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" Soient:

Tg(w) =m0 ug(2)+ - vo()
(21) ]ll(‘r)—‘m[ul +a0]+][’vl,( + bo]

Fa(@)=m[1a(@)+ ag+ +an—1]+7f1n 03\—{-77 + =
Il vient en vertu de (19) et (20):

{22) hn () = ho(2),

d’olt 1a formule (5) en raison de (18) et (21). I1 existe done une

fonetion h e (6% satisfaisant & la condition (6).
Nous allons démontrer que fm-g/~1, & savoir que

(28) f7()- (@)= ik,
Posons # € By Il vient d’aprés (17) et (21):
jm(m) . g]’ (0.’,‘)"—" gmilmup()+iop(x)] — e‘Znsz(x)j

d’ott Pégalité (23) en vertu de (6).
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On derivates of discontinuous functions.
By
W. Sierpifiski and A. N. Singh (Lucknow, India).

Stefan Mazurkiewicz has shown that there exists o fune-
tion f(z) continuous on the right (therefore of class 1) and such that
everywhere fi.(x)=-oco?). The object of this note is fo prove the
following:

Theorem I, There exists a function f(z) continuous on the
right, but discontinuous af an cverywhere dense set such that every-
where f1.(x)=0.

Proof. In order to prove the above we construct a simple
example of a monotone function f(x) having the propertiex stated
in theorem L.

Let @ in (0,1) be expressed in the scale of 2 as

(1) p=F+ Tt

with infinitely n:any a,=0. 'l‘lns means that whenever » has two
representations :

() o= S (am=0)
. ‘ 0, 1 1
(b) =2+ 2t b T g T

we choose the form (a), i. e. the ending tepresentation. There ig,
therefore, always an infinite number of zeros in the represenbation

~of @, which is unique in the form (1).

1) Seo 8. Mazurkiewics, Fund. Math, 23 (1984), pp. 9-10 and A. N. Bingh
Fund. Math. 83 (19405), pp. 106-107.
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We now define the function f(«) for # in (0,1) expressed in the
form (1) as

fo) =242+ ot

sn

Evidently the function f(z) is for 0<o<1 non diminighing.

To prove that fi(z)=0 for 0Kz <1 it would be therefore sufficient
to show that for any number # such that 0<{# <1 there is an infinite
series of numbers xy,%,,... such that

T<®,<l, lim z,=¢ and Jim 1@ —1(2) =0.
n=co

n=oo Ln—T
Let then (1) be the dyadic development of # containing infinitely

many figures 0. Let n» be a given natural number. Then there is
a natural number %, such that anys,=0.

Putting @,=0-4+— o +k we ghall obtain of course @ <m,<1

and lim z,=—2z,

n=o0

One can also see eagily from the definition of the function f(z)

that f(zn)=F(2)+—r pr +k ——; one has then

fle—fla) _ (g)nw
Ln— 3
hence

i flom —1@)

o= =0 gq.e. d.

The formula f,(2)=0 for 0<Lo<1 is therefore established.

For # defined by the development (a), where m=n, one has
of course for k=1,2,.

1 [/ S

£n+k + +A"—1 +a ﬁn+4n—1+ﬁn+2 +. + n+k’

hence

' _a
fo=2 4244 2,

[ —_—

a
o) =2+ 2+ = e S "
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Having a,==0, therefore a,=1:
1\ 1 1 1 1
f(m)—f(m W)..;n-—w AR S
1 1 1 1
-—5-,,[1—-2(1-—:;,;)]>§73—n for k=1,2,..,

R . 1 .
and being 113; (”“m)‘_‘w this proves that the fraction f(z) is

discontinuous at the point @. It is therefore discontinuous at any
point #, 0<x<1 of which abscissa is a finite dyadic fractlon. then
at a set of points dense in the interval (0,1).

The theorem 1 is therefore proved.

The question whether there can exist a function discontinuous
at an everywhere dense set such that ils right (left) hand differential
coefficient i3 zero everywhere is answered by the following

Theorem II. If f(x) has a finite right (left) hand differential-
coefficient everywhere, its discontinuities (if any ) form a non-dense set..

Proof. Suppose that f(») has in (a,b) an everywhere dense
set of discontinuities. There exists then a point b, of discontinuity
such that the oscillation of f(2) at by, w(b) >0, and a<b,<b. Then,
there exists a point a, such that a<a,<b, and by—e;<min [1, w(by)].
The points of discontinuity being everywhere dense, there exists
a point b, in the interval (ay,b,) such that w(b,) >0 and a point a,
such that a, < a,<b,, and by—a,<min [, §,@(b,)]. Reasoning in: this
manner we get an infinite set of intervals (ax bn) (n=1,2,...) such
that:

i) (@n,bn) is contained in (@p—1,bn-1),
(ii) w(bn) >0,

N

(1ii) bp— 0y < Min b;, ﬁw(b")]’

(iv) Iim a, = lim b,=a, (say).

n==00 n=c0
It follows from the definition of w(b,) that there exﬁ twe’
points &, and «) in the interior of the interval (@g,dn-+btn—ar)
such that
{1) F(@a) —F{@n) > F o (bn)-
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Having
U< < by < bp (Dn—an)
and ‘
On <Ly <tn <bp+ (bn—an),
we have:

0<tn—2o<2(bp—an),
0 < 0p—2y< 2 (bn—an),

lim @, = lim a,=2,.

n=00 n=00

Now, >y, Tn> %, and f4.(v) exists and is finite by hypo-
thesis, therefore there is a number 4 such that

(fora) —f(a20) <A and M <4 for n=1,2,3,..,

Tn— &y n—%g
‘whence .
[F(@n) —1 ()| < A(@n—20) < 24 (bp—ar)
and
' V(m;t)_f(mo)l< 2A(bn—ttn).
But
| ba— < 0 (B,
hence

\f @) —F (@] <44 (by—az) <2200

- Using (1) we have
84
w(b,,)<7 o(bs), and w(b,) >0,

therefore 84 >n (n=1,2,8,...), which is impossible.

The function f(z) canvot, therefore, have an everywhere dense
seb of points of discontinnity and theorem II is thus proved.

It may be noted that the existence of /() as a finite number
involves the continuity of f(#) on the right, so that the points of
discontinuity of f(x) are enumerable.

) It is to be mentioned that a function of a real variable f()
such that for any real # one has f. /)= 0, and, more generally, such

that for any real # one has f\(x)4—oco is a function of a class <2
of Baire. :
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Indeed, one can see easily that if for a function f(z) of a real
variable one has fi.(#)3=-—co, then the function f(») is semicon-
tinuous lower at the right hand at the point m, i. e., for any >0
there is a 6>0 such that f(#,+h)>f(xg)—s for 0<h<s. On the
other side, one can easily show that every fanction of a real variable
everywhere semicontinuous lower at the right hand is of a class <2
of Baire.

Hence, there is a function f(z) of the class 2 of Baire such
that f(2)=10 for every real a.

Indeed, let P be a perfect non dense set of Cantor, and let H be
the set of all left extremities of intervals contiguous to P. Putting
{tor 0z <) f(#)=0 for # « P—H and f(z)=1 for any other # such
that 0<{z<1 one can easily see that (for 0w <1) fi(2)=0. The
function f(z) is therefore of a class <{2. Hence, the set H being dense
in the perfect set P, the function f(z) is everywhere discontinuous
at the get Pj; hence, according to the well known theorem of Baire
the function cannot be of a class <1; it is therefore of the class 2.
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