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Remarks on some topological spaces of high power.
By
Roman Sikorski (Warszawa).

The subject of this paper?) is thegstudy of those topological
spaces (called w,-additive spaces)?) which satisfy the following
axioms:

I. For every a-sequence 3) of sets {Xg}, a<<cwy,

Xe= ) X»
0i<e o<
II. X=X for every finite set X.

III. §=X.

If p=0, axioms I-1II coincide with the well-known axioms
of Kuratowski?). If x>0, axiom I is stronger than the first axiom
of Kuratowski.

It will be shown that in the case x>0 it is convenient to .
modify some topological notions and definitions. The idea of the
modification is that the words: ,,an enumerable sequence”, ,,a finite
set“, ,,an enumerable set” should be replaced by ,an w.-sequence”,
»a set of a poteney <r.”, ,.a set of the power x,” respectively. After
this modification many topological theorems on separable metrie spa-
ces holds also for w,-additive spaces whose power, in general, is >8,.

It is not the purpose of this paper to specify all topological
theorems which can be generalized in the above-mentioned way.
Only the direction of the generalization will be shown and some
singularities which appear in connection with the notion of com-
pactness and of completeness will be discussed. The final section
contains an application to the theory of Boolean algebras.
mat the Mathematical Congress in Wroctaw on December 14, 1946.

2) oy always denotes an initial ordinal (i. e. @, is the least ordinal such
that the set of al! ordinals {<w, is of the power ).

3) For brevity’s sake we say ,an e-sequence” instead of ,a (trausfinite)
sequence of the type e“.

4) Kuratowski [1]. p. 20.
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In the rest of this paper it is always supposed that x4 is a fixed
ordinal such that w, is regular 5). All spaces considered in this paper
are wy-additive. In §§ 1-4 we assume that u>0.

§ 1. The modification of topological notions. Since
axioms I-ITT imply Kuratowski’s axioms, all theorems given in
Kuratowski [1] Chapter I, hold for arbitrary w,-additive spaces.
Certain theorems can be expressed in a stronger form. B. g. (& de-
notes an wy-additive space):

(i) If a<owu, the sum (product) of any a-sequence of closed
(open) subsets of & is clgsed (open ).

In particular (since u>0),

(i") The sum (product) of any enumerable sequence of closed
(open) subsets of & is closed (open).

‘We obtain from (i) that

(ii) Every subset of power <<, is isolated and closed.

It follows from (ii) that w,-additive spaces of power <8, arve
not interesting. If a set X is dense in an w,-additive space of po-
wer >8,, then X is also of power >n,. This fact shows that the
question whether there exists an enumerable dense subset in an
wy-additive space has no topological sense ¢). On the other hand,
the question whether there exists a dense subset of power <R,
can be interesting from the topological point of view. Therefore
the definition of the separability should be modified if we want
this notion to keep its topological contents. Consequently we
assume the following definition: an o,-additive space is said to
be separable provided it contains a dense subset of power <Ru.

Tor the same reason ?) we must modify the notion of a basis
of a space in the following way: a basis of an wy-additive space &

5y 1. e.é%‘zm§<;¢” for every a-sequence (a<w,) of cardinals mg<CN,-

If a space & is w,-additive, where w, is not regular, & is also wui1-ad-
ditive. Since w4 is regular, the above assumption does not restrict the generality
of our consideration.

8) More generally: the question whether there exists a dense subset of
power <N,. In fact, such a subset exists if and only if the space is of power
<y (se0 (i)

7) For if an o,-additive space & possesses an enumerable basis (or, more
generally, a basis of power <) every one-point set (»)C& is open on account
of (i) since (z) is the product of all hasic sets which eontain the point z. Thus &
is isolated.
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is an w,-sequence {@;} of open sets such that every open subset
of & is the sum of a subsequence of this sequence. .

Analogously we must modify the notion of an F, and a G
on account of (i'). By (i) it is convenient to assume the following
definition: a subset X of an w,-additive space is said to be an K,
{a G4) provided that X is the sum (product) of an wy-sequence
of closed (open) sets.

