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Corollary 14. If m and n aré any two natus al numbers, not
both zero, having 4 as their g7eaicst common dzmsm, and if m-p= =n-q,

m
then there is o cardinel tv such that p= =t and q=-"1

Proof: By TheoremAQ (_wmh m= cl), the hypothesis implies.

zr*’=ﬁ %,

'

Hence, the natural numbers Z an(l belng relatlvoly 1mme,
the conclusion follows by Theorem: 13.”
Corollary 14 clearly comprqhends

both: Theorem '9 and
Theorem 13 as particular cases. R

. Bxbliography. -

Bernstein F. [1] Undersuchungen aus de’r Mongenlehm M'Lﬂ). Ann 81“
(1905-6).

Lindenbaum A. and Taxski A. [1] Oommunication sur les recherches
de la théorie des ensembles. Comptes rendus des séances do la Société des Sciences
et des Lettres de-Varsovie, Classe III; 19 (1926). .

Sierpifiski W. [1] Legons sur los mombres tmns[mw Collec’mon de mono-
graphies sur la théorie des fonctions. Paris 1928.

— [2] Sur légahté 2m=2n pour les nombres cardinomz. Fund. Math. 3
(1922);

— [3] Sur l’@mpl'watwn (2m\<2n) = (msn) pour, Zes nombms (‘a/rdmmm
Tund. Math. 84 (1946), pp. 148-154.

Tarski A. [1] Awiomatic and algebraic aspects of two theorems on sums of
cardinals. Fund. Math. 35 (1948). o

— [2] Oardinal algebras. New York, 1949.

icm

Retraction properties for normal Hausdorff spaces?).
By
C. W, Saalfrank (Lancaster, Pennsylvania U.S.A.).

1. Introduction. The idea of a retract was .formulated by
K. Borsuk [1] and retraction properties for separable metrie
spaces were developed by K. Borsuk, N. Aronszajn [3], and
others. This theory has played a prominent role in investigations
concerned with feparable metric spaces. It is the purpose of this
paper to develop a similar theory for normal Hausdorff spaces.

Section two will be devoted to results of a preliminary nature.
Tn the next section we give definitions of absolute retract and
absolute neighborhood retract for normal Hausdorff spaces. These
concepts are characterized with the aid of the Tychonoff cube.
‘We show in section four that the topological product of any sebt
of absolute retracts or any finite set of absolute mneighborhood
retracts is an absolute retract or an absolute neighborhood retract,
Tespectively. In the next section, under certain conditions, we prove
that the union of two absolute retracts or absolute neighborhood
retracts is again an absolute retract or an absolute neighborhood
Tetract, respectively, in a resfricted sense.

Section six is concerned with an extension of Borsuk’s well-
known theorem [4, p. 86] on the extension of continuous maps
into a #-sphere. Borsuk’s theorem states: If € is a closed subset
of a separable metric space X, then for' any continunous map
(X x0)U (Cx%(0,1))—N, where N is a n-sphere or more generally
a separable metric absolute neighborhood retract, there exisgts an
extension F of f over X x(0,1), such that F:X x(0,1)—>N. We
prove this theorem for a compact Hausdorff space X, substituting
a retract B of any absolute retract A for the point 0 and the unit

1) A Dissertation accepted by the University of Pennsylvania in fulfillment
of the research requirement for the Degree of Doctor of Philosophy.
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interval (0,1), respectively. Moreover, N and A are assumed to be -

an absolute neighborhood retract and an absolute refract, respecti-
vely, in the semse of the generalized definitions as given in thig
paper. We also prove another extension theorern in which the results.
ave of a similar nature; however, the emphagis of the hypothesis
ig differently placed. Here we agsume simply that ¥ is a topological
space, bubt that O is a closed neighborhood retract of an abgolute
neighborhood retract X.

In section seven we show that any absolute retract has the
fixed point property, and that for an absolute neighborhood retract.
any null-homotopic continuous map has a fixed point.

Finite dimensional separable metric absolute neighborhood
vetracts have been characterized by K. Borsuk [2, p. 240]. By
exhibiting an example, we show in section eight that Borsuk’s
vegult does not lend itself in a natural way to a characterization
of finite dimensional absolute neighborhood retracts as defined
in this paper. The study of'retrac'tion properties iy contineud in
section nine where other results are formulated.

The author wishes to express his deep appreciation to Pro-
fessor A. D. Wallace for his helpful advice and constant encou-
ragément.

