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2. Quant & la notation, le symbole H] est entendu par l'uufeur au sens de
1a Logique: powr tout j=1,2,.. = .

On prouve facilement que la- convergence dans l'espace métrique définie
au n° 10 est équivalente dans ’espace L (n® 16) 4 la convergence asymptotique,
ot que Li=1L.

3. Il est & remarquer que la condition (A,) formulée déja par Daniell
Jans un Mémoire peu connu ?) avait été ensuite souvent omise?), ce qui n’était
pas juste. Mazurkiewicz, auquel ledit travail était problement inconnu, a intro-
duit Jui-méme cette condition et prouvé que la non-décroissance des distribu-
{rices, appliquée parfois au lien de (A,), n’est pas suffisante.

4. L’interprétation de la notion de EV.A au n®16 peut &tre généralisée:
au liew de la mesure de Lebesgue dans intervalle 0<z<1, on peut employér
une mesure abstraite normée, o-additive. De plus, il résulte du théoréme de Da-
niell-Kolmogoroff*) que chaque BEV.A peut &tre interpreté de cette manidre.
Ceci permet de formuler le résultat principal de ce travail comme un théoréme
concernant les classes de fonetions mesurables par rapport & une mesure. abstraite,
Ceci permet aussi de parvenir au résultat de Mazurkiewicz sur une autre voie,
4 savoir 4 l’aide du théoréme d’aprés tequel la mesure de Lebesgue est, dans un
sens, universelle pour toutes les mesures séparables 5). J'aborderai ce sujet ailleurs.

11 est cependant & remarquer que, pour les probabilistes, les distributrices
des variables sont préférables aux variables mémes ) et lo jeu de pile et face
est préférable & P'espace des fonetions mesurables. Sous cet aspect ’énoncé de

Mazurkiewicz semble &tre particulitrement réussi.
E. M.

2) P.' J. Daniell, Inlegrals in an infinite number of dimensioms, Annals
of Math. (2), 20 (1918-9), p. 281-8, et Funclions of limited variation in an infi-
nite number of dimensions, Annals of Math. (2), 21 (1919-20), p. 30-38.

3) Cette condition ne figure ni dans le livre de M. Kolmogoroff, cité
<i-dessus (voir en particulier p. 18), ni dans Random variables and probability
distributions de M. H. Cramér (Cambridge 1987). On la trouve dans le livre plus
récent de M. Cramér: Mathematical methods of statistics (Princeton 1946), p. 79.

4) Kolmogoroff, 1. c., p. 27.

5) Cf. p. ex. la communication de-E. Marczewski, Sur P’isomorphie des
wmesures séparables, Colloquium Mathematicum 1 (1947), P. 39-40 et les travaux
y cités.

8) Voir p. ex. P. Lévy, Théorie de Paddition de variables alédatoires, Pan~
Tis 1937, p. XVI et J. L. Doob, Probability in function space, Bull. Amer. Math,
Soc. 53 (1947), p. 15-30, en particulier p. 15.
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Complementary domains of continuous curves ).
By
R. H. Bing (Madison, Wisc., U.S.A).

1. Introduction. Suppose that space is metric, eompact
connected, and locally connected. It is known that each pair of
points can he joined by an arc. If the space is locally topologically
equivalent to a subset of the plane, then each complementary
domain of this arc has property 8. In this paper we show that the
arc may be 50 chosen that its complementary domains have property & »
even if the space is not locally planar.

Much of this paper is devoted to the development of theorems
regardirg partitionirgs. The results regardirg the complements of
continuous curves are applications of these results. Although finite
coverings by open sets could be used to prove these results, once
the theorems regarding partitionirgs are demonstrated, partitionings
seem to be a more efficient method of accomplishing them.#lt is
hoped that partitionings will be useful in other connections. As
pointed out in sections 4 and 5, problems handled by other methods
can sometimes be treated effectively by using partitionings. In fact,
partitionings provided a means for showing [2,3] that a compact
‘continuous curve (locally connected continuum) can be convexified.
The study of partitionings.throws light on the structure of con-
tinuous curves and is of interest aside from its applications.

We shall use the following definitions.

Property S. A set M has property S if for each positive
number e, M is the sum of a finite number of connected subsets
sach of diameter less than e

Uniformly locally connected. A set M is uniformly locally
connected if for each positive number e there is a positive number (<)
such that each pair of points of M at a distance apart of less than d(e)

: 'l)elong to a connected subset of M of diameter less than e.

1) Pw~euted 40 the American Mathematical Society, November 26, 1948.


