22 R. Sikorski.

Let @, be a generalized homeomorphism of X, on Y, and let

p(w) =pq(w) for @eX,

and
p(@)=g4») for ©eF—X,

@ is a generalized homeomorphism of & on ¥ and
[p(X)] = [pa(Z)]+ [po X—X3)] = [0 X)]—[@o( Xe)] = [po( X )] =M[X])
for every X e B(F) since py(X)CY,ed and pu(X,)CYped.
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On joins of spherical mappings.
By
Sze-tsen Hu (Shanghai).

1. Introdution. In a recent work of G. W. Whitehead, [4],
an important generalization of H. Frendenthal’s Einhingung, [3],
has been introduced which seems to be one of the essential intruments
for the attacking of the unsolved problem of caleulating the homo-
topy groups of spheres. For each pair of elements & ean?(S™m), -
B en?(8m), a unique element oY e nPteti(§mtntl) iy determined,
‘which will be called the join of o and . If g=n and B is of degree -1,
then «“v'p is the (n-1)-fold Einh#ingung of a.

The objeet of the present paper is to give a detailed investi-
gation of this joining operation. Instead of considering it as an
operation on the homotopy groups, we shall present it by an
imbedding of the product space (8m) x (8787 into the space
(SmtttysP T whore X denotes, as usual, the space of all mappings
(i. e. continuous transformatiors) of X into ¥.

In another recent work of G. W. Whitehead, [5], it has
been proved in a quite complicate way that the Einhingung of
a Whitehead product, [6], is always inessential. By using our methods,
we are able to prove its generalization that the join a B is inessential
if at least one of the elements a,f is a product.

2. The imbedding by means of joining. For the sake
of briefness, we shall denote by {p,m} the space (§m)5°. In the
present paragraph, we shall define an imbedding of the product
space {p,m}x{qn} into the space {p+g+1,m-n-+1} which
forms the kernel of the whole investigation.

Let RrH, R+ be two euclidean spaces with coordinates sys-
tems (g, @y, ...ybp); (YoyY1y .-y ¥q) Tespectively. Let

Rptet2= Rpp+l x RH‘!,
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then an arbitrary point z ¢ R#+e+2 hag coordinates

(,9)= (@0, :+s%p; Yoy --+1Yq)-

.We distinguish neither e RPH, (1,0)e RP+a+2, nor y e Reh,
(0,y) e RPat+2; and we shall use the vector notations freely. Let
SpCRrH, 8¢CReH, SrtetiCRrH+2 be the spheres defined by

8p: =it et al=1, y=0;

NEE [y = y3+93+ ... +y2=1, a=0;

Sptatt: |22 = |z2- |yl2=1.

Similarly, let Bm+1, R*H Dbe euclidean spaces with coordinates
gystems (g, %qy..e) Um), (VgyV1y--.s¥n) Tespectively; and let Rmtnte—
=Rt x ReH with w==(u,v) as coordinates. Let §m, §r, §mtnrH phe
defined by |ufP=1, v=0; |[op=1, u=0; |wft=1 respectively.

For an arbitrary pair of mappings fe{p,m}, ge{gn}, we
define the join =g e{p+q+1, m+nt+1} by taking

(@ cos Oy sin 0) = f(@) cos 6+ g(y) sin 6

for each ¢S, ye8,;, and 0<<O< /2. Thus we have defined
a transformation J of the product space {p,m}x{g,n} into the
space {p-+g¢-+1, m+n-+1}.

Let olfyfs) denote the Fréchet metric of the mappings f,f,.
Let fie{p,m}, g e{q,n}, (i=1,2), be arbitrary mappings, and
let ¢, =71;"g, (4=1,2). Then for each z=u cos 64y sin 6 of Sr+eti,
where ¢ 87, y e84, and 0<< 0 < /2, we have

I7.(w) —fa

whence we deduce that

Lo(gs, @) P<Lo(fus fo) P+ Lo(g )

Hence J is continuous, i. e. a mapping.