2. Retracts. The following conventions are uged throughout
this paper. We abbreviate normal Hausdorff space by ,.NH space’.
The words ,map” and ,transformation” are used in the sense of
eontinuous correspondence”. )

The theorems in this section hold for any Hausdorff space,
and will be needed later in this paper. With the exception of (2.2),
the proofs of the corresponding theorems for separable metric spaces
as given by XK. Borsuk [1] will apply directly to these theorems.

(2.1) Definition. Given the sets A and B such that BCA,
we say that | is a map retracting A onto B provided f is defined and.
continuous on A, f(AYCB, and f(x)=a for every x e« B. If such a map
ewists for the set B, then B is called a retract of A.

Depending strongly on the Haunsdorff separation axiom we
obtain the following result. . :

(2.2) Theorem. Every reiract of a set is relatively closed in
that set.
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In addition we have:

(2.3) Theorem, If B is a retract of A and the set A has the
fimed point property with respect to maps of A into A, then B also-
has the fized point property with respect to maps of B into B.

(2.4) Definition. GQiven the sets P and P, such that PCP,
and a map f: P—Q, we call the map g an ewtension of the map f over Py
relative 1o  provided g:P,— Q and g(x)=j(z) for all z ¢ P.

(2.8) Theorem. If a map | defined on a set P adgmits an exten~
sion g over a set Py velative to a set A, then [ admils an ewtension.
over P, relative to every retract B of A which conlains f(P).

3. Absolute Retracts and Absolute Neighborhood
Retracts. (3.1) Definition. Given the sets A and B such that
BCA, we say that B 48 a neighborhood retract of A provided there emists
an open set U such that BC UCA and such that B is a retract of U.

- (3.2) Definition. A space A is called an absolute neighborhood:
retract provided it is a compact Housdorff space and for every topolo-
gical image A, of A, such that A, is contained in a NH space M, we
have A, is a meighborhood retract of M. We abbreviate ,absolute
neighborhocd refract” by ,ANE” or ,ANR set”.

(3.3) We denote by I7I, the topological product of any
arbitrary number of topological spaces, where ‘each I, denotes
a topological space. For w eIll, we have @={w.} where z,e¢ I,
for all a. In order to introduce a topology into JI1,, we define neigh-
borhood of a point #={z.} as follows. Consider any finite number
of indices a,...,a, and the corresponding spaces Io,...,I,, . Let.
8z, be any neighborhood of the point we, in Iy for i=1,..,n.
Then y={y,}is an element of the neighborhood U{ay,..., an; Sag; .. s Sun}
of w={w,} provided yo,e S, for i=1,...,n. If each I, is the unit.
interval, then the space I7I, is called a Tychonoff cube [6].

(3.4) Theorem. A necessary and sufficient condition for a set
to be an ANR is that it be homeomorphic to a closed meighborhood:
retract of some Tychonoff cube.

Proof. Necessity. Let 4 be an ANR. Since A is a compact |
Hausdorff space, we can map A topologically into some Tychonoff
cube T {5, p. 297. Let h(A4)=A, where h is & homeomorphism and A4,
is a subset of T Since T is compact [6, p. 763], we have T is a NH
space and therefore by (3.2) 4, is a neighborhood retract of T.
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In virtue of the continuity of A and the compactness of A4,
we have 4, is compact and therefore closed m T.

Sufficiency. Let h(4d)=A4, where h is a homeomorphlsm
and A, is a closed neighborhood retract of some Tychonoff cube T.
Consider any other homeomorphic image A, of A such that 4, is
contained in a NH space M. Let %(A)=A, where & is a homeomor-
phism. T is a Tychonoff cube and hence compact [6, p. 763]. There-
fore A, is compact and since kb~ Y(4,)=A4,, we have 4, is compact
and hence closed in M. We now apply Tietze’s Extension Theorem [5]
+o the map Ak~ Ay—T and obtain an extension f of BE over M
relative to T. Since 4, is a neighborhood retract of T, there exist
an open set U;D4; and a retracting map » such that r: U,—A,.
Now f(M)NT, is an open subset of f(M). Hence NN T 1s
an open subset of M and clearly 7 [f(M)N U] D4y The map khf
retracts the open set f[f(M)N U} onto 4, because:

W) O UL =R (Ar) = h(A) =4,

and for # e 4, we have
ki Yrf(a) = KR DRk~ (a0 = RE T [RE T (5) ] =
o) and WEl(0) € 4,. ‘
(3.8) Definition. A space A is called an absolute retract
provided it is & NH space and for every topological image A, of A,

such that A, is contained in o NH space M, we have A, is a retract
of M. We abbrewate ,yabsolute retract’’ by AR” or AR get”.