GUEST


304 R. H. Bing:

Distance. We denote the distance between two points p,q
by D(p,q). If p ard g belcng to a conrected set M, E(M;p,q) de-
notes tke greatest lower bound of the diameters of all connected
subsets of M containing p-+q. We note that ¥ is a metric for M
that preserves its topolcgy if M is locally connected. Also, M is
aniforncly locally conrected under & it M has property S under D.

Partitioning. A finite collection G of mwutually exclusive
connected open subsets of M is a partitioning of M if the sum of the
elements of G is decse in M. If each elemernt of G is of diameter loss
than e, G is an e-partiléoning. If each element of @ has property §,
it is an S partitioning. (Moise used the expression grille-decompo-
sition irstead of partitionirg. See [2,3]).

Brick Partitioning. An 8 partitionicg G of M is a brick
portitioning if:

(a) each domain containing a point of M which is a limib
voint of each of two elerrerts of @ also contains a point of M which
is & limit point of each of these same two elements of @ but of ne
other element of @,

(b) each element of @ ig uniformly locally connected under
E(M;,y),

(¢) each bourdary point in M of an element of @ is a boundary
point of another element of G.

Refipem ent. A dollection H is a refinement of the collection ¢
if each element of H is a subset of an element of G.

Partition Chain. A partition chain is a finite collection
CO={ey,0y,...,¢n] of connected ard uniforrly locally connected domaing
such that:

(a) & intersects & if and only if {=j—1, 4, or j+1,

(b) ¢;is regular, that is ¢;= §;—F\5) [F(4) denotes the bound-
ary of 4], .

(€) &-8yq contains a point which is not a lLimit point of 70
(C* denotes tLe sum of the elements of ().

If the poict p belongs to one end element of ¢ and the point ¢
to the otkLer, € is called a chain from 2 to ¢. If each element of ¢
i of diameter less than ¢, C is an e-partition chain.

iom

Circular Partition Chain. The definition is the same ag .

the above except that in (a) we use the convention that n-41==1.

Complemeniary domains of continuous curves 305

Run Straight Through. A partition chain F is said to
run straight through the partition chain ¢ if F is a refinement of ¢
and F is such that if two elements of it are subsets of the same
element of C, then each element of E between them is a subset of
this same element of C.

2. Brick Partitioning. The elements of a brick partitioning ¢
of space are packed in something like brick; that is, for each pair
of elements of @ whose boundaries intersect each other, there is
a point on their common boundary that is not a boundary point
of any other element of G. An advantage of such a partitioning
is that two adjacent elements of ¢ may be consolidated into one
clement so that the resulting partitioning is also a brick partitioning.

In proving the theorems of this section, we make nse of Theo-
rem 4 of Partitioning a Set [2] which states that for each positive
number e any set with property S can bhe 8 e-partitioned.

Theovem 1. Suppose M is a connected domain with property S
and B is a subset of the boundary of M. Then for each positive
number e there is an S partitioning [go, gy, gn) 0f M such that the
diameter of g; (i=1,2,...,9) 1is less than e G, intersects Mg, and
EB(M 4 B;B,¢;) >0, the inequality holding if and only if j=0.

Proof. Let H be an S e-partitioning of M and T be a2 con-

~ nected subset of M such that T intersects each element of H but

E(M--B;B,T)>0. For each element h; of H, let H; be an S parti-
tioning of %; such that each element of Hy is of diameter less than
1B(M+ B;B,T). There is a finite collection T; of connected subsets
of Ry sueh that: ‘

(a) each pair of elenients of W, are at a positive distance from
cach other under E(h)),

(b) each element of H; that is at a distance of zero from B 17
under E(M-B) is a subset of an element of T;,

(¢) no element of W;is at a zero distance from both B and T
under E(M-+B), .

(d) no collection having fewer elements than W, satisfies eon-
dittons (a),{b), and (c).

By Theorem 3 of, Partitioning « Set [2], there is an § parti-
tioning Hj of k; such that each element of Hj contains exactly one
element of W,. If H; denotes the collection of those elemeunts of H;
which are at a zero distance from B under E(M--B), then the

Fondamenta Mathematicae. T. XXXVI. 24
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n
elements of > Hj arve the elements ¢i,0s . Jn while g0=M—iZ;g,.
Now g, is connected because it contains T and each of its components
intersects T'. Also, 7, intersects M -§; or else the condition (d) above

was not satisfied by some Wj.

Theorem 2. Suppose:

(a) R is a conmected domain with property S, .

(b) By BgyeersBa 48 @ collection of mutually exclusive closed
subsets of the boundary of R,

() ¢ 45 @ positive number such that for each point p of R there
is an arc of diameter less than e in R--B; from p to B;.

Then for each positive mumber & there is an S partttioning
oy 911> J1g +++s Jangs Y2155 Iy of B such that

(a) the diameter of gy s less than o,

(b) g, intersects B-gy,

(c) gy intersects By but g, does not, ' .