The examples discussed above show exactly the direction of
the meodification of the topological notions: the words ,,a finite set®,
»an enumerable sequence” should be systematically replaced by
»& set of power <R,“, .an w,-sequence® etc. E. g. the elass of
all Borel subsets®) of an w,-additive space & should be defined
as the least class B such that: 1° every closed set belongs to B;
20 if X eB, then £—X B also; 3° the sum of any w,-sequence
of sets belonging to B belongs also to B.

Some difficulties arise in connexion with the notion of the
first category. In accordance with the above-accepted direction of
the modification, a subset X of an w,-additive space & is said to
be of the first category if & is the sum of an w,sequence of now-
here dense sets. The analogy with the case u=0 is not complete,
since the sum of an a-sequence (w<a<<w,) of nowhere dense sets
is not, in general, nowhere dense ?).

§ 2. Properties of o,~additive spaces.

(iii) If {Gn} is an w-sequence of open subsels of an wy-additive
space such that Gny1CG, (n=1,2,..), then the product G,G,G,... is
both open and closed. i

This follows from (i') and from the equation ¢,@,G;...=GG,G;...

A topological space is called 0-dimensional if, for every open
set G and for every element p ¢ @, there exists a set H which is
simultaneously open and closed and such that p ¢ HCG.

(iv) Every regular w,-additive space is 0-dimensional.

8) The theory of Borel sets in an w,-metric space (see § 3) can be developed
analogously to the case u=0.

9) See theorem (xiii). On the other hand, there exist wp-additive spaces
such that the sum of any a-sequence (¢<w,) of nowhere dense sets is nowhere
dense. See theorem (xvi).
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In fact, we can easily define an w-sequence {@,} such that
P € G411CGFr 1 CG,CGE. The product H of all sets @, is both open
and closed by (iii), and p e HCG.

In an analogous way we can prove that

(v) If Fy and F, are two disjoint closed subsets of an ,-additive
normal space, then there exists a set H such that F;CH, FyH=0, and H
is simultancously open and closed.

It follows from (iv) that the only connected subsets of an
wyadditive regular space are one-point sets and the empty set.

It follows from (v) that

(vi) BEvery wgu-additive normal space with a basis possesses
-a basis composed of sets which are both open and closed 19).

Analogously as in the case u=0 we can prove that

(vil) FEvery regular wy-additive space with o basis is normal.

§ 3. w,-metric spaces. Let 4 be an ordered group 11). We
say that 4 is of charadter ®,?) if there exists a decreasing 13)
wy-sequence {eg} of positive elements of 4 with the property:

(*) for every positive element ¢e 4 there exists an ordinal
£y<wy such that eg<s for every £>£; (6<<wpy).

In every ordered group A of character w, we can define
2 limit of an wu-sequence {a;} of elements of 4. Viz. we say that
{ag} converges to @ ¢ A — in symbols:

a=1im a;,
E<ay

if for every positive ¢<A there exists an ordinal &< w, such that 1)
|a—ag<e for &>&, (§<wy)

1) See Kuratowski [1], p. 133.

1) I. e. an ordered set in which there is defined a sun of two elements
such that: 1° a+ (b4 ¢)=(a+b)+e: 2° a4 bsch+c if and only if a<ce; 30 for
every a and b there exists an element ¢ such that a= b+ ¢. The symbol 0 denotes
the element satisfying the equality a4 0=a. An element a € 4 is positive if a> 0.
ja] denotes the greater of the elements o and —a.

12) Such groups exist. A general method for their construction follows
from Hausdorff’s definition of the power of ordered sets. See Hausdorif {11,
p. 194. Other examples of groups with the character w, are ordered algebraic
fields of the character o, See Sikorski [1], pp..73-76. .

) 1. e. 0<lee ey for n<l &

1) E. g. if {g;} possesses the property (*), we have lim (a+s§)—a Thus
there are non-trivial convergent @, -Sequences. <o,
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Suppose now that with every pair {p,q} of elements of a set &
there is associated an element o(p,q) of an ordered group 4 such
that

a) o(p,p)=0; olp,9) >0 it pkq.

b) elp, O<elp,n)+elg,r)-

The function o{p,q) satisfying a) and b) is called a metric of &.
The set & with the metric o is called an w,-meiric space 15).

