;--r,)

i=1 =

and 2 - 1)
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It remains to be shown that the cardinals 1y, 15 55, and s,
satisty the inequalities stated in conditions (ii) and (iii) of the
conclusion. In this part of the proof we make an essential use of
formulas (14) and (15) defining the sets @n. We first notice that,
as a consequence of these formulas, we have for every positive
integer m (thus also for m=1)

(25) 0=(P,, 7"222,)-9;1(1’,,1 {_2’119,(@,»
and hence, with the help of (9),
(26) 0n(0,)=(P,, 7’2@,(@9)-%(&,1 —Z‘l@,).

From (25) and (26) we obtain

@mCD(¢gm) for 1<m<oco -

and
Qm On=0=gn(Qm) - gn(Qn)
Hence, by setting

for 1<<m<n<oo.

} Ma)=gm(z) for #eQm (m=1,2,..),
we obtain a biunique function h which maps respectively the sets

2 Qms 3 (Qm-Brg), and Y (Qm-S11)
. m=1 m=1, m=1
onto the sets

migmmm), Zjlgm@m-m,.), and 3 gn(Qu- S11).

Consequently, -
(@7) 20 B1)=5 (@ B
and :
(28) 20a50= (@510,
We clearly have, in view of (17),
29) BasCPiaC 3 tm(Qu) + [] o —'ggi(cz,»
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and also, by (16) and (17),

{(30) R 1 CR Cf’ I (P "‘Ebi)-
=1

By (29) and (30), "~
o =3 m—1 . m~
EuaCS gal@n)+ S[(Pos—3 0.00) g Pra—S 01,

and hence, by (26),

RonC3 Q).
- m-1

From this formmula, with the help of (9), (17), and (21), we
obtain

61 By CF (gl @) B) =50 (@) () =3 g Q- B).

Since, by (17) and (25),

Qu-B=Qn P11 B=Qum Ry,
we get from (31)

(32) Ba1CS gon(@m- Bra).

m=1
By comparing (27) with (32) we see that the power of the set Ry
is at most equal to that of the set ZW(Q,,,-RM), which is a subset
m=1
©of Ryy. Hence, by (18),

{33) L=,
On the other hand, we conclude from (16) and (17) that
{(33) B11CP11—3 gn(Pr1~— 3 Qm).
n=1 m=1

By (6), (7), and (11), one of the functions g, is the identity
funetion f,; with D(fy;)==Py,;. Therefore (33) implies

/s'm CPm—(Pm "‘EQm) CZ'Q,,,,

m=1 m=1
and hence

34y 810=3 @51,
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We also have by (17), (22), and (26)
3 (@820 C 3 (0m( @) () C Py

eonsequently‘, by (17), .
(35) o N m@me R Clpy

m=1

From (28), (34), and (35) we see that Sy, has the same power
as a subset of S,,; therefore, by (18),

- ®

36). 5 < 5.

By (20), (24), (33), and (36), the cardinals 1; and s satisfy
all the conditions "of the conclusion; and the proofris complete 3),
The result just obtained can be improved: the conclusiong
of Theorem 7 prove to hold if my,...,m; and ny,...,ny ave -assumed
to ‘be, not necessarily natural numbers, but powers of well ordered
sebs (i. e., either natural numbers or so-calléd ‘alephs). The proof
of this stronger theorem requires but a slight modification of the
original argument and does -not.involve the axiom of choice).
We are now in a position to establish the fundamental theorems