(4) for each point p of g, there is an arc of diameter less than
e+ 0 from p to Byin gyt Fut Jot ot T

Proof. Suppose that 26 is less than the distance between two
elements of By, B,,...; Ba. Leb:

(a) [hyyFigye-rs hs] be an § 8-partitioning of E,

(b) p, be a point of Ay,

(¢) T be a dendron in R containing ¥'p,,

(d) aybean arc of diameter less than ¢in B+ Bl. from p , to B;,

{e) 6 be a positive number less than either & or min D(T'+ ey B)
{i=j). If h has a point of B, on its boundary, we let. hz,. 0, and Ak B;
be the M, ¢, and B of Theorem 1 and obtain a partitioning go, g1, .., gn
satigfying the conditions of that theorem. Then gi,dy-..., gn are
elements of gu,gn,..., 0, Similarly, all elements gy are obtained
and g, is defined to be R—R->'3 fn-

Theorem 3. Suppose R is a connected set with property 8 while
R, and R, are two connected subsets of E such that B(E;R,,R,)>0.
There is & continuous transformation I of R into & straight line
interval I such that T(R,) and T(R,) are the ends of I while for each
conmected subset X of I containing an end point of I, T-1(X) is con-
nected and has property S 2).

2) Using results obtained in the proof of Theorem 5, we find that T' can
be chosen so that each T—L(X) is uniformly locally connected under E(R).

=m
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Proof. For convenience we suppose that R is closed [Lemma 1
of 2]. Let Ri and R; be mutually exclusive closed subcontinua of R
auch that R; contains R; and R—(Ri+ Fs) has property 8. Letting 36
be the distance from Rj to R; and applying Theorem 1 to each com-
ponent of R—(R;+Rj), we find that there is an S partitioning
{9192y -+1g2] of R such that (a) g, contains R, (b) g, contains R3,
(¢) D(gy,¢) >0, and (d) §: (¢=3,4,...,n) intersects both F, and g,
‘We define T(g,) and T(7,) to be 0 and 1 respectively.

Each component C; of R—(F,+§,) has property § and by
Theorem 1 there is an § partitioning gy, u,...,Gm of C; such that
the diameter of gy (¢=1,2,...,n) is less than either 1/2 or 1D(g,, ),
gp intersects gy, and D(§y, §,+ J.) >0, the inequality holding if
and only if 4=0. We define T3 gp) to be 1/2.

This process is continued as follows: Suppose that T(X,) and
T(X,) have been defined to be p/2¢ and (p--1)/2¢ and let ¢, be
a component of B—(X,+ X,) whose closure intersects both X, and X,.
By Theorem 2 there is an § partitioning hs, b, cers RatmysyBanty ooey ronmg
of 0, such that:

(a) the diameter of hyy is less than either D(X,,X,)/3 or 1/2¢H,

(b) Fy intersects gy,

(¢) sy intersects X, bub kg does not,

(d) for each point 7 of Ay there is an arc of diameter less than
1/2941/2¢ from 7 to Xy in o+ Rant e Fosimg

Then (] Fep)=(2p -+ 1)/2¢+1.

The continuation of this process defines 7 except on a subseb
of B which is not dense in any open subset of E. The transformation
is defined by continuity on this set. It may be shown to sabisfy
the conditions mentioned in the statement of Theorem 3.

Theorem 4, A necessary and, sufficient condition that & domain D
with property 8 not be wuniformly locally commected is that there be a
point @ of D and an arc pug in D4z such that E(D;py—un,39—x) >0.

Theorem 5. Suppose B is a connected and wniformly locally
connected domain, Ry and R, are two conmected subsets of B which
are at o positive distance from cach other, and By, B,,...,B, s a col-
lection of subsets of the boundary of R. Then there is a brick parti-
tioning [hy, hy] of B such that by contains R; and each domain containing
a point Bi-Fy (i=1,2,...,n; j=1,2) also contains a point of Bph;
which is not a limit point Ry (E=j).

20%
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Proof. By Theorem 3 there is an uncountable collection W~
of § partitionings of B such that:

(a) each element of W contains exactly two elements, onc
of which containg R, and the other which contains R,

{b) R is a subset of the sum of these two elements plus their
common boundary,

(c) for each pair of elements H, K of W there is an element /.
of H and element & of K such that E(R;h,k)>0.

Tsing Theorem 4, we find that if Wg is the set of all elements
[Py, Bo] of W such that not both k, and h, are uniformly locally con-
nected, W is at most countable. Also, W; is not uncountable if
it is the set of all elements [hy,h,] of W such that there is a point
of B;-%,-%, which is not a limit point of both By (B,—hy %) and
B;-(hy—ny - ky). Bach element of the uncountable ecollection
W—(Wo+Wi+....+W;) satisties the conditions of the theorem.