We say that an w,-sequence {p;} of elements of & com'erges
to a point pe& (in symbols: p= hmpg) if hm g(p,pg

t

The closure X of a set X C& is é‘he set of aH limits of w,-se-
quences whose elements belong to X.

The w,-metric spaces defined above possess many properties
of metric spaces. In particular:

(viil) Every oy-metric space is an oy-additive normal space.

(ix) An w,-metric space possesses a basis if and only if it is
separable.

The question arises whether Urysohn’s metrization theorem
can be generalized to the case p>0. The answer is affirmative:
every regular o,-additive space with a basis is metrizable by the
ordered algebraic field W, (theorem (x)). W, denotes here the
least algebraic field containing the set P, of all ordinals &< w,).
{The only algebraic operations in P, are the so-called ,,natural sum®
and ,natural product™ of Hessenberg) 17).

Let D, denote the set of all w,-sequences whose elements
are the numbers 0 and 1), For every two elements p={a,} and
¢={b,} of D, let

op,g)=0eW, if p=¢ and glp,q)= 5W}¢ it pFg

7y denotes here the least ordinal such that agEby,.
It is easy to see that o(p,q) fulfils the conditions a) and b).
Thus D, is an w,-metric space.

15) For example, every ordered group 4 (of the character o ) with the

metric gla.b)={a—bj <4 is an wy-metnc space.
w,-metric spaces were considered by Hausdorff in [1], p. 285-286. See

also Cohen and Goffman [1] and [2].

6} The exact definition of TT is givenin Sikorski[l],p.82. Every element
w ¢ can be represented in the form w=(a—g)/(yy— ) where a,8.y, SePy, y£4.

17) See Hausdorff [2], p. 65.

%) D, i8 a generalization of Cantor’s discontinuous set.

Fundamenta Mathematicee. T. XXXVIL 9
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(x) Every regqular wy-additive space & with a basis is homeo-
morphic to a subset of Dy.

On account of (vi) and (vii) there exists a basis {G;} of &
whose elements are both open and closed. The formula

h(x)y={a,} € D,
where
a,=0 if wnone@, and a,=1 i re@,
defines the homeomorphism of & in 9D,.

The exact proof is the same as the proof of the analogous
theorem for O-dimensional spaces in the case u=019).

The problem whether the space 9, possesses a basis is equi-
valent (see theorem (ix)) to the hypothesis: 2“"<xy for w»<<p.
In fact, the set D,. of all sequences {a,}e¢ 9, such that a,=0
for a<n<<wg, is an isclated subset of P, of the power 2%. The

sum ' Dy, is dense in D,..

o
ﬂ\zz\m'u

§ 4. Compact and complete spaces. An w,-metric space &
(with o(p,q) € A) is called

compact, if every wy-sequence {p,} of points of & contains
an wg-subsequence {pﬂg} convergent to a point p e &;

complete, if every w,-sequence {p,} satisfying Cauchy’s con-
dition ) converges to a point p ¢ &;

totally bounded, if for every positive element & e 4 there exists
a decomposition = 2 X;, where a<<w,, and all sets X, are of

: 0i<e

diameter 2) <e.

Cantor’s theorems on intersections of closed sets hold also for
u>0. Namely:

(xi) If {F¢} is a decreasing w,-sequence of 'non-émpty closed
subsets of an w,-metric compact space, then [] Fe==0%),
) 0<E<ay

1) See Kuratowski [1], p. 178-174.

20) I. e. for every positive ¢ ¢ .4 there exists an ordinal §0> 0y, such that
oppp)<sfor Sa>4&.

21) We say that a set XC & is of diameter ¢ if o(p.g)<<e for every p,ge X.

22) The intersection of a decreasing a-sequence (where o< oy i8 a limit
number) of closed sets can be, however, empty. Example: {p,} is an a-sequence of
different points of &, and F§ is the set of all points Py, With > &.
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(xii) If {F¢} is a decreasing wy-sequence of non-empty closed
subsets of an wy -metric complete space such that the diameter of Fy
converges B) to 0, then [] Fs+0.
0<§<"’y

The proof of these theorems is the same as for u=0.