(8.6) Theorem A mnecessary and suffwwnt condition for a set
to be an AR is.that it be homeomorphic to a retract of some Ty yeho-
noff - cube.

This result may be verified by a proof entirely analogous
to that given for (3.4). We simply remark: that in the proof of this
theorem the Tychonoff cube T takes the place of the open set U,
which appears in the proof of (3.4) and M takes the place of the
open set 7 #( Mynu,].

Since every Tychonoff cube is compact [6], we obtain from
(8.6) the

(8.7) Corollary. Bvery AR is compact.

From the definitions (3.2) and
the following result. '

since flm)=

(8.5). we have immediately
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(3.8) The property of being either an ANR or an AR is a topo-
logical imvariant.

(3.9) Theorem. If a set is a closed neighborhood retract of
an ANR, then the set is an ANR. ’

Proof. Let B be a closed neighborhood retract of an ANR
set 4. By (3.4) A is homeomorphic to a closed neighborhood retract
A, of some Tychonoff cube 7. Let h(4)=4, where & is a homeomor-
phism. Then there exist open sets U, in T and V in A and retracting
maps 7 and f such that U,D4,, VOB and r: U,—~4,, f: V—B.
Consider the set G consisting of all w e U, such that K 'r(x)eV.
Let h{B)=B,. Clearly GDB;. Now ™ maps U; onto 4 and ¥ is
open in A. Therefore (A7) (V) is open in U, and hence open in T.
But (h‘lr)_1 (V)= @ and hence G is open in 7. The map h}‘h"lr retracts
the open set G onto B, because:

kR (GYC B,
and for b, € B, we have

R (by) hﬂf‘ by)=MfIK ! (By)]=hh"(b;)=by, sinee K~'(b,) e B

implies F[A b)]=1"Y(by). By (3.2) 4 is compact and since B is
closed in A a,nd hB)=B,;, we have B, is compact and therefore
closed in 7.

Thus B; is a closed neighborhood retract of T. By (3.4) B is
an ANR.

(3.10) Theorem. If a set is a retract of an AR, then the set
is an AR.

We can verify this theorem by a proof which parallels that
given for (3.9) in all important details, except that we use (2.2) to
show that the retract is a normal space.

4. Topological Product. (4.1) Lemma. A necessary and
sufficient condition for a set A to be am ANR is that A be a compact
Hausdorff space and that any map f defined on a closcd subset P of
a normal space P, such that f(P)CA, admits an extcnsion over some
open subsct V of Py relative to A where V contains P.

Necessity. By (3.4) we have h(4)=A4, where 7 is 2 homeomor-
phism and A4, is a closed neighborhood retract of some Tychonoff
cube T. Let U; be an open subset of T and » be a retracting map
such that r: U;— 4,. Since P is a closed subset of the normal space P,
Fundamenta Mathematicae T. XXXVI. 7
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and Bf(P)CT, by Tietze's Extension Theorem [5] there existy an
extension g of hf over P, velative to T. Now the set U,N g(P;) is
open in g(P;) and hence V= gL U,Ng(Py)] ig open in. P, Clearly
VP since for p e P, we have g(p)="hf(p) ¢ U;. The map h™'ry is
an extension of f over V relative to A because since g(V)= U,Ny(P,)
we have h—irg(V)CA and for p e P we have

; Wrg(p) =W (p)]= b [h(p)]= (p)-

Sufficiency. Let h{d)=A4, where A is a homeomorphism
and A4, is a subset of an NH space M. Now 4 is compact by hypo-
thesis and therefore A, is closed in M. Since ™'(4,)=4, by hypo
thesis there exists an open set V containing 4, and an extension H
of h over V relative to A. The map hH retracts V onto 4; because

RH(V)CA, and for a, ¢4, we have hH(a1)=h[h"1(a1)]=a1. By (3.2).

A is an ANE set.

(4.2) Theorem. If the sets A,,...,A, are ANR sets, then the
topological: product ITA; is an ANR. o

Proof. Since each 4, is a compact Hausdorff space, we have
IT4; is a compact Hausdortf space [B]. Consider any cloged subset
P of a normal space P, and any map f defined on P such that
f(P)CIIA;. For any peP we have f(p)=/{/i(p),...,Jn(p)} where
fi(p) e 4; for i=1,...,n. Sinee 4; iy an ANR and f;: P->4;, by the
necessity of (4.1) there exist an open subset V; of P, such that V,D P
and an extension F; of f; over V; relative to 4, for i=1,...,n.
Clearly 7,N..OV,DP and VyN...NV, is open in P,. We define
amap F:V 0 ... OV,—~IT4, by F(v)={Fy(v), .., Fa(v)} for veV,N ... OV,
I is an extension of f over ¥;N...NV, relative to I74,; because
F(V,0...OV,)CIIA; and for p ¢ P we have

F(P)={F1(P)i~-al”n(19)}—_.—{fx(Z’):n-;fn(P)}:f(P)-

By the sufficiency of (4.1) I74, is an ANR.