Each of the following three theorems follows from repeated
applications of the theorem preceding it.

Theorem 6. Suppose R is a connected and uniformly locelly
connected domain, W is a finite collection of subsets of B such that
the distance between two elements of W is positive, and By, By,...,B,
18 @ collection of subseis of the boundary of B. Then there is o brick
partitioning G=[gy,gay ..., Iml 0f B such that,

(a) no element of G intersects two elements of W,

(b) each domain coniaining & point of gy By (j=1,2,..,m;
k=1,2,...,n) also contains a point of By which is a limit point of g;
but of no other element of @,

(e) each domain containing o point of gi-gr (,E=1,2,..,m)
contains & point of R which is a limit point of both ¢; and ¢y but of
no other element of G-

Theorem 7. Suppose R is a connected and uniformly locally con-
nected domain and By, B,,...,Br is @ collection of subsets of the boundary
of R. Then for each positive number e theve is a brick e-partitioning (i
of R satisfying conditions (b) end (¢) of Theorem 6.

Theorem 8, If M is a set with property S, then there is a so-
quence G, Gy, ... such that Gy is a brick (1/i)-partitioning.of M end Gy
is a refinement of Gy. .

I3
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3. Partition Chains, The first theorem of this section is
an extension of the lemma used extensively in The Kline Sphere
Characterization Problem [1] and may be proved by the methods
used there.

‘We say that M disrupts X from ¥ in R if there is an are from X
to ¥ in B but each stch arc contains a point of M. An are minus
its end points is called an open are.

Theorem 9. Suppose the boundary of the connected domain B
is the sum of the mutually emclusive sels M, N, and E, cach of which -
is accessible from R, and U is a comnected subdomain of R such
that no pair of poinis of R disrupts U from F(R) in E and no
point of B disrupts U from either M+E in R-+-M-LFE or N--E in
B4-N+E. Then there are open ares (o) and (B) in R such that a
inlerscels both M and N, § intersects both U and B, but a does not
intersect f.

Theorem 10. Suppose C=[¢y,0y,...,¢o] is @ partition chain
fromn p 1o g, B is a closed subsct of OF, and « is an are from p to g in
OF—[F(C*)+B] such that o & Gy (i=1,2,...,n—1) is @& point.
Then there is o partition chain K=[k,kyy...,k,] running straight
through C from p to g and such that B does not intersect K*
but each component of &—Fk (i=1,2,...,n) has a limit point in B
?j (’1#7{1.

Proof. Let ¢ be a brick partitioning of &*—F(C*) such that ¢
is a refinement of ¢ and each element of G is of diameter less than
D(a, B)/3. Denote by k; the maximal connected domain in ¢; which
contains - ¢ and is such that % is the sum of the closures of elements
of G which do not have a limit point in B. Then K=[k;,%ks...,%n]
is the required chain.

Theorem 11, Suppose that in addition to the hypotheses of
Theorem 9, it is given that [gy,9.] %5 a brick partitioning of R such
that M does not intersect g, and N does not intersect g,. Then there

“are ares o and f sotisfying the conditions of Theorem 9 and such that

a-§,-§, 18 @ point.

Proof. Using Theorem 9, we find that there are open arcs (a)
and (f) in R such that o intersects both I and N but does not inter-
sect f, a-g,-, is a point, # intersects E, and f- ¥ intersects both
g, and §,. (If §; did not intersect E, in applying Theorem 9 we would
let g; be U of that theorem). Since we find from the method used
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in Theorem 10 that E may be replaced by a set containing f- &,
there is no loss of generality in supposing that both § and g, inter-
sect F. Hence, we suppose this.

For convenience we suppose that U intersects g,. Let (cb)
be an open arc in g, from a point ¢ of U to E. For each set 4 denote
by W(4) the set of all points p of R such that there is an open arc (Bpy
from p to % in E and an open arc (ap) from M to N in R such that
ap i+ Js i3 & point and e, does not intersect f,+A4A. Assume that
W(E) does not intersect U and let » be the nearest point of the

“closure of W(E)-cb, to ¢ in the order from ¢ to b, on cb,.

Now r does not disrupt E from U in R+ H or else, by using
the fact that » doed not disrupt U from N+E in R4+N--F or U
from M+ E in R+M+ B, it could be shown that there is an open
arc (y) from M to ¥ in R such that p.§,-§, is a point and y does
not intersect r¥; of ¢b;. But then » would not be the nearest point
of the closure of W(E)-¢b, to ¢ on ¢b,.