In the case y=0 theorem (xiii) implies the well-known theorem
of Baire that in every complete space the complement of a seb
of the first category is dense 2¢). This implication does not hold
for u>0; Baire’s theorem cannot be generalized (theorem (xiii)).

Let Dj, denote the set of all sequences {a,}e P, such that
the equality a,=1 holds only for a finite number of ordinals 7<<w,.

xiii) DY is a dense in itself, compact, w,-metric space. D% is
u ; PACt, sp o

the sum of an enumerable sequénce of nowhere dense sets.

Let {p,} be an w,-sequence of elements of Dj. Since u>0
and w, is regular, there exists an integer n and an w,-subsequence
pl§={a§,} such that the equality aj=1 holds for n ordinal numbers
né< <

Let & denote the least integer such that the w,-sequence {7Z}
contains an increasing w, -subsequence. If all sequences are bounded,
let k=mn-+1. By the definition of %, there exists an increasing
wy-sequence {rg} of ordinals <, such that

1° 5l =#t for 1<i<k, where %' does not depend on &.

20 if k<n, the sequence z* is increasing.

The w,-sequence {p, } converges to the element p={a,}e .l
where a,=1if n=19' (1<i<k) and a,=0 for all remained 7<w,.

Thus the space Dy is compact. It is clear that DY is of po-
tency m,.

Let now D, denote the set of all p={a,} Dy such that the
equality a,=1 holds for at most n different ordinals #. Obviously
D=D;+D,+D,+ ..

Tt is easy to see that D, is closed in If,. Every point p={a,} ¢ D,
is the limit of an w,-sequence {p;} eDp—D, (i.e. D, is nowhere
dense in Dy). In fact, leb 5,< 7,<..<<7, be all ordinals such that

#) I.e. for every positive element ge d there exists an ordinal &<<wu
such that F; is of diameter <e for every £> &.
24) See Kuratowski [1], p. 320.

9*
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a,=1 (1<i<k, k<n} and let p;-‘a". where

74
G=1 for g=y, (1<i<h),
=1 for p=p+E+i (I<i<ntl),

a;=0 for all remaining ordinals #< Wy -

By this definition p;non e D), and im p=p.

c<m[,

Since p.#=p. we also infer that D?‘ is dense in itself. Theo-
rem (xiv) is proved.

In the case =0 every dense in itself, compact, metric space
is of the power 2% One might think that, analogously, every
dense in itself, compact w,-metric space should be of the power 8¢,
Theorem (xiv) shows that this hypothesis is false. I know no example
of an w,metric compact space ¥) of power > ,.

(xiv) The space D, is complete.

Let p=—~"a,7} be any w,-sequence (of points of 9D,) satisfying
Cauchy’s condition. For every &< w, let ap denote an ordinal such
that p,—p,|<1/é for ap<E'<E "< w,. The sequence 11;5, converges
to the point p={a,}, where a,=a;, ¢.e. d.

If w, is not an inaccessible aleph (in the strict sense) ®), 9, is
not compact. In fact, the space 9P, contains then an isolated subset
of power >, (see the remarks at the end of § 3).

If 8, is an inaccessible aleph (in the strict sense), then D, is
complete and totally bounded. The question whether 9, is then
compact, is unsolved.

The space 9D, fulfils Baire’s theorem. Namely:

(xv) Let {X;} be an w,-sequence of nowhere dense subsets of D,.

For every a<w, the set ) X: is nowhere dense. The set D— > X
[ 0CE <y,
is dense in D,.
For every p-sequence b={b,} (0<f<<w,) whose elements are
the numbers 0 and 1 let D(b) denote the set of all p={a,} ¢ D,
such that a,=b, for 0<{y<g. The set D(b) is both open and closed
in D,.