Using a proof which is entirely analogous to that used in (4.1)
we obtain the

(4.3) Lemma. A necessary and sufficient condition for a set A
0 be an AR is that A be a compact Hausdorff space and that any
map | defined on a dlosed subset P of a normal space P, such that
HP)CA, admits an emtension over P, relative to A.
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By (4.3) and a proof which parallels that. given for (4.2) in
important details we obtain the

(4.4) Theorem. If {4.} is a collection of sets where each A, s
an AR, then the topological product ITA, is an AR.

5. Sum Theorems. (5.1) Theorem. Let C be an ANR such
that =AU B where A and B are closed in C and ANRB is a neigh-
borhood retract of C, then both A and B are ANR.

K. Borsuk’s proof [2, p. 226] of this result for a separable
metric ANE can be applied directly to this theorem.

We call a space perfecily normal provided all its subsets are
normal.

(5.2) Definition. A space A is called a restricted ANR
{restricted AR) provided it is a compact Hausdorff space (NH space )
and for every topological image A, of A, such that A, is coniwined
in o perfectly normal Hausdorff space M, we have A, is a neighborhood
vretract of M (reiract of M).

We shall need the following result which is due to P. Urysohn:

(8.3) If the space M is perfectly normal and A and B are closed
subsets of M, then there ewist open sets Uy and Uy such that U;DA—B,
U,0B—4 and U,N U,=0. .

(5.4) Theorem. Let C=AUB where ANB is a neighbor-.
hood retract of C and A and B are ANR sets, then C is a restricted
ANR set. ‘ ‘

Proof. Let n(C)=C, where b is a homeomorphism and O, is
contained in a perfectly normal Hansdorff space M. Let h(A)=A4,
and k(B)=B,. Since 4 and B'are ANR sets, we have both A, and B,
are compact and hence closed in M. By (5.3) there exists an open
set U in M such that :

A,—B,CUCUCM —~(B,—A4,)=(M
We let
P=UU(4,NB,) and Q=(M—U)U (4,NB,).

We notice that P,Q and PMQ are closed in M and that A,CP,
B,CQ, PUQ=M and A,NPNQ=B,NPNQ=A4,NB,. :

—B)Y (4N By). -

T*
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Sinee 4N B is a neighborhood retract of ¢ and AN BCACC,
we have AN B is a neighborhood retract of 4 and hence by (3.9)
ANB is an ANR. Thus there exist an' open subset ¥V of M such
that 4,0 B;CV and a retracting map r such that 7: V—4,N B,.
Applying the normality of M, there exists an open subset W of M
such that 4,N B,CWCWCV. Sinee 4,N B,CPNQYNWCV, 7 retracts
PO@NW onto 4,N B,. ‘

We define .

hig)=7(z), for x<PNQNTW,

f@)=w, for wmed,
and

fy(@)=7(z), for z<PNQNW,
(@)=,

Both PN QN and 4, are closed in (PN QN W)U 4, ard r(w)=x
for w e 4,N(PNQNW)=4,NB,. Hence f, is continuous. Similarly
f» is continuous.

By (3.8) 4, is an ANE. Hence noting that (PNQN W)U 4,
is closed in P, we apply (4.1) and obtain a set Z, open in P and
such that (PNQNW)UA,CZ and an extension g, of f, such that
9: Z,—~A,. Bimilarly we obtain a set Z, open in @ and such that
(PNQNW)V B,CZ, and an extension g, of f, such that 0ot Zy—>+DB,.

Since 4;N (P—Z;)=0 and P is normal, there exists a set Sy
open in P such that 4,C8,C8,CZ,. Similarly there exists a set Sy
open in @ such that B,C8,C8,CZ;. Using CW to denote the comiple-
ment of W, we define . . :

for xeB,.