There is an open arc (cby) in B—r from ¢ to a point of & such
that either (¢b,) is a subset of g, or §-§,-(ch,) is a point while both
g1-¢b, and gp-ch, are connected. For convenience we suppose thab
cb,-¢b, 18 an arc om.

By using the methods of the lemma in The Kline Sphere Cha-
racterization Problem [1], it may be found that there are:

(a) an arc pag such that pe is a subset of wb,, #q is a subset
of wby, and p is a point of g, if @b, W(H) intersects gy; '

(b) an open arc (mn) in R from a point m of M to a point %
of N such that mn-g,-§, is a point and mn contains pag;

(c) an open are (pb;) in E from p to B such that (pb,) does
not intersect mn;

(d) an open are (gby) in R from g to E such that this open
are does not intersect mn;

(e) an open arc (st) in .R_from a point of s of (paqg) to a
point » of M+4-N+F such that st-prg=s and s is not a point of

Wi(pby) - (gb)].

For convenience suppose that p precedes ¢ on #m# in the order

from m to n. Let v be the first point of
(M—+mp)+ (N4 qn)+(E+ pby+ gb,)

on st in the order from ¢ to &. Now » is not a point of B4+ by gby or

else s is a point of W[(pb,)-(pb,)]. Also, v is not a point of N+gn,

for assume that it is. If sv does not intersect 7, there ig an arc p

icm
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from m to N in mp- ps-+sv+gn—q such that y-§,-7, is a point,
Dut this contradicts the fact that s is not a point of W -[(pbg)-+ (gb,)].
If sv intersects § in a point w, it can also be seen that there is an
arc y from M to N in -+ gn-+ ue of sv such that y does not intersect
g+ (gb,) and y-g,-g, is a point. But s is not a point of W(E).
Similarly, we find that v is not a point of M- mp. Hence, the theorem
is satisfied by skowirg that the asrurcption that U does not contain
a point of W(E) leads to a contradiction.

Theorem 12. Suppose the boundary of the connected and wni-
jormly locally connecled domain R is the sum of the mutually exclusive
sets M, N, and E while U is a connecled subdomain of B such that
no point of B disrupts U from either M4 E in R4+-M-+E or N+ E
in R+N-+E. Then either (a) there are open ares (a) and () in B such
that a intersects both M and N, B intersecis boih U and B, but a does
not intersect B, or (b) there is a closed set X in B such that each com-
ponent of X intersects B, X-+F does not disrupt M from N in B, but
there are a pair of points py, Py of R such that py+ p, disrupis U
from F(R) in R and X-+E-+p, disrupts M from N in B.

Proof. Suppose that condition (a) is not satisfied. Theve is
a positive number & 50 small that if a subset of R disrupts U from
F(R) in R, then this subset has a diemeter of more than 34. By
Theorem 7 there is a brick é-partitionirg @ of R satisfyirg condi-
tions (b) and (e) of that theorem with B,, B,, and B, replaced
by M, N, and E.

Let A be a finite collection of arcs in R such that 4*4E does
not disrupt M from N, each element of 4 intersects B, and if ¢
is an element of @ which does not intersect A%, then each arc from ¢
to Ein R dicrupts M from N in E—(4*+E). Let a be an arc irre-
ducible from M to N in BE—(A4*-+ F). There is a brick partitioning
H of R such that H is a refinement of &, each element of H is of
dismeter less than D(a,4*);8, end H satisfies corditions (b) and (c)
of Theorem 7 with By, B,, and B, replaced by M, N, and E.

Let W, be the set of all ccnnected sets w such that w is maximal
with respect to being the ccmmien part of R and a domain whose
closure is the closure of the sum of a collection of elements of &
which do not intersect A* It may be seen that no element of W,
has a Jimit point in E4-A4*. Let W, be the set of all connected sets
w such that w is maximal with respect to being the common part
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of an element of G which does intersect A* and a domain whose
closure does not intersect A* but is the closure of the sum of a sub-
collection of H. There is a partition chain C=[¢;,6,...,cm] such
that the elements of ¢ are elements of W,-+W,, one end link of ¢
has a point of M on its boundary and the other end link has a point

_of I on its boundary, and no chain with fewer elements than ¢
has these properties. It may be noted that each element of H which
is not in an element of W;+W,, has a limit point on A*.

Let X be the closure of the sum of A* and all elements of H
which are not subsets of either an element of W, or of an element
of 0. Now each component of X intersects B and R—R-X=R’
is a connected domain which contains each element of ¢ and each
element of W,. Let ¥ be the sum of all subdomains v of B’ such
that each arc from y to F in B+ F disrupts M from ¥ in E—(X + B).

Denote the component of ¥ containing U by U’. It follows from

Theorem 9 that some pair of points p,, p, of R’ disrupts U’ from
M4+-N+X+E in R'. We shall show that each of these points
disrupts M from N in R—(X-B), thereby completing the proof
of the theorem.