Since ¢=/"g coincides with f,g on 87,89 respectively, J is
univalent. Since o(fy,f))<elpy,ea) and. o(gs,05) < olpye,), the in-
verse J ' is algo continunous. Hence J is & homeomorphism and
defines an imbedding of {p,m}x{g,n} into {p+g¢+1,m-+n-F-1}

lou(e)—pale) = D) cos? B+ [ga(y) —galy) P sin? 6;

3. Fibres and components of the space {p,m}. For the
use of the sequel, we shall describe some special mappings as
follows.
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Let Er denote the p-clement in an euclidean p-space with
coordinates system &;,&,...,&, defined by |£[2<C1, and 8P~ be the
boundary sphere of EP defined by |éf=1. Then by 4, we denote
the mapping of EP onto 87 defined by

—2jep—1,
=2 1= &,

It follows immediately that

2p(8PY)=py=(1,0,...,0), 4,(0)
and A, maps the interior of Er topologically onto SP—p,.

Next, let Er+ be the (r-+1)-element of the euclidean (r-+1)-space
with coordinates system tg,1y,...,1, defined by [t2<<1. Let

Zptr = (87 x Bp)U (Br+l x Sp—1) CEr+ X EP,
and let Sp+r be the (p-+-r)-sphere in the (p-+r-1)-space with the co-
ordinates system t&,if,...,t%, &t,..., &5, defined by [t**-+|&*P=1. By
irp We denote the homeomorphism of 8, onto XP+r deﬁned by
the following equations:

(1=1,2,...,p).

=p,=(—1,0,...,0),

_ i* _ £* . " .
t—l—i*—l, ‘5—-"?;[7 it |t [ =8,
[ PR
iE*V é"“lg*l’ lf it l\]é- [

Let H, and H, be the subsets of SP+r defined by [i*| =|&¥|
and [t*] <|&*| respectively. Then elearly p,, maps H,, H,, and H;NH,
onto STx Ep, Ertlx 81 and 87 x 8r—1 regpectively.

Let t denote the projection of {p,m} onto 8=, defined by
Tf=f(p,) for each fe{p,m}. By Borsuk’s Fibre Theorem, [2],
v is a fibre mapping. Let {p,m;u} denote the fibre v—(w) for weS™.
For the remaining of this paragraph, we assume p>0, m>0.
Sinee Sm iy p-simple in the sense of 8. Eilenberg, [1], each com-
ponent of {p,m} contains a unique component of the fibre {p,m;u}
and corresponds a unique element of the homotopy group ar(Sm).
Let us denote by {p,m}e and {p,m;u}. the components of {p,m}
and {p,m;u} respectively, which correspond to the element a ean?(S8™).
From the arcwise connectedness of §m, it follows that v is a fibre
mapping of each component {p,m}a onto Sm, denoted by 7., with
connected fibres

~Hu)={p,M;U}a.


GUEST


26 . Sze-tsen Hu:

Choose a fixed u, ¢ §m. Whenever there is no danger of ambi-
guity, we shall use the simpler notations

) a={p,M}a, Fu=1g!(%,).
Choose an arbitrary but fixed a ¢ F, as the base point of the

homotopy groups conecerned. According to J. H. C. Whitehead, [7],
there is a beginningless chain of homomorphisms

—k>n"+‘ (GeyFa) i>71’(I4’a) —j>- 7" (G) in"(Ga,F,,)‘in’—i (Fo) i»

This chain is exact in the sense that the kernel of each homo-
morphism is exactly the image of the one which precedes. The homo-
morphism § is induced by the injection mapping Fo~>G, and will
be called the injection homomorphism. The homomorphism % of
77(Gy) is induced by the correspondence ¢—>@l, for each mapping ¢:
8r—>@, with @(r))=a, r, being the fixed point (1,0,...,0) on 8.
The homomorphism & of #*(Gx,F.) is induced by the correspondence
p—>9|871 for each mapping y: E*—G,, which will be called the
boundary homomorphism. ‘

Since 7. is a fibre mapping of G, onto Sm with F, as a con-

_ nected fibre, it folows that 7, induces an isomorphism of #n7(Gy,Fe)
onto #"(8™), which will be still denoted by 7. and called the fibre
isomorphism. .

According to G. W. Whitehead, [5], there is an isomorphism I,
of ar(F,) onto aptr(8m), called the Hurewicz isomorphism. ILet
B e ar(Fs) be represented by ¢: 87 X §P—8Sm with

plro X 8P =a, (8" X po)=1,.

Let y: 87 x EP—>8m be defined by w(t,&)=¢(,1,&) for each
tel7, £eEP. Then I,(f) is represented by the mapping ¢*: Spt+r— gm
defined for each (*=/(t*,&*) e SP*+r by

Purp(LT), i FeH,
Uy if *eH,.