K(@)=g.(v), for #e8,—(PNQOCW)

K(@)=gy(w), for @e8,—(PNQOCW).
_ Both 8, —(Pn Qﬂfi’W) and 8,—(PNQNCW) are closed m
{Sl-_(PﬂQﬂCW)}U{Sz—(PﬁQﬂC’W)} and  gy(@) = gy ()
we{Sl—(PﬁQGCW)}ﬂ{§2~(PﬁQﬁCW)}CPﬁQﬂW.

for

Hence K() is continuous.
) Let; Rl‘—_:SI—(PﬁQﬁCW) and B,=8,—(PNQNCW).
R, is open in P and R, is open in Q. Moreover K retracty
onto A4,Y B, because

Clearly
R,V R,

A VB CERURC{8,~(PNQNCW)}U {5,~(PO@nCW)}.
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Now R,=¥,N P and R,=¥,NQ where Y, and ¥, are open
subsets of M. Also ¥;N(P—Q)CR,, ¥,N(Q—P)CR, and '
¥.NY,=Y,NY,N(PUQ)CR,VR,.
Hence
AUB={(4,UB,)N(P—Q)}U{(4,UB)N(@—P)}U{(4,UB,)NPNQIC
HELN(P—U{TLN(Q—P)YU{Y:NY,}CR VR,

Now the set X={¥,N (P—@)}VU{¥,N (Qq—P)}U{¥,NT,} is
open in M and we have 4,UB,CXCR,U R,. Therefore K retracts
X onto 4,UB,=C0,.

Using methods similar to those used in (5.1) and (5.4) we
arrive at the following two results.

(5.5) Theorem. Let C be an AR such that C=AU B where
A and B are closed in C and AN B is a retract of C, then both A and B
are AR.

(5.6) Theorem. Let C=AU B where AN B is a retract of C
and A and B are AR sets, then C is o restricted AR setf.

6. Extension of Borsuk’s Theorem. (6.1) Lemma. Let C
be a subset of a Hausdorff space X. In the product space X X A where A
is a compact Hausdorff space, let U be an open set containing C xA.
Then there ewists an open set V in X containing C such that V x A is
contained in U.

In virtue of the compactness of 4, we may apply the proof
given by Hurewicz and Wallman [4, p. 86] to the above lemma.

(6.2) Definition. We say that a set B is a deformation retract
of & set X provided there exists a map r retracting X onto B such that r
48 homotopic to the identity map.

(6.3) Lemma. If B is a retract of an AR set A, then B is
a deformation retract of A. Moreover, there emists a deformation G
mapping A X (0,1) onto A such that the poinis of B X (0,1) are fized.

Proof. Let r be a map which retracts 4 onto B. We define
a map g such that g: A x0VUBx(0,1)V4Ax1—->4 by

g(a,0)=7r(a), for aeA
g(b,t)=b, for beB and te(0,1)
g(a,1)=a, for acd.
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Sinee 4 x0, Bx(0,1) and Ax1 are closed and the three
definitions of g agree on all ecommon domains, g is well defined and
continuous. 4 x 0UBx (0,1)U4 x1 is a closed subset of the normal
space 4 X (0,1) so that we may apply (4.3) and obtain an extension G+
of g over 4 x (0,1) relative to 4. Clearly & is the required deformation
having the property that @(b,t)=>0 for be B and t¢(0,1).

. (6.4) Extension of Borsuk’s Theorem [4, p. 86]. Let
be a closed subset-of a compact Hausdorff space X and let B be o
retract of an AR set A, Then for any map f such thot

fH (X xB)V(CxA)—>N,

where N is an ANR, there emists am estension F of f over X X A such
that F: X x A—~N.

Proof. Since (X x B)U (0x4) is closed, by (4.1) there exists
an open subset U of X x4 such that UD(X xB)U(Cx4) and
an extension j' of f over U relative to N. By (6.1) there exists an
open subset ¥ of X such that CCV and ¥V X ACU. Clearly f'is defined
over (X X B)U (V xA4). Observing that ¢ and CV are disjoint closed
sets, we apply Urysobn’s Lemma and obtain a continuous real
function p(z) defined over X such that 0<{p(z)<1 for all @ e X,

plz)=1 for meC, and p(z)=0 for z¢CV. By (6.3) there exists
a retracting map r such that r: A—B and a deformation @ such
that @:4%(0,1)—~4, Gla,0)=r(a) for aeA G, t),.b for beB
and te(0,1), and G(a,1)=a for a e A.
Congsider the map F: X xA—N defined by -

F(z,6)=fT5,G(a,px)] for zeX and aed.
Now j is defined over ¥ x4 so that clearly F i well defined
for #¢V and aed. For 3¢ CV and aeA we have
(4,9 (#))=G(a,0)=7(a) ¢ B.

Recalling that j' is defined over X xB, we observe that F
ig also well defined for #¢CV and ae¢d. Moreover P is clearly
continuous on X X.A.