Now p, and p, are on the closures of elements of ¢; and ¢; (i<<j)
of C which are not elements of W,. These elements are not adjacent
because they are of diameter less than 6. However, j=i-2 or else C
could be replaced by a chain with fewer links. Now ¢,y is an element
of W, and ¢; and cie are mot.

If V denotes the collection of all points ¢ of R’ such that ¢
separates M from N in E—(X4-E), both p; and p, belong to V,
for suppose that-one does not. Then there is a simple closed curve J
in B—(X-+E) containing p,+ p, and two points 7, s of V4 M 4-N.
For convernience, suppose # and s are points of V. Since r4-s is not:
the boundary of U’, an arc in R+ E—(r-}s) intersects both J and E.
But then one arc of J from r to s would not intersect any element
of W,. This contradiets the fact that each arcinJ from r to s containg

a points of W, because one of the points 7, s belongs to 215,. and

n=1
the other belongs to _Sja,,.
=i
By using a type of argument similar to the preceding and by
applying Theorem 11, we can obtain the following extension of
Theorem 12.
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Theorem 13. Suppose thai in addition to the hypotheses of
Theorem 12, it is given that [gy,g,] is a brick partitioning of B such
that M does not intersect J, end N does not intersect F,. Then either (a)
there are open arcs (o) and (B) in B such that a intersects both M and W,
oG, § 18 o point, B intersects both U and E, but does not intersect a
or (b) there are a closed set X in B such that each component of X
intersects By, an arc y in B—(X+B) from M to N such that y-F,-F,
is a point, and a pair of poinis py, Py of B such that py-+ py disrupis U
from M+N+E in B and X+ B+ p, disrupts M from N in E.

Theorem 14, Suppose C is a partition chain from p to g such
that no pair of points of C* separaies space and each element of O has
a lUimit point on F(C*). Then for each positive number e, there is an
e-partition chain E from p to q such that:

(a) B runs straight through C,

(b) E* does not intersect F(C*),

(¢) each element of B has a limit point on F(E*),

(d) O*—E* has property. 8 and each point of it is joined to F(C*)
by an are which does not intersect B* but which is a subset of the dosure
of the sum of eleven elements of C.

Part (d) of the above conclusion can be strengthened by using
a smaller number than eleven, but eleven is used because this
gimplifies the proof and in the applications of Theorem 14 in the
next sections, reducing the number does not improve the results.

Proof. Let G be a brick epartitioning of G*—F(0*) such
that @ is a refinement of ¢'=[c;,0s,.-.,Ca], One element of ¢ contains p,
and another contains g.

By repeated applications of Theorem 11, it may be found
+that there is a finite collection A of arcs such that each element
of A interseets F(C*), each element of 4 is in the sum of the closures
of eleven elements of C, each element of @ intersects an element
of A, and there is an are o from p to ¢ in O*—[A*+F(0%)] such
that a-8- G (i=1,2,...,n—1) is a point. Before establishing the
existence of such a set 4, we proceed to show how the theorem can
e completed if there is such a collection.

Denote the distance from a to F(C*)-+A* by 36. Leb be H
o brick é-partitioning of 0*—F(C*) which is a refinement of G.
Denote by X the closure of the sum of all elements of H which
have a point of F(C*)4-A* on their boundaries. Let R be the set
of all elements » such that = is a component of g—X for some ele-
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ment g of G. From the elements of R which intersect a, form a chain ¥
which runs straight through € and from p to g. The chain F satisties
the conditions of the theorem.

A method of verifying that 4 exists is now outlined. For con-~
venience we suppose that n is of the form 6i--1. It follows from
repeated application of Theorem 11 that there is a finite collection A4
of ares such that no element of A’ intersects ¢+ c;+eigt...+en
but each intersects F(C*), A'* inteisects each element of ¢ in ¢,
(r==8,4,5,9,10,11,15,...,n—2), and there is an arc from p to ¢
in C*—[P(C*)+A4'¥] such that this arc intersects the common
boundary of two adjacent elements of € in exactly one point.
Using Theorem 10, we obtain a chain K=[k,k,,...,k,] such that £*
does not intersect A'*, ks is a subset of ¢, k=¢; (t=1,7,13,...,n),
F(E*) is accessible from each element of K, and each point of
O*—E* belongs to an arc in §*—K* which intersects F(C*).

By using Theorem 11 again we find that there is a finite
collection A’ of arecs such that no element of A" intersects
Tyt Feyo -+ Tggt oo+ Fn—s bub each intersects F(K*), A4'* intersects
each element of @ not intersected by 4'*, and there is an arc from p
to ¢ in K*—[F(K*)4+A""*] such that this arc intersects the common
boundary of two adjacent elements of K in exactly one point. Then
A=A"+A". . B

Had we used Theorem 13 instead of Theorem 11 in the preceding
argument, we could have obtained the following.