4. Homomorphism and multiplications induced by .J.
First suppose p>0, m>0 and ge{g,n} be a fixed mapping. Then
the mapping f—f“g defines an imbedding J, of the space {p,m}
into the space {p+g¢-+1,m--n-+1}. From the continuity of J,,
it follows that each component {p,m}s, acaP(§™), is mapped by Jy
into some definite component {p+¢-+1, m-+n-+1}s, § e apta+i(Smtatt),
Hence J, determines a transformation «—é& of aP(8m) into
aptatl(§mtntl) which will still be denoted by d=4d(a).

=]
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iheorem 4.1, Jg 7P (§m) —> p+a+1 (§mhntl) is ¢ homomorphism,
called the homomorphism by joining g.

Proof. Let EZ, E5 be the subsets of 87 defined by the condi-
tions @3>0, 2, <0. Let o’,a’" be two arbitrary elements of =?(8™).
Choose Po=1(1,0,...,0), u, e 8™ as the base points aP(Sm). There
exists representatives f, f' of ', a” respectively sueh that
F(ER)=u,=1"(Bh). Let ¢'=7"g, ¢''=f"g), then by definition we
have .

@'(% cos -+ y sin 6)=1'(x) cos 6 g(y) sin 6,
@"'(x cos 4y sin 0)=7"(») cos 6+ ¢g(y) sin 6,
for each me &P, y el 0O /2. Letb mre Eé’“"";be the sub-
sets of 8P defined by 2,20, @, <<0; and let EZ™ denote the
(p+ g+ 1)-element defined by
2,=0, m§+mf+...—}—mﬁ_l—kyg—}-y%«}—...—l—yzgl,
Then EETTH, griett gpt ¢+! have the (p--¢)-sphere
Spt+a: zvp=0, m§+w§+...+m§_1+y§+y§+...+y3_—_1,
as their common boundary. Let m; denote the vertical projection
of EFFTH onto ERTUT. Let
@ = ¢viE¥+q+1, [F/ ¢’1E€+q+‘,
@.,=¢:/IE120+¢+1’ gju=¢uiE§7+Q+1‘

Then it follows that ¥myt=¥"m", over Epteti Call this

mapping ¥. Then clearly
Plo)= D' (2)=D"(2), (¢eSP+a).

Let 2, = (g, 0) € Sprerl, w, = (u,,0) € Qmntt, +Ifxt Py
Eptett  gmtntt be a homotopy such that ¥o=¥, AN )=y,
and Wz,)=w, for each 0<t<1. Since W\ 85717 defines a partial
homotopy of both @’ and @, it has extensions

@ EPReH gt gy gt gmirh
1 ’ .

: ‘o 1
such that ®p=@’, ®g=>". Define homotopies ¢z ¢ gt gmint
by taking

()= Di(2), if e BTTT
e Py (2)), i ze BEYITY
s ()= | Prlm (@), if zeEer‘h“i,
=\ pr(2), it e BT
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BEvidently ¢h=g’, go=0", ¢}(BEr ™ =w, =gy BT, Define
a homotopy @: ST "+1—->S’"+"+1 by taking
[oe), if #zeBETITY
pi#)= W), i zeBEHTH

Then ¢, represents J,(a’'+a"') and ¢, represents Jy(a')+Jy(a").
Hence Jg(o'+a'")=dy(a')+J4(a’’), which proves the theorem.
Q. E. D.

Similarly, if ¢>0, >0, and fe{p,m} be a fixed mapping,
then the mapping g—fVyg dgfines an imbedding ,J of the space {g,n}
into the space {p-+¢-+1, m+n-+1}. Analogous to (4.1), we have:

Theorem 4.2, J: a9(87)—nrtatl(§mtntty js g homomorphism,
called the homomorphism by joining to f.

Let & denote the operation, called Einhdngung by H. Frenden-
thal, [3]. Now let g=n=0 and g be the identity mapping of 8°.

Theorem 4.3. For cach o e zP(S™), we have

(4.31) Jg(a)=E(a),
(4.32) g (@)= (—1)p+mE(a).

Proof. (4.31) follo*ws directly from the definitions. To prove
(4.32), let @: 8P 8™ bo a representative of J,(a). Let g,0 be
mappings of 87 and §™ onto themselves deﬁned by

(i=0,1,...,p+1), 2‘.l>‘7‘+2=“~"0§
Wmda, Wi =W, (1=1,2,...,m+2).

