136 A. Bielecki.

Si. T'on avaib Bafa(z)<g(®), ot g(w)>0, il existerait évidemment
une suite décroissante d’intervalles fermés Jx contenus dans [0,1]
tels que ’ : :

k
f,,(w);B— dans &, pour k=1,2,..

k
En désignant par z, un point commun des intervalles &, on
aurait alors g(w,)>% pour k=1,2,..., ce qui est impossible. ’
Un exemple plus simple, mais moins naturel, fournit I’ensemble
des fonctions continues dans Pintervalle (0,1) sauf un nombre fini
de points au plus%). La suite

A p—

_ﬁm)
7
montre alors que la condition IT n'est pas remplie.

) Je dois cet exemple & M. Cz. Ryll-Nardzewski.
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On a characterization of the lattice of all ideals
of a Boolean ring’).

By

Leopoldo Nachbin (Rio de Janeiro).

Iun this note we shall characterize the ordered system of all
ideals of a Boolean ring. This question is related to the corresponding
problem for lattices which was previously considered by A. Ko-
matu and more recently by G. Birkhoff and O. Frink?).

A sup-lattice is an ordered set § such that &\ y has a meaning
for any two z,y € S. An ideal over § is a set ICS such that ef,
yel, o<y imply wel, and @,y I imply &\Vy eI. The set J(8)

“of all ideals over S ordered by set inclusion is a complete lattice.

The first and last elements of (S) are the empty set @ and 8. If
{I;} is a non-empty family of ideals over S, then /\aI4 is the set inter-

section and \/AIA is the set of all % ¢ 8 for which there exist a finite

non-empty family {A} and ;e I such that <\ Tz e 8, the
set I(w) of all y <8, y<a is called the principal ideal generated
by «. Denoting the set of all principal ideals by S*, we have a natural
isomorphism §->8* It is clear that Iz Vay)=I(z)VI(5,). If, in
addition, § is a lattice then I(my Awg)=X(,) N I(@,)-

Tf I is a complete lattice and »eL, then v is said o be compact
if, for any non-empty family {z}CL such that #<\/1;, there exists
a finite mon-empty subfamily {#2} such that <<\ Clearly
the first element of L is compact.

1) Presented to the American Mathematical Society, October 30, 1948 at

the New York City meeting.

2} A, Komatu, On a characterization of join homomorphic transformation-
tattice, Proc. Imp. Acad. Tokyo, vol. 19 (1943), pp. 119-124; &. Birkhoff and
0. Frink Jr., Representations of lattices by sets, Trans. Amer. Math. Soc. vol. 84

{1948), to appear.
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The principal ideals over 8 are characterized as the compact
elem n's of J(8) distinst from s first element. In fact, if xS,
1S 8), I@)< \/,I, then @ e \/;I;. Therefore there exist a, finite
non-empty family {%} and @ e I, such that o<\ ;. This implies
I(@)< /I, and thus I(z) is compact. It is clear that I(x) is non-
epty. Conversely let IeJ'8) be comrpact and non-empty. Since
I=\/1erI(%), the con pactress imrplies the existerce cf a firite non
empty-family {2} such that I=\/,I(2)=I(\/,2), and I is principal.

It is clear that S has a first elemint if and only if J(S) has at
least two elements and the set of all clemun’s of J(8) distinct from its
first element has @ first element; axr d that S has o last eloment if and
only if J3'8) has at least two elemenis and the last elemant of F(8) is
compact. A less obvious result is the followirg: § has « last element
if and only if J5(8) has at lcast two elements and every non-empty chain
of elem.nis of J(8) distinet from its last element has a supremaum
distinet from this last element. The half of the proof in which we
assume that § has a last element is clear as the last element of ()
is then con pact. To prove the other half, let 3'(8) be the set of all
ideals over § distinet from §: assume that J'(S) is non en pty,
ie. §1is non ewpty, and that every ron-ewpty chain in J(8) ax
a supremum in J'(8). Assume also that § has no last elerert. Then

8*CJ(8). From the fact that every firite ron-en pty subset of 8* -

1:315 a supremum in J(8), it follows that 8* has a supremum in
J'(8) %), but this is in possible since the supremum cf §* in () is S.
Ejmy elemint of J'8) is the supremum of all smaller compact
elem n's. In f.aet, every ideal over § either is en pty ard therefore
cowpact, or is the supremum of all smaller principal ideals.