Theorem 15. Suppose C is a partition chain from p to q such
that no point of OF separates space, (a) those elements of C which
are not open arcs have a point of F(C*) on their boundaries, and (b)
each pair of complementary domains of C* are separatcd by a pair of
points each of which is either p, q, or & poins of C* which separates p
from ¢ in C*.

Then for each positive number e there is an e-pariition chain H
from p 1o q salisfying conditions (a) and (b) above with B substituted
for C and such that (c) E runs straight through O, (d) E* does not
intersect F(C*), and (e) if a complementary domain D of B* intersecls
F(G*), then cach point of D-C* belongs to an are in D which inter-
sects F(C*) and is a subset of the closure of the sum of eleven elements
of C.

The methods of Theorem 14 yield the following result for
eircular partition chains.
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Theorem 16, Suppose C is a circular partition chain such that
70 pair of poinis of F*separ ates space and cach element of C has a limit
point on F(C*). Then for each positive number e there is a circular
e-pariition chain B satisfying conditions (b), (c), and (d) of Theorem 14
and such that B is a refinement of O, each clement of C contains an
element of B, and if two elemenis of E are subsels of the same element
of C, a subchain of E containing them lies in this same element of E.

4. Complements of Ares and Dendrons. The theorems
of this section are applications of Theorems 14 and 15. There are
several known methods [for example, see Whyburn's Analylis
Topology, 4] of showing that each pair of points of a compact
locally connected continuum belongs to an are in this continuum.
Defining an are by means of a sequence of partition chainsg gives
another method of doing this.

Theorem 1%, If p, q, and v are three poinis of the compact locally
connected, continuum M which is not separated by any pair of its points,
then there is an are from p to g in M such that the complement of this
arc is connected, has property S and contains r.

Proof. By Theorem 5 there is a brick partitioning [Cp,k]
of M such that C; contains p-+ ¢ and k contains r. There is a regular
(1/2)-partition chain C, in C,; from p to g and satisfying conditions
like those given in Theorem 14. In C, there is a regular (1/4)-partition
chain (y satisfying like conditions. Similarly, there are chains
C,, Cy... The common part of Cy,C%,C5,... is an are from p to g
whose complement is connected, has property S, and contains 7.

Theorem 18, If p and q are two points of the compact locally
connected continuum M, there is an are from p to g such that each
complementary domain of this arc has property § and each such pair
of complementary domains is separated in M by a pair of poinis.
Furthermore, for each positive number € there are only a finite number
of these complemeniary domains of diameter more than .

Proof. The proof 1s similar to that given for the previous
theorem except that we apply Theorem 15 instead of Theorem 14.

Theorem 19. Suppose W is a totally disconnected closed subsed
of the compact locally connected continuum M. Then there is o dendron
(acyclic continuous curve) T in M containing W such that each compo-
nent of M—T has property S and for each positive number e there are ne
more than a finite number of such components of diameter more than e.
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Proof. Let ¢ be a brick 1/2-partitioning of M and H, be the
collection of elements of &; whose closures contain points of W.
By the preceding theorem, there is a finite collection 4, of ares
in M such that for each positive number ¢ and each element o of 4,,
M —a has no more than a finite number of components of diameter
more than e, each of these components has property §, Hf+Af=M,
is connected, but if B is a proper closed subset of A¥, H¥-- B is
not connected. .

Let @, be a brick 1/d-partitioning of M, and H, be the clements
of @, whose closures intersect W. There iy a finite collection 4,
of arcs in M, satisfying conditions like those satisfied by the collec-
tion 4, We denote Hi-+A¥ by M,. Similarly, we define M, M,,...
‘The dendron T is the common part of M, M,,...

It would be interesting to know the answer to the following.

Question. For each closed set W whose complement has
property 8, does there exist a countable collection 4 of ares such
that W--4* is a continuous eurve each of whose complementary
domains has property S§?

5. A Sphere Characterization. J. R. Kline conjectured
that a compact locally connected nondegenerate continuum was
a simple surface (set topologically equivalent to the surface of
a sphere) if it was separated by no pair of its points but by each
simple closed curve in it. In the following theorem I use much the
same methods as T used in proving this conjecture was true. However,
partitionings are used here instead of open coverings.

Theorem 20, If M is a compact locally connected nondegenerate
continuum which is not separated by any pair of its points, then either
M is a simple surface or there is a simple closed curve J in M such
that M—J is conmected and has property S.