of this paper. C : o o
" 18) The idea of this prootis rélated to thé one which' was applied in Sier-
pifiski [2]. However, Sierpifiski was dealing with 3. rather special situation;
instead of the system of functions f;; he had to consider only two function which,
in addition, were assumed o coincide with their inverses; in consequence, some
important points;of his argument cannot be-applied to more general situations.
The difference is quite essential; we see no possibility of establishing the cancel-
lation laws for multiples in-the general case by mechanically extending Sier-
pifiski’s proof for m=2 (ef, thé rémarks in Sierpifiski [3], p. 153). Another,
less essential difference between the two “proofs consists in the fact that Sier-
pifiski considers and somehow clasgifies individual elements of the sets involved,
while in the proof of Theorem 7 we make instead an’extensive use of algebra
of sets and set-images. ' TR A
. 14) Theorem 7 can also be- generalized in another direction: instead of
flnlt'B sums, we can consider simple infinite’ sums (sums of infinite series) of
cardllnals. In this case the proof reguires an application of the axiom of choice
restricted to denumerable families of sets, and is ,almost effective® in the sense
of Ta{ski [1]. The problem whether Theorem 7 — in the original or in the
generalized form — can be extended to arhitrary cardinal algebras still remains

open, though its solution is very likely -affirmative:
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Theorem 8. If m==0 and m-p<m-q, then p<q:

Proof: We have by hypothesis RTINS
(1) ' ‘ C omeptt=miq - ' '
for. some cardinal t. We put in Theorem 7: k=3, my=ny=m,
My=M=mng=0, my=1, p;=7p, P,=1q, and p,=1. By (1), the hypo-
thesis of Theorem 7 is then satisfied; we conclude that there aré
cardinaly r; and s; (4=1,2,3) with the following properties:

i

2) i p=n-+s and q=ty+sy;
{3) oMty brg=mer, and 1 >t
() ' ' 51 <8g- ' ,

By Theorem 6, formulas (3) imply:
® n=1, | o
The conclusion . follows .immediately from (2), (4), and (5)-
Thoorem 9, If m==0 and m-p=m-q, then p=-q.
Proof: By Theorems 1 and 8.
A§ a further consequenceé of Theorem 8 we obtain:
If mep<<m-q, then p<<q (and m=0)%). ' ' ;
© . This is the converse of the statement given above as an equi-
valent form of Theorem 6. o :
By combining the results obtained in theorems and corollaries 3,
4, 5, 8, and 9, we arrive at more generalrfo‘rmulations‘ given in the
following ‘three corollaries. ° Coe T o
Corollary 10. If m=+0 and k-n+m-p<(k+1) ntn-q,
then p<n-+q. S ‘
Proof: By Theorem 3 we obtain from the hypothesis:
m-pn-m-q.
Hence a fortiori :
m-p<<m-ndm-g=m-(n-+q).
The conclusion now follows by Theorem 8. "+ -
Corollary I11. If -m==0 end k-n-t+m p<k-n+m-q, then
n+p<n+a. S
Proof: By Corollafy’ 4 and Theorem'8 (arguing as in the
preceding proof) T

il

-15) See Lindenbaum-Tarski [1], p. 305 (a result of’Lindenhaumj.
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Corollary 12. If m=0 ond k-n+m-p=k-n-+m-q, then
np=n-+aq.

Proof: By Theorem 1 and Corollary 11, or else by Corollary 5
.and Theorem 9.

In conclusion, I should like to discuss another inberesting
regult of the arithmetic of cardinal numbers closely related to thoge
previously established in this paper —in fact, the so-called Huclid’s
theorem for cardinals. This theorem was also found and published
without proof by Lindenbaum. The proof which will be given
here is based upon Theorems 3 and 8, and has a purely arithmetical
.character. I do not recall the original proof of Lindenbaum and
have no idea to what extent, if any, the proof outlined below is
‘related to iti'€). :

Theorem 13. If the natural numbers m and n are relatively
prime and m-p=n-q, then there is a cardinal nwmber. ¥ such that
p=n-t and q=m-1.

Proof: We proceed by induction with respect to max (m,n).
The case max (m,n)==0 being impossible, and the cage max (m,n)=1
being obvious, we agsume that max (m,n)>1. We also assume
that the conclusion of the theorem holds for all couples of rélatively
prime numbers m’ and n’ and for all couples of cardinaly p’ and q’
such that

max (m',n') <max (m,n) and m'-p'=n'-q'.