We now show that F agrees with f on (X x B)U (0 x 4). For
zeX and beB we have
F(@,b)=f"[,6 (b,p(2))]= f'(2,b) = f(w,b).
For ¢e C and ¢ ¢4 we have l

Ple,a)=]'I,¢(a,p(e)]=1"l¢,6(a,1)]1= F'(c, ) = f (c,a).
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(6.5) Theorem, Let C be a closed neighborhood retract of an
ANR set X. Let B be a retract of an AR set A and let X x4 be perfectly
normal. Then for amy map f such that

FH{XxB)YU(Cx4)~E,

where R i$ any topological space, there ewists an extension F of f over
X x A such that F: X x A—R.

Proof. By (3.9) C is an ANR, and herce by (4.2) x4 is
an ANR. By (3.10) B is an AR, and hence by (4.2) X x Bisan ANR.
Now (X X B)N(CxA)=CxB an ANR set. Hence (X X B)Y (0 x4)
is a restricted ANRE by (5.4). Since X x4 is perfectly normal, there
exist an open subset U of X x4 such that (X X B)V(CxA)CU
and a retracting map r such that r: U—(X X B)U (0 X 4). The map
fr is an extension of f over U relative to R. By (6.1) there exists
a subset V of X such that V is open in X, CCV, and ¥ XACU. This
proof may now be completed by an argument which parallels that
given for (6.4).

7. Fixed Point Property. (7.1) Theorem. If 4 is an AR,
then every transformation which maps A into A has o fized point.

Proof. By (3.6) we have h(4)=A, where h is & homeomorphism
and 4, is a retract of some Tychonoff cube. Since every Tychonoff
cube has the fixed point property [7, p. 770], we have by (2.3}
that 4, has this property. Morecver the fixed point property is a topo-
logical invariart. Since h is a homeomorphlsm, this completes
the proof.’

We say that a map f is null homotopic provided f is homotopm
to a constant map.

(7.2) Theorem. If A is an ANR, and f is a null-homotopic map
of A into A, then f has a fiwed point.

Proof. According to (3.4), 4 is homeomorphic to a closed
neighborhood retract of some Tychonoff eube T. We lose no gene-
rality by assuming A is contained in 7. Now f is homotopic to
a map g where g: A—A4 and g(a)=a’ e A for all @ ¢ A. Hence there
exists a map k such that k: 4 x (0,1)~4, k(a,0)=F(a) for all a e 4,
and k(w,1)=g(a) for all a e A.

We define a ‘map K such that K: (Tx1)V Ax(O 1)—4A by

K (#,1)=a’, forall zeT,
K(zt)=5k(xt) forall zed and te(0,1)
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K(a,t) is continuous because both Tx1 and AX(0,1) are
closed in their union (T'x 1)V (4 X (0,1)) and for

(@,8) € (T x1) N (4 x (0,1))=A x1

we have k(w,t)=a'. Since A is an ANE, we may now apply (6.4),
and obtain an extersion K’ of K over T x(0,1) relative to A.
We defire a map @ such that @: T—4 by

G(2)=K'(x,0), for all xel.

Now @ is an extension of f over T relative to 4 because for
any a <A we have

G(a)=K'(a,0)=EK (a,0)=l(a,0)=F(a).

Since T has the fixed point property [7, p. 770], there exists
some element p of 7 such that G(p)=p. This implies p is an
element of A because G: T—A. Since @ is an extension of f, we
have f(p)=p.

8. A Comparison. K. Borsuk characterized the concept of
2 separable metric ANR set for finite dimensional spaces with the
following result [2, p. 240]: For finite dimersional sets, ANE sets
can be characterized as compact, locally contractile [2, p. 2351,
metrisable spaces. In view of this result, it is natural to conjecture
that for finite dimersional spaces, ANR sets as defined in this paper
should admit a characterization as compact, locally contractile,
Hausdorff spaces. Indeed we shall prove that any ANR is a compact,
locally ' contractile, Hausdorff space. However, the suggested
characterization is impossible. We shall show thig by éxhibiting
2 set which is a finite dimensional, compact, locally contractile,
Hausdorff space, but which is not an ANR.

(8.1) Lemma. If A is a retract of B and B is locally contractile
al a point p e A, then A is locally contractile ot p.

Borsuk’s proof [2, p. 237] of the above lemma for separable
metric spaces will hold here unchanged.

(8.2) Theorem. Any ANR is a compact, locally contractile,
Hausdorff space.