Prootf. Suppose M is not a simple surface. Zippin has shown [5]
that some arc pq in M separates two points from each other in M.
‘Without loss of generality we suppose that pgq separates z from y
‘butb that no proper subare of pg separates @ from y. Let Dy, and D
be the components of M—pg containing.s and y respectively 3)’.]

2} By methods more complicated tha ihat
th.erfa is a simple closed curve 3 sa,tisfyingrtc}go:sngzg)iefmz ‘ih]il: m:&mﬂ 21;21:
taining p - g,-and such that one component of J —(p-q) lies except for a t:btally

-disconnected set in D, and the other component 1i i
anetod st P ies except for a totally discon-
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Let ¢ and e, be positive numbers.so small that (a) no pair
of subsets of M each of diameter less than e separates two points
of M from each other if these points are further from the subsets
than D(p,q)/8 and (b) if 8 is a subarc of pg containing an end point
of pq, then f is of diameter less than ¢ /3 if its end points are closer
together than e, Let & be a brick e,-partitioning of M such that p
and ¢ belong to the elements g, and g, of G.

There is an are a, (¢2=2,y) in D, which is irreducible from
Jp to §,. Let H be a brick partitioning of M such that H is a refine-
ment of G and no element of H is of diameter more than
D(pg,ax+0g)/3. Denote by E the sum of all closures # of elements
of H such that r either intersects pg or is a subset of g, g,. Now E
is the sum of three mutually exclusive connected sets R, U, and R,
such that R, is closed and contains g,, R, is closed and contains gy,
while U is an open subset of B whose boundary in R is a subset
of 7p+7,.

Since both B, and R, are of diameter less than ¢, each compo-
nent of M —R that has both a boundary point on R, and a boundary
point on R, is accessible from U. Let C; and C, be the components .
of M—R containing (a,) and (op) respectively, & be the sum of T
and the closures of all components of M —(R-+ Cp+ C,) such that
these components have a point of U on their boundaries, C; ({=1,3)
be a regular connected domain whose closure is the sum of R, and
the closures of all components of M —ER which have a boundary
point on R; but none on T. Then Cy=[¢;,¢,¢5¢,] is a circular par-
tition chain such that M—Cf is a connected domain which has.
property 8 and whose closure is E.

Theorem 16 gives that there is a sequence €y, (... of circular
partition chains such that (a) (iys is a refinement of C; and each
element of ¢, contains an element of Cpy, (b) each element of ¢
(1=2,3,...) is of diameter less than 1/2% (¢) Ct.y does not intersect
F(C¥), (d) each element of C; is accessible from the closure M —C¥,
(e) if two elements of Cyuyq arve subsets of the same element of (',
then a subchain of Ciy4 between these two elements lies in this.
game element of ¢; and (f) M—C} has property § while each point
of O*—0OF., is joined to the boundary of Cf by an arcin M—Cfy
which is a subset of the closure of the sum of eleven elements of (.

The common part of Cf, Cf,... is a simple closed curve .JJ and
M—J is connected and Las property §.
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Supplément au mémoire ,,Sur I'ensemble des points
singuliers d’'une fonction d’'une variable réelle
admettant les dérivées de tous les ordres“?).

Par
Zygmunt Zahorski (Léd2).

Une remarque pibliée dans mon mémoire cité, p. 244, concer-
nant une analyse se trouvant dans le Jahrb. Fortschr. Math. (de 1935)
d'un article de M. R.P. Boas Jr. est superflue, car auteur de
«cetbe analyse a publié une correction dans le méme volume de Jahrb.
Fortschr., que je n’ai pas remarquée. .

A propos d’une analyse de mon mémoire cité (Math. Reviews 10
{1949), p. 23), je tiens & remarquer que, d’aprés mon avis, M. R.P.
Boas Jr. est le seul qui a la priorité de la démonstration du théo-
réme de Pringsheim. M. V. Ganapathy Iyer, dans une note
Sur un probléme de M. Carleman, C. B. Acad. Paris, 199 (1934),
p. 1371-1373, a démontré seulement un théoréme plus faible, équi-
valent au lemme 1 de mon mémoire cité, p. 187.

Comme j’ai constaté L. c. p. 187, une démonstration beauncoup
plus simple de ce lemme ge trouve déja dans le Cours d’Analyse
Mathématigue de K. Goursat, publié en 1917-1918. La premiére
partie (nécessité) coincide chez M. Ganapathy avec celle de Gour-
sat. Dans la seconde partie de la démonstration M. Ganapathy
prouve que linégalité

@) [ @)|<n!l-M" pour tout =e[a,b] et tout a=1,2,..
implique V'inégalité

{2) r(#)>=>8>0 pour tout - z e[a,b]

1) Z. Zahorski, Fund. Math. 34 (1947), pD. 183-245.
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