3 If A is an ordered sef, the following properties are equivalent:

%)) gre‘rg n:n empty chain C(C4 has a supremum, .
C4 is'non empty and every fini 6 of X has
a supremum in 4, then X haz i supremuri inmfle O Y subect of & e
. It is clear that (b) - (a). To prove that (a) - (b), consider some X as stated
;;11.(;)1. Let ¥ be the set of all y ¢ A such that: 1) y\/o\/...\/ 2, has a meaning
for ti ;;1}.’1;7 ei, 2) every upper hound of .X is an upper bound of y. It is
Gear that C¥. Moreover évery non empty chain of ¥ has a supremum in Y.
Y Zorn’s theorem there exists some maximal m ¢ 7. For any 2e¢X we have
17;\.{222‘5 ¥, therefore x.<m and m is an upper bound of X. Since every upper bound
0; is also an upper bound of m, we conclude that m is the supremum of X.
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8 is @ latitce if and only if the infimum of two compact elements
of J'8) distinct from dts first element is compact and - disiinct from
this first element. In fact, if I,,T, € 3(8) are con pact ard non-empty,
then I,=I(z,), I,=I(m,) where #,5,¢ 8. If § is a lattice we have
INAI=I(m \»y), i. e. I;A\I, is compact and non-empty. Con-
versely, if for every ;,m,eS there exists some xS such that
I(z)AI(w5)=I(w) then w=uam,/\z, and therefore § is a lattice.

If 8 is a lattice, then S s distributive if and only if J(8) is
a distribulive latiice. Assume S distributive. Let I,I1,,1,¢J(S) and

-consider some % e INA(I,VI,). Then wel and there exist eI,

@, € I, such that &#<»Va, Therefore a=xA (@, Vo) =(o Awy)V{z Asy).
But #Ax e INI, aAwyeIAI, Therefore me(INL)V (IAI,) and
we have proved that S 8) is a distributive lattice (the same reasoning
shows that the known icfinite distributive law IANli=\/iIAIx
ig also valid). Conversely, if () is a distributive lattice, we have
I(@) A {T(w,) VI {w)} = {T(@) A L)}V {L(w) A L{ap)} from which we may
jr.fer that S is distributive too. .

S, 8, beirg two sup-lattices, it is clear that every isomorphism

betwecn Si, 835 has a unique extemsion 1o an isomorphism between

(8y), §.8s). Conversely evcry dsomorphism betwecn 3(8y), J(S,) is
the extcnsion of a unique isomorphism betwecn 8%, 8% because every
compact elemert is mzpped irto a compact element. Therefore,
8, and S, are isomorphic if and only if 5(8,) and S5(Sy) are isomorphic.
Moreover the group of isomorphisms of S and the group of dsomor-
phisms of S§(8) are isomorphic.

Theorem 1. A mon-cmpty lattice I is isomorphic to 3(8) for
some sup-lattice S if and only if: .

(1) L is complele, .

(2) every element in L is the supremun of all smaller compact
elemcnts. .

In this case S is essentially unique. S has @ first element if and
only if L has at lcast two elements and the set of all elements of L d{st'i n(:‘f,_
from its first element has @ first element. 8 has a last tlcm:mt if and
only if I has at lcast two elements and the last eloment of L is compacts.
it amounts 1o the same 1o say that L has at least two elemenis and every
non-empty chain of elements of L distinet from its Za§t e?cmmt has
o supremum distinet from this last element. 8 is a lattice if m'zd m.zly
if the infimum of lwo compact elemenls of L disting from its first
element is compact and distinet from this first element.
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Proof. The necessity of the conditions is already clear. To
prove the sufficiency, assume that conditions (1) and (2) are satisfied.
Let § be the set of all compact elements of L distinet from its first
element. Since the case where § is empty is trivial, we shall assume
that 8 is non-empty. If #, y € § then clearly xVy ¢ 8: therefore &
is a sup-lattice. For any I €S(8) let o(I) be defined as \/pest if I is
non empty, and as the first element of I otherwise. For any v ¢ I,
let () be defined as the set of all y €8, y<w. It is clear that ¢(I) ¢ L
and y(#) e I(S). We have o{yp(z)}==. This is clear if # is the firgt

-element of L; otherwise it follows from the fact that #, being the

supremum of all smaller compact elements, must also be the supre-
mum of all smaller elements in §. We also have p{p(I)}=I. It is
clear that I<<y{p(I)}; on the other hand, if # ey{p(I)}, we have
a<p(l)=\ert and by the compactness of » there exist #,...,¢, ¢
such that #<#V..Vi, which implies # eI. Since I,<<I, implies
¢(L) <g(Lp) and @ <m, implies yp(z;) <p(xy), we have proved that
3(8) and L are isomorphic. The remaining of the theorem follows
from the previous results.

It is convenient to notice that several authors make use only
of the proper ideals, i. e. the non-empty idéals which at the same
time are strict subsets of S. The corresponding theorem for these
proper ideals is obtained from theorem 1 in an obvious way.

An element weL of a lattice L is said to be prime in L if
@y ® e Ly & A, <o imply either o, <z or 2y, The element o e L
is called inf-irreducible in I if @y,2 € L, mAwy=x imply either
;=2 Or #y=x. Clearly every prime element is inf-irreducible. If L
is distributive, every inf-irreducible element ig prime; in fact,
-t A, imply =5V (@ A)=(8V) A (#Va,): therefore either
Ve =g, i. e. 2, e, or oVa,=ug, i. e. z,<a.