Proof. If 4 is an ANR, then 4 is a compact Hausdorff space
by definition.

icm

Retraction Properties 105

By (3.4), 4 is homeomorphic to a closed neighborhood retract
A, of some Tychonoff cube 7. Let i(A)=A, where % is a homeo-
morphism, and let U be the open subset of 7 which retracts onto 4.
It is easy to show that any open subset of a Tychonoff cube is locally
contractile. Hence U is locally contractile ard by (8.1) 4, is locally
contractile.

Consider any peA, and any neighborkood ¥V of p. Let
h(p)=p, € A;. Since p, is an element of the cpen set K(V) and 4,
is locally contractile, there exist a neighborhood W of p, and
a map f: Wx(0,1)—~V) such that for w ¢ W, we have f(w,0)=w
and f{w,1)=g e ,(V). Now p « F"(W)CV, and »~(W) is open in 4.
We define a map F: A~ (W) x(0,1)—V by

F(m,i):h‘if(h(m),t) for s (W) and t €(0,1).
For & e h(W), we have

Pz, 0)=L"f(Mx),0)=F"h{z)=x
and
Flw,1)=k"f(h(w),1)=h""(g) e V.

(8.3) Corollary. Any ANR is locally connected.
(8.4) We now construct & compact, locally contractile, Hausdorff
space of dimension one, which is not an ANR.

Let X=(0,1) and ¥Y=(0,1) and let =X x Y. We topologize @
in the following manner. For a point (zy,y,) with 0<y, <1,
we define neighborhood to mean all points (@,y) such that
y,—e<y<y,+e where ¢ is any positive real number such that
y,—e=>0 and y,+e<<1. For a point (z;,1) a neighborhood consists
of all points (@) such that y>1—e where 0<e<1. The two
types of neighborhoods defined above we shall call linear neigh-
borhoods.

For a point (#,,0) where 0<2;,<1 a neighborhood consists
of all points (m,y) such that 0o, —e<@ <@+ e<1 and such that
a==2, and also all points (w,y) except for any clcsed set of points
(1,9) where 0<¥, <y <y;<1. Neighborhoods for the points (0,0)
and (1,0) are the same as the kind last defined except for being
one sided. The last two types of neighborhocds we shall call
rectangular neighborhoods.
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In virtue of the rectangular neighborhocds for points of the
form (x,0) and the compactness of the unit interval (0,1), it is clear
that @ is a compact Hausdorff space. Using the compactness of ¢
and a covering definition of dimension for normal Hausdorff spaces
in a recent paper by E. Hemmingsen [8, p. 496, definition 2.1],
it can be shown without difficulty that ¢ is of dimension one.
‘We shall now show that @ is locally contractile. Consider any
point (#,%,) such that 0. Any mneighborhood U of (m,y,) is
3 linear neighborhood and is contractile in itself in virtue of the
map f: U x(0,1)-T where

Floy,y,t) = (@, 1+ (1—1)y), for

Consider any point (#,,0) and any neighberhood V of (z,,0).
V .is a rectangular neighborhood and consists of all points (z,y)
such that g and 0<n—c<s<m+e<1l and also all points
(21,7) except for some closed set consisting of all points (zy,y) such
that 0 <y, <y <y, <<1. Delete from V the points (»,,9) for all ¥ such
that y, <y <1. The remainirg roirts of ¥ form a neighborhood V,
of (x;,0). We shall show V, is contractile in V. Define a map
91: V1 X (0,4) >V, by

(@,9,1) € U X (0,1).

Gul@, )= (2,(1—2t)y), for (m,y,1) ¢ Vyx(0,4),
and a map g,: ¥V, X (},1)=>V, by
Gy, 1) = ((2—1)m+ 2(1—1),0), for (@,y,1) VX (&1).
Define a map f: ¥, x(0,1)—>V, by

f(®,9,%) =q(®,9,1), for all ¢ such that 0<t<4,
1(@,y,1) = go(m,9,1), for all ¢ such that  $<t 1.

Clearly f is continucus since both V1><(0,;}) and VX (4,1)
are closed in their union ¥,x(0,1) and for a point

@9,4) e VaxX (0, )0V X (4,1) we have gy(,9,3) = (,0)= go(@, 7, 1)-
‘We observe that
f(m;y90)= (w!y)?

f(may71)= (“"110)'

and

Hence V, is contractile in itself and therefore in V.
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‘We shall now show that Q is not an ANR. Assume Qisan ANR.
In virtue of the linear neighborhoods for points of the form (z,y)
where y=0, clearly @ contains uncountably many disjoint open
subsets. By (3.4) we have h(Q)=@Q; where @, is a neighborhood
retract of some Tychonoff cube 7. Since ¥™': @, — @ is a map and
for a map the inverse of an open set is open, it is evident that *
@, contains uncountably many disjoint open- subsets. There exist
an open subset U of T and a retracting map 7 such that r: U— Q..
Clearly U contains uncountably many disjoint open subsets and hence:
50 does T because U is open in T. But this is a contradiction heca-
uge no Tychonoff cube can contain uncountably many disjoint open
subsets. Thus @ is not an ANR.