25) Other instances of compact wy-metric spaces are bounded closed sub-
sets of Wy Such sets are of power <CNu. See Sikorski [1], p. 84 and p. 87.
26) Ree Tarski [1], p. 69.
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Let G be any open non-empty subset of D,. It is easy to
define an increasing o, -sequence {fs} of ordinals <w, and an
mg-sequence {bf} such that *

(a) b¥ is an pgsequence whose terms are the numbers 0 and 1;

(b) D(b%)CD(b%) for £< &, (i. e. b% is the & -segment 27) of bé);

(e) D(HHCGE— §_? X- for O a o,

OCE-
By (xii) and (xiv), [] D(B%)=0, i. e.
<a Ty
) G— 3 X:=0.
0<§x1(-l“(
@ being an arbitrary open set, we infer from (c¢) that, Z X:

0L i< e
is nowhere dense for every a-<o,. Analogously we infer from (d)

that D,— Y X is dense in Q)u, q. e. d.
‘<"u

Analogou»lv to the case n—U it can be proved:

(xvi) Every compact o, metric space is complete and totally
bounded. :

In the case =0 the converse theorem is also true. This does
not hold for y>0. Namely:

(xvil) If u=r+1, if w, is regular, and if 2Xe=yq1, for a<y,
then the w melric space D, contains a closed isolated and totally
bounded subset D of the power x,.

The o, -melric space D is thus complete and totally bounded,
but not compact.

As Specker ) has proved, if the conditions mentioned above
are satistied ), then there exists an o,-sequence of sets {8} such
that:

. (a) elements of §; are f-sequences whose terms are the numbers -
0 and 1;

(b) 4 \;‘zxv (0< E<my);

(e) if 0<é<n<w, and beS,, the &segment of b belongs
to Ng;

(d) there exists no w,-sequence whose &-segment belongs
to S: for every f<<wy.

27) An g-sequence a=f{uy} is the a-segment of a g-sequence b= by} (e <<B)
if ay= bﬂ for n<la-

28) Specker [1].

29} This holds e. g. for u=1.
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Let p.——_{a,,p'},,,m be a I)Olllt- of :’D’" such that t e F—%egl[ ent

1 Ve )elonbs to ~E and @ 0 for é- <7 Dy - Let 1 ’
£ © 7 < 7Y -

al po1r i3 P (;< Wy ). i 7 b D he she set of

The w,sequence | P, contains no convergent wy-Subsequence

I ’ i i
n fact, suppose :1(1_:11 st:p:{a,,} in 9,. We may assume that
i< I!’ £ B g g

9(p,p1§)«<:1;§. Then the &-segment of » and the §-segment of p_ are
. - y K
identical. Since z:>£, the &-segment of 2,. belongs to S; bx: (e)

Thus the —stgmenb of C. g r ever f 0 which is
e £-se : » belongs to k\g O 2 \Y §
]lnp()fﬂélble on account of (d). < <« sy
(& n"ecﬂlently the set D is clos d, i d n 0
¥ 5 S isolate & f t g
' - 0ns : : ((/) 8 se 8 ed, and ¢ he poten Y 8‘

1):{%‘ (pe) + 2 D-INp).

=
bes,

nt

Since 1)-D(b) is of diameter <1 /a, the set D is totally

on account of (b). 1 onnded

. 8 i An ap_p_lication to the theory of Boolean alge-
as. An ogadditive regular space & is said to be wy-bicompact

IOV y s0veri
1 ded every open covering F=3 (¢, containg a subcovering

=Y !
=2 (7,5, where o< w,.

" % CB_;)(olez"xu a;légebr& K iy called w,-complete ) if, for every
88 o with C'<x,, there exists the sum of all elements Aeé’
‘he following theorem ma 81 o '
. 3 y be considered as a alizati
of a well-known theorem of Stone 81y; ' seneraliztion
(xviil) Let K be an o,-com
. e ou-complete Boole tlyebr d
lowing conditions are eqm’vaz’ent: ? Sttt
(a) K is isomorphic to the fi
‘ 4 1 > field of all both open and closed subsets
of an o -bicompact o4-additive space {%’ e closed s
‘. . )
(b) every w,-additive proper ideal »

) of K 1is contal N an
oy-additive prime ideal of K »o  omained & "

) In aceordance with this definiti
. . } + this-definition every B
In this section we assume uz=0. ¥ Bodl
) 8tone [1], p. 378.
32 i M 1
) An ideal 7 of 4 is properif I 4; it is o -additive it 3 A, <1 for évery
a-sequence g eI {(a<<o e ‘ o

ean algebra is w-complete.