) If § is a lattice, then T eS(S) is called a prime ideal if @,y eS8 —1I
1mp1y oAy e8—1I. An ideal T € 3(8) is prime if and only if I is a
prime element of J(8). In fact, let I € J(8) be a prime ideal and
}[tif; engS)ﬁl)):r:ue(gg:]:w ?/\%gI. Assume that- I, <<I,I,<I are
whie’h i.s i‘mpossiblé ‘Cvonl . 11- ’jf% ?Iz _.I' E‘[‘hin Gy e LA L—T
then I(@)<I, I(y)<I a;eﬂiis? thlellsz))imz 1?/:5}3) Ef? wy <81,
false, i.e. 2 Ay e §—]. ) o W)=IaAy<T is
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Theorem 2. A non empty laitice L is isomorphic to the lattice
J(R) of dll ideals of some Boolean ring R4) if and only if:

(1) L is complete,

(2) every element in L is the supremum of all smaller compact
elements,

(3) the infimum of twe compact elements is compact,

(4) L is a distributive laitice,

(6) every inf-irrcducible element in L distinet from its last element
is a dual atom ®). .

Then B is essentially unigue. B has a unity if and only if the
following equivalent conditions are satisficd:

(6) the last element of L is compact,

(6') every mon empty chain of elements of L distinct from its last
element has a supremum distinet from this last element.

Proof. We have to prove only the sufficiency. By the preceding
theorem L is isomorphic to the set J'(R) of all non empty ideals
of a non empty distributive lattice R with first element 0. We hav-
to prove that the segment [0,2] is & Boolean algebra for any = ¢ Re
Let I be a prime proper ideal over [0,2]. By a known result ) there.
exists a prime proper ideal J over R such that JA[0,2]=I. Since J
is a inf-irreducible element of J'(R), it follows that J is a dual atom
of J'(R), i. e. J is a maximal proper ideal over R. By a known result )
1 is a maximal proper ideal over [0,2]. Thus every prime proper ideal
over [0,2] is a maximal proper ideal over [0,z]. From this we may
conclude that [0,] is a Boolean algebra 8) and therefore R is a Boolean
ring. The statements concerning the uniqueness of R and the exi--
stence of unity are already clear.

4) See M. H. Stone, The theory of representation of Booleun algebras, Trans.
Amer. Math. Soc., vol. 40 (1938), pp. 37-111; G. Birkhoff, Laitice theory, Amer.
Math. Soc. Coll. Publ., vol. 25 (1940), New York. It must be noticed that in the
ring theory we do not include the empty set among the ring ideals.

5) I. e. an element covered by the last element.

) If A is a sublattice of the distributive lattice B, an ideal I over 4 is
prime if and only if there exists a prime ideal J over B such that JNAd=1.

7) If A is an ideal over the distributive lattice B, J is a dual atom of §(B)
and J)A<A then J 4 is a dual atom of §(4).

8) See Une propridié caractéristique des algébres booléiennes, Portugaliae
Math., vol. § (1947), pp. 115-118; A. Monteiro, Sur UArithmétique des filires
premders, Comptes Rendus Paris, t. 225 (1947), pp. 846-848,
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The lattice of all open sets of a Hausdortf gpace satisfies con-
ditions (1),...,(8) of the preceding theorem if and only if the space
is locally compact and totally-disconnected. Therefore (by virtue
of Stone's. theorem on the topological repregentation of Boolean
rings) ?) theorem 2 gives also the characterization of thg lattice of
all open sets of a locally compact totally-disconnected space. The
compact ease is obtained by adding condition (6) or (6').

%) See M. H. Stone, Applications of the theory of Booleun rings to general
dopology, Trans. Amer. Math. Soc., vol, 41 (1937), pp. 375-481.

National Faculty of Philosophy
University of Brazil, Rio de Janeiro.
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An undecidable arithmetical statement.
By

Andrzej Mostowski (Warszawa).

The purpose of this paper is to give an alternative proof of
the existence of formally undecidable sentences. Instead of the
arithmetization of syntax and the diagonmal process which were
used by Godel in his famous paper of 19311), I shall make use of
some simple set-theoretic lemmas and of the Skolem-Liwenheim
theorem.

My result is in some respect stronger than that of Godel:
The sentence corstructed by his method ceases to be undecidable’
if one enlarges the underlyirg logic by a new rule of proof, in the
gimplest case by the rule of infisite induction 2). The undecidability
of the gentence to be constructed here is, on the contrary, inde-
pendent of whether we accept the absolute notion of integers or
the relative (axiomatic) one 2*).

On the other hand the proof of undecidability to be given
below is unlike that of Godel non-finitary. It rests on the axioms
of the Zermelo-Fraenkel set-theory including the axiom of
choice and an additional axiom ernsurirg the existence of at least
one inaccessible aleph ). Finally the method of Godel gives un-
decidable sentences expressed in terms of the arithmetic of natural
numbers whereas we shall obtain here a sentence from the arith-
wmetic of reals.

1) Gidel (4], Numbers in brackets refer to the bibliography on p. 163.

?) Tarski [12].- ’

1) Other such sentences have heen constructed by
Tarski [15]. My method is different from theirs. )

3) Tarski[14]. Using Tarski’s terminology we would have to say that Rei's
weakly inaccessible.

Rossér [10] and
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