" Then g,0 are of degrees (—1)P+1, (—1)m+! respectively; and ,J(c)
is represented by ope. By the definition of the homotopy groups,
@g" represents (—1)P*1E(a); by a theorem of H. Freudenthal,
[3, (8.7)], ogo represents (—1)r+mF(a), which proves (4.32). Q. B. D.

Suppose that p,q,m,n are all positive. Then for each compo-
nent {p,m}s, aear(8m), of the space {p,m}, and each component
{g;n}s; B eas(87), of the space {g,n}, the homeomorphism J maps
the product space {p,m}«X {g,n}s into a definite component
{p+g+1, m4-n+1}s, 8enptati(8mint) of the space {p-g-+1,
m—+n-41}. We call the element § the join of the elements a,f and
use the notation d=«"'g. From (£.1) and (4,2), the following theorem
follows immediately.

. d__
[H 2 =241,
6 U=
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Theorem 4.4. The joining operation J defines a group muléi-
plication of the homotopy groups aP(S™) and 79 (8" with values in
the homotopy group apteti(Smtntl)

Again, let us suppose p >0, m >0, and g € {g,n} 2 fixed mapping,
and consider the operation J,. Let g, e 8% be the point (1,90,...,0)
and v,=g(g,). Call 2,=(0,q,) es"+"+‘, w,= (0,v,) e ST, Let 7
be the projection of the space {p+g-+1, m-+n-1} onto Smtn+t
defined by Tp=og(z,) for each p e{p+g-+1, m+n+1}. Let

Ga={;yM}e; Fo={p,m;iUy}a;
Qs={p+q+1,m+n+1}s, ds={p+g+1, m+nt+1;wls.

From the definition of f~g, it is clear that G is mapped by
Jy into As, where 6=dJ,{a). Hence, if we denote by 9, i, & the chain
of homomorphisms of the groups n(ds), #7(Q2s), and =7(2s,4s), then
we have the following theorem

Theorem 4.5. The homeomorphism J, induces, for each a of
7P(8m) and each r=1, the homomorphisms of ar(Fe) into nr(ds),
of a7(@y) into 77(Qs), and of a T (Ge,Fy) into art(Qs,4s), where
d=dJy(a), still denoted by J,. Further, we have

1) Jg(2{(Gay Fe))=0,
) Jg(ﬁr(Gu))C;(n'r(Ad))-

U!Ul

(4.
{4
Since Jg4(Ge)CAs, the following theorem is trivial

Theovem 4.6. For each a e a?(8™) and each r=1, the homeo-
morphism Jg induces a homoemorphism J, of a7(Ga) into a7 (ds),
where d=dJg(a). Further, we have

(4.61)
(4.62)

Jg=7dy; on ar(G),
Jg=dyj on ar(Fy).

Consider the following diagram:
A (G, o) ——s 77(F)
|

A Q5,As) —— ar(As)
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Theorem 4.7 J,0=23J, on 2+ (G, Fa).

Proof. Let y e nrt!(Gy,Fa) be represented by a mapping ¢:
ErtisG,; then 3J,(y) is represented by the mapping J,¢|87,
while J4@(y) is represented by the mapping Jyy, where ST denotes
the boundary sphere of B! and y=¢|8". Clearly J,p|87=d v,
which proves the theorem. Q. E. D.

Since Jg(y)=0 for each yea+(Gy, Fy) by (4.51), we bhave

Corollary 4.8. J,9(n"+1(Gs, Fy))=0.

5. Relation between joining homomorphisms and
Hurewicz Isomorphisms and Whitehead products. Consider
the following diagram:

Jg
7 (Fg) ———— 27(As)

I, I IL:

J,
P r(§m) N Pt (bt

The prirecipal result of this section is:

Theorem 5.1. Jgloa=1sJ, on a*(Fa), d=dJ4(a).

Proof. Let E™ be the (r-1)-element, in the (r-+1)-space
with coordinates system tyt;,...,t, defined by [i2<1. Let 8" be
the boundary sphere (=1 of Er+L. Choose r,=(1,0,...,0) 87, aeF,
as the base points for a™(Fa).

Let y enf(F,) be an arbitrary element, it is to prove that
Jgla(y)=Tsd 4 (7).