-
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{@)—(b). It is sufficient to prove that the field 3) F of all both
open and closed subsets of an w,-additive ,bicompact space &
possesses the property (b). Let I be an w,-additive proper ideal
of F, and let X, be the sum of all sets Xel

Suppese X,=%. The space & being w,-bicompact. there is
an a-sequence X:eI (a<e,) such that F=X,=2 X;. Conse-

quently el ie, in contradiction to our assumption, I is not
proper.

Thus we infer there is a point &z, « £—X,. The class I, of
all X eF such that zononeX is an w,-additive prime ideal,
and ICI,.

(b)—(a). Suppose K satisfies the condition (b). The construction
of the required space & is analogous to the well known construction
of Stone.

For every A e K let I(4) be the class of all w,-additive prime
ideals I such that 4 noneZ. The class F of all sets h(4), where
4 ¢ K is an o -additive fields of subsets of the set %= h(E) where E
is the unit element of K. The mapping & is an isomorphism of K
on F.

Consider & as a topological space with F as the class of neigh-
bourhoods. F being w,-additive, the space & is also “w,-additive.

Suppose & is not w,-bicompact, i. e. there is an open covering
=) X, such that

7

*) F=3 X, for every a-sequence Xk a<on.
P s

We may assume that X.= h{(4.) e F. The condition (*) implies
that the least w,-additive ideal T containing all elements A,e K
is proper. By (b), I is contained in an w,,-additive prime ideal I,.
Since 4, ¢ I,, we have I,non e X,=h(4,) for every . This is
impossible, since F=2 X.. i

Thus the space & is wp-bieompact‘ Consequently F is the
field of all both open and closed subsets of &, q.e.d.

It is to be remarked that if an wy-eomplete_Boolean algebra K
has the property (b), every quotient algebra K I, where T is an

¥ Xge F for every a-sequence
Te ©

Xg e F {a <my). On account of (i), the field of allEhioth open and closed subsets
of an w,-additive space & is o -additive.

33y A field of sets Fissaidto be mu-addiiive if
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o -additive ideal of K, also bossesses this property. Consequently
every such quotient. algebra K/T is isomorphic t0 an o -additive.
tield of sets. *

An instance of an @,-complete Boolean algebra with the
property (b) is the field of all hoth open and closed subsets of DZ‘
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2-dimensional Absolute Retract.

By

On an Irreducible

Karol Borsuk (Warszawa).

In 1934 Mazurkiewicz and the author of the present paper?)
constructed in the Euclidean 3-dimensional space E; an absolute
retract 2) which eannot be split into finite sum of proper subcontinua
having the 1-dimensional Betti number vanishing.

The purpose of this paper is to give an example of an absolute
retract Pe, (lving also in E,) which is a 2-dimensional Cantor-
surface ), such that every proper 2-dimensional closed subset of
it has the infinite 1-dimensional Betti number. In particular P,
contains no 2-dimensional proper subset being an absolute retract.

1. Irreducible euttings. A subcompactum (' of the 3-di-
mensional Euclidean space E, is said to be an irreducible cutting
of E; provided that E—C is not connected, but for every closed
proper subset A of C the set B—A is connected. Any irreducible
cutting of E, iz a 2-dimensional Cantor-surface.

Itis known*) that irreducible cuttings of B, can be characterized
as compacta CCE, such that 5)

(1) pHC) >0,
2) it 4=4CC and 4=C, then p*d)=0.

Y) K. Borsuk and 8. Mazurkiewicz, Sur les réfractes absolus indécompo-
sables, Comptes Rendus de I’Académie des Sciences 199 (Paris, 1934), p. 110-112.

?) A subset 4 of a space M is called a refract of M, if there exists a conti-
nuous mapping f (called a retraction) of M onto 4 such that f(x)==z for every
zed. A compactum 4 is said to be an absolute refract provided it is a retract
of every space M.

%) A compact 2-dimensional space is called a Cantor-surface if it cannot
be disconnected by any subset of dimension 0, See P. Urysohn, Mémoire sur
les multiplicités Cantoriennes, Fund. Math. 7 (1925), p. 122, 123.

4} See P. Alexandroff and H. Hopf, Topologie I, Berlin, Springer 1935,
. 391.

3) p#(C) denotes the k-dimensional Betti number of the compactum €.
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