9. Further Results. Using (6.4) and the proof given by
H. Sammelson [9, p. 448] for separable metric spaces, we obtain
for NH spaces: )

(9.1) Foa’s Theorem, Let A be an ANR and let B be a defor-
mation retract of A, then there exisis a deformation mapping 4 X (0,1)
into A such that the points of B X (0,1) are fiwed.

‘We can link together the concepts of ANR set and AR set
by the

(9.2) Theorem. If A is an ANE and some element p of A is
a deformation retract of A, then A is an AR.

Proof. By (3.4) A4 is homeomorphic to a closed neighborhood
retract of some Tychonoff cube 7. We lose no generality by assu-
ming A is contained in*Z7. Since p is a deformation retract of 4,

" there exists a map f such that f: 4 x(0,1)—A4, f(a,1)=a for a ¢ 4,

and f(a,0)=7r(a) for @ e A where r is a retracting map defined
by r(4)=»p.

We define a map F such that #: (I'x0)U(4 x(0,1))—A4 by

F(x,0)=p, for wxel,
F(@,t) =f(x,t), for xeAd and %e(0,1).

F is continuous because both Tx0 and 4 X (0,1) are closed

in their union (7'x0)Y (4 X (0,1)), and for
(2,8) € (T'x0)N (4 x(0,1))=4 %0

we have f(z,t)=r(x)=p. Since 4 is an ANR, we can now apply
(6.4), and obtain an extension F’ of F over I'x (0,1) relative to A.
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We define a map G such that G: T—>A4 by

G(x)=F'(»,1), for ®eT.

Now @ retracts 7' onto A because for any a e 4 we have
Fa)=F"(a,1)=F(a,1) =f{a,1) = 0.
Hence by (3.6) 4 is an AR.
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What paths have length?
By
Karl Menger (Chicago).

In the classical theory, the length of the curve y=f(z) (a <z <b)
b
is determined by computing the integral f Vi57+(@) dz. Geometri-

cally, this means that in determining the laength of an arc we really
compute the area of a plane domain. The length of the circular
arc y=J1—a* (0<<w<Cb) is the area of the plane domain (0<e<d,
0<y<1/}'1-—w2). If the arc happens to be a quarter of a circle,
the domain is not even bounded.

In a series of previous papers?), the author has developed
a more geometric approach to the problem based on the definition
of the lergth of a path as the limit of the lengths of inseribed polygons
which get indefinitely dense in the path. This length was studied
in spaces of increasing generality. For instance, when applied to
vector spaces our results comprise not only Finsler spaces but
spaces with locally Minkowskian metries in which the indicatrices
(or unit spheres) are positive in some directions and negative or
zero in others. On each stage we formulated sufficient conditions

1) [1] Mathematische Annalen 103 (1930), especially pp. 492-501. —
[2] Fundamenta Mathematicae 25 (1935), p.441. — [3] Three notes in the
C. R. Paris 201 (1936), p. 705; 202 (1936), p. 1007; 202 (1936), p. 1648. — [4] Ergeb-
nisse eines mathematischen Kolloquiums 8 (1937), p. 1-87.— [5] Proc. Nat. Acad.
Sc., 23 (1937), p. 244, — [6] Ibid., 25 (1989), p. 474. — [7] Rice Institute Pamphlets
27 (1940), p. 1-40.— Cf. Pauc, Les méthodes directes en caloul des variations et en
gdoméirie différenticlle, Hermann, Paris 1941. — In [7], metric methods are also
used for the formulation of necessary and sufficient conditions for a line integral
to be independent of the path. We add a bibliography of more Tecent results
along these lines: Menger, Proc. Nat. Acad. Sc., 25 (1939), p. 621. — Fubini,
ibid., 26 (1940), p. 190. — Menger, ibid. 26 (1940), p. 660. — Artin, ibid.,
27 (1941), p. 489. — Menger, Reports of a Mathematical Colloquium, 2-nd ser.,
2 (1939), p. 45. — Milgram, ibid., 3 (1940), p. 28. — de Pazzi Rochfard,
ibid., 4 (1940), p. 6.
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