Let ¢: 8*F, be a representative of y, then ¢(rs)=a. There-
fore, @ can be considered as a mapping of 8" x &7 into 8™ such that

P87+ po) =1ty

Let EP denote the p-element, in the p-space with coordinates
system &;,...,&, defined by |&P<1; and 87 be the boundary
sphere of E?, defined by |[£?=1. Let

TP (87 % BPYU (BT % 8P,
Lebt o ZPT7—>8™ Dbe the mapping defined by

) = @t Apt), it (t,6)= 8" x B,
®o(t, €) {u,*, it (b= B x 87

where 1, is the mapping deseribed in § 3.

@lre X SP=a,
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Let SP*" be the (p-+r)-sphere, in the (p+r-1)-space with
the coordinates system ¢§,4,...,t7, &,..., &, defined by [I*P-+ | =1
Let g2 SF7"—>8™ be the mapping defined by ¢,=@uu,p, Where
irp IS the homeomorphism of $°7" onto ZP™™ described in § 3.
Then ¢, is given by

1'* E* 3 * %
ol b)) =1
| < ]

By definition, I.(y) is represented by g¢,.

Now let &P+ pe the (p+ g+ » -+ 1)-sphere, in the
(p +q-+r+2)-space with the coordinates system 1§,,..., 1,
By &y Mhynily ey, defined by |t*4-|&*2|y*2=1. Tmbed 8”1
and 89 in SPTOTH by identifying (¢, &%) e SPTY with (1*,£%,0) e SPTTT
and 7* € 87 with (0,0,7%) ¢ SPTTT™L An arbitrary point (i*,£*,7*)
of §7HHH can be uniquely expressed in the form

(t*, &, %)= (§* cos 6, £* cos 6, 7* sin 0),

where (8,8 e P17, 7* e 8% and 0< 0 <m/2. Indeed, we have
sin f=|»*| and cos H=}T— [

Let Sm+ntl he described as in § 2. Then J Za(y) is represented
by the mapping g, SPFIH g™ given by the equality

ot £%)= ‘

Uy s if

@q(F* cos 0, & cos 0,7* sin 0) =g, (£*,£*) cos 04 g(77*) sin 4.
Henee for each (1*,£%,7*) e SPT7™ we have
- i'* f* 77* R .
V=T o{gp (5 Horlo(e) it w11,
n* .
=T+ 117l o(f). i

Next, let 8777 be described in § 2. Then J,(y) is represented
by a mapping @ 8 x §PTTH 8" guch that, for each pair

a=wcos 0+ ysin 6 e SPHH, e 87

Pal(t*, &%, %)=
1< lgr)

we have
@s(t, @ cos 04y sin 0)=g(t,2) cos -+ g(y) sin 6.

Hence for an arbitrary (,3)=(@g)...,Bp, Ygy...;yq) 0f SPHIT?
and an arbitrary t=(t,...,t;) of 87, we have

wota9)=lal 1 %) +lolg (l—gl) .
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Let Bt De the (p+ g-+1)-element, in the (p—+g-+1)-space
with ‘the coordinates system &,...,&, %gsThy..1 gy defined by

icm

|+ |n[2<1, and §P+9 be the boundary sphere of BT Let Ayp1 .

denote the mapping of BT onto 87+ given by

wo=2(| £+ |9l —
o= 2)T=[EP—[n]* &
yr=2y L —[EP—|n[ o,

sptetrit (87 EP+‘1+1) U (EH—i % SIH'IJ)

(i=1,2,...,p),
(i=0717'-~7Q)-
Let

0) e gmmtH, sptetrh

and let  w,=(u,,
mapping defined by

Let ¢, -8 he the

Palty hptgtal), it te T, e BPFIH

(p"(t’C)z{ W, if te]""‘" te S"+"

Let SPHHTH pe deseribed as above, and let K,,K2 denote
the subsets of SPT4T™* defined by the conditions

(&2 ™[

respectively. Leb g piq1 denote the homeomorphism of 7o+
onto ZPTTTH defined by

|t*|2> [t*12< ]5*!2+|,’7#(2

t* * * ) .
(lt*l, [f*l 17;’]*1) it (8%, 85 0%) e Ky,

i, prtgrtt (5, €5 0%) = * £* 7 it Uk ek %
(V1~It*lz’l’1 R t*lz)’ &) e Ky

Then Isdy(y) is represented by the mapping @y=@qr pioti-
Hence for each (¢*,£*,7*) ¢ SPT47+ wo have

Iﬁ:ll 2l P~ ‘P(lizl |E*|) l?*ll VZ[t*]‘—l g(l * )
ool 875 = it [ I&*I%ln*l*;
Wy, if It*lz < IE*IZ + I’?*Iz'

Comparing ¢, and ¢;, we conclude that they are nowhere anti-
podal and hence homotopic. Then it follows that JgTu(y)=IsJ,(y).
Q. E. D.
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Theorem 5.2, If yeaptr(Sm) is o Whitehead product, then
Jg(y)=0.