One of the numbers m and » must be smaller than the other,
say, m<<mn. We then have by hypothesis

. m-q<m-p(=n-q);
hence by Theorem 8

asp,
.and therefore, for some cardinal s,
{1) q+s=p.
Consequently, in view of the hypothesis,
{2) v M- G+Ms=m-p="n-q,
and hence

m-q+m-s<(m+1)- g+ (n—m—1).q.

16) The result in question is stated in Lindenbaum-Tarski [1], p. 305.
Another version of the proof given in the text can be found in Tarski [2], pp. 341,
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Therefore, by Theorem 3,
mes < (n—m)-q;
i. e., there exists a cardinal t such that
{(3) m-s-+t=(n—m)-q.
This implies
{4) m-q+m-s+i=n-q.
By comparing (2) and (4) we obtain

n-qg+t=n-q;
hence, by Corollary 5,

(5) g+t=q.
From (5) we get (with the help of an ea:sy inductibn)
(n—m)-qg=(n—m)-q+t=(nm—m) g4 (m—1)-1;
together with (3), this gives
{6) (n—m)-q=m-(s+1).
Clearly, the numbers #n—m and m are relatively prime, émd
max (n—m,m) < max (m,n)

(since m cannot equal 0); hence, by out inductive premise, (6) implies
the existence of a cardinal ¢ for which

(M) q=m-t
and
{8) s+t=(n—m)- 1.

Formulas (1) and (5) give
p=q+(s+1);

' congequently, by (7) and (8).

) p=n-r.

In view of (7) and (9), the cardinal ¢ satisfies the conditions
of the conclusion. Hence the theorem holds for any natural numbers
m and n.
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Corollary 14. If m and n aré any two natus al numbers, not
both zero, having 4 as their g7eaicst common dzmsm, and if m-p= =n-q,

m
then there is o cardinel tv such that p= =t and q=-"1

Proof: By TheoremAQ (_wmh m= cl), the hypothesis implies.

zr*’=ﬁ %,

'

Hence, the natural numbers Z an(l belng relatlvoly 1mme,
the conclusion follows by Theorem: 13.”
Corollary 14 clearly comprqhends

both: Theorem '9 and
Theorem 13 as particular cases. R
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Retraction properties for normal Hausdorff spaces?).
By
C. W, Saalfrank (Lancaster, Pennsylvania U.S.A.).

1. Introduction. The idea of a retract was .formulated by
K. Borsuk [1] and retraction properties for separable metrie
spaces were developed by K. Borsuk, N. Aronszajn [3], and
others. This theory has played a prominent role in investigations
concerned with feparable metric spaces. It is the purpose of this
paper to develop a similar theory for normal Hausdorff spaces.

Section two will be devoted to results of a preliminary nature.
Tn the next section we give definitions of absolute retract and
absolute neighborhood retract for normal Hausdorff spaces. These
concepts are characterized with the aid of the Tychonoff cube.
‘We show in section four that the topological product of any sebt
of absolute retracts or any finite set of absolute mneighborhood
retracts is an absolute retract or an absolute neighborhood retract,
Tespectively. In the next section, under certain conditions, we prove
that the union of two absolute retracts or absolute neighborhood
retracts is again an absolute retract or an absolute neighborhood
Tetract, respectively, in a resfricted sense.

Section six is concerned with an extension of Borsuk’s well-
known theorem [4, p. 86] on the extension of continuous maps
into a #-sphere. Borsuk’s theorem states: If € is a closed subset
of a separable metric space X, then for' any continunous map
(X x0)U (Cx%(0,1))—N, where N is a n-sphere or more generally
a separable metric absolute neighborhood retract, there exisgts an
extension F of f over X x(0,1), such that F:X x(0,1)—>N. We
prove this theorem for a compact Hausdorff space X, substituting
a retract B of any absolute retract A for the point 0 and the unit

1) A Dissertation accepted by the University of Pennsylvania in fulfillment
of the research requirement for the Degree of Doctor of Philosophy.
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