Proof. This is an immediate consequerce of (4.8), (5.1), and
a theorem of G. W. Whitehead, [5, (3.2)], as indicated by the
following diagram:

A+ (G, Fe) ar(Fe) ar(1s)

I L o

ari(§m) ____Q“__> b+ (Sm) _LTL) aptatrH (§mbnt),

If ¢ is the idertity mapping of 8¢, then our theorem reduces
to the Thecrem (3.11) of G. W. Whitehead, [5], as a special case.

Corollary 5.3. If one or both of the elements aenr(S™),
B € n9(87) are Whitehéad products, then o™ p=0.

6. Associative law for joins. Theorem 6.1. For arbitrary
fe{p,m}, ge{q,n}, be{rt}, we always have {(g¥h)=(>g)“h.

Proof. Let SPT97*® e the unit sphere in the space with
coordirates system
(@, y,2)={(2,-..

1Bpy Yoy -orUqs B0r---18r)s

and 8™+ pe the umit sphere in the space with coordinates
system
(e, 0, )= (g, ..., wy).

Uy Vgy ey Ty Woyeeey

Then it follows from a simple calculation that both 7™(g“h)
and (f¥¢g)Vh are identical with the mappm @i QPTTTIE_, gmintiie

given by
=1l () + il () + 10 i)

An immediate consequence cf (6.1) is:

Theorem 6.2. The joining operation J defines an associative
multiplication in the family of homolopy groups of spheres, i. e.

(aYB)Yy=a~(Vy)=a"By.
Fundamenta Mathematicae. T. XXXVI. 3
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A\
Let E(+) denote the (n+1)-fold Binhdngung of H. Freu-
denthal. Then we have the

Theorem 6.3. If ¢ is a mapping of S* onto tself with degroe b,
then for each ae=zP(8™) we always have

(6.31) Jy(a)=bE’("+1)(a).
(6.32) I ()= (—1)FDentp) bECD ().

Proof. Let g, denote the identity mapping of S Because
of (4.3), we may suppose n>>0. Let go,g represent Bos B e (87)
respectively, then A=bp,. Hence we have Iyla)= N B=b(a fy)-
Let o be represented by f: SP—8", then a“f, is represented by
N ay=1"w vy v, where g, (i=0,1,...,n), denotes the identity
mapping of §°. Hence, by (4.31), /g, represents Ewt) (g), and (6.31)
is proved. (6.32) can be proved by successive use of (4.32).
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Squares are normal.
By

Anthony P. Morse (Berkeley, U.S.A.).

1. Introduction. Two plane sets are finitely equivalent if
and only if they can be split respectively into sets oy, ...,am and
into sets df,05,...,a), in such a way that the corresponding subdivi-
sions are congruent. A plane set S is paradowical if and only if it
can be split into two sets each of which is finitely equivalent to S.
A plane set which is not paradoxical is normal. It has been known 1)
for some time that squares and a variety of other plane sets are
normal. However, all known verifications of the normality of squares
so far published depend in an essential way on the axiom of choice.
By making use of appropriate known devices for establishing the
existence of certain linear functionals we find it is indeed possible
to show, without the axiom of choice, that any bounded plane set
with inner points is normal.

Nowhere in the sequel directly or indirectly do we employ
the axiom of choice.

If @ is a group then those members of & of the form bab—'¢™2
are commautators; the smallest subgroup of G containing the set of
all commutators is the commutator subgroup of G.

If by forming successive commutator subgroups of G we reach,
in a finite number of steps, the subgroup consisting of the identity
then G is a solvable group.

1) 8. Banach and A. Tarski, Sur la décomposition des ensembles de
points en parties respectivement congruentes, Fund. Math. 6 (1924), pp. 244-277.
See also the abstract of a paper of. Z. Waraszkiewicz, Sur Udguivalence de
deus carrés, Ann. Soc. Polon. Math. 19 (1947), p. 239 (meeting of the Society
of Oct. 19, 1945). .
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