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o -additive ideal of K, also bossesses this property. Consequently
every such quotient. algebra K/T is isomorphic t0 an o -additive.
tield of sets. *

An instance of an @,-complete Boolean algebra with the
property (b) is the field of all hoth open and closed subsets of DZ‘
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2-dimensional Absolute Retract.

By

On an Irreducible

Karol Borsuk (Warszawa).

In 1934 Mazurkiewicz and the author of the present paper?)
constructed in the Euclidean 3-dimensional space E; an absolute
retract 2) which eannot be split into finite sum of proper subcontinua
having the 1-dimensional Betti number vanishing.

The purpose of this paper is to give an example of an absolute
retract Pe, (lving also in E,) which is a 2-dimensional Cantor-
surface ), such that every proper 2-dimensional closed subset of
it has the infinite 1-dimensional Betti number. In particular P,
contains no 2-dimensional proper subset being an absolute retract.

1. Irreducible euttings. A subcompactum (' of the 3-di-
mensional Euclidean space E, is said to be an irreducible cutting
of E; provided that E—C is not connected, but for every closed
proper subset A of C the set B—A is connected. Any irreducible
cutting of E, iz a 2-dimensional Cantor-surface.

Itis known*) that irreducible cuttings of B, can be characterized
as compacta CCE, such that 5)

(1) pHC) >0,
2) it 4=4CC and 4=C, then p*d)=0.

Y) K. Borsuk and 8. Mazurkiewicz, Sur les réfractes absolus indécompo-
sables, Comptes Rendus de I’Académie des Sciences 199 (Paris, 1934), p. 110-112.

?) A subset 4 of a space M is called a refract of M, if there exists a conti-
nuous mapping f (called a retraction) of M onto 4 such that f(x)==z for every
zed. A compactum 4 is said to be an absolute refract provided it is a retract
of every space M.

%) A compact 2-dimensional space is called a Cantor-surface if it cannot
be disconnected by any subset of dimension 0, See P. Urysohn, Mémoire sur
les multiplicités Cantoriennes, Fund. Math. 7 (1925), p. 122, 123.

4} See P. Alexandroff and H. Hopf, Topologie I, Berlin, Springer 1935,
. 391.

3) p#(C) denotes the k-dimensional Betti number of the compactum €.
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Suppose now that the irreducible cutting ¢ of Ey is locally
connected and that
(3) PHO)=0.

Let 4 be a proper subcontinnum of ¢, and ¢ a component
of (—A. Since € is locally connected, the component & is open
in (8). Let us obsgerve that

(4) F—G is a continuum.

First we note that, by (3), the set € is unicoherent ?), i. e. if
we split ¢ into two continua, their common part is also a continuum.
But the set @ is a continuum, and so is the set ¢—@ obtained from
4 by addition of all components of ¢—4 different from G._ We
infer, by the relation ('=@G+ ((—@), that the set G- (C—@)=G—@G
is a continuum.

Let B he a closed subset of the continuum A such, that p{(B)=0
and B-C—A4=0. Let us show that

{5) 4 —B is connected.

Otherwise 4 would be decomposable into two closed proper
subsets 4,, 4, such that
4,-4,=8B.

By (4) and B-C—4 =0, for every component ¢ of ('—4 holds
at least one of the two following inclusions:

—@C4,—B or. G—GCA,—B.

Adding to 4; all components of ¢—A4 satistying the first of
these inclusions, we obtain 8) (with regard to local connectedness
of ) a closed subset AT of C. Similarly, adding to 4, all compo-
nents of (‘—A satisfying the second of these inclusions, we obtain
a closed subset 47 of C.

Since 4,3 A=+ d,, we infer that

AFG 0, and AFE0.

6) C. Kuratowski, I'ne définition topologique de la ligne de Jordan, Fund.
Math. 1 (1920). p. 43.

7y E. 8ech, Sur les continus Péaniens unicohérents, Fund. Math. 20 (1933),
p. 232.

8) C. Kur&towskl, Sur les continus de Jordan et le théoréme de M. Browawer,
Fund. Math. 8 (1926), p. 140.
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It follows by (2) that
PA7)=pH45)=0.
Furthermore, we have Af+Af=C, and A} -4f=4,-4,—B.

By pYB)=0 and the well-known formula of Menger Vietoris-
Cech %) it follows that p*(0)=0, in contradiction to (1).

Thus the relation (5) ir proved.

From (5) it follows:

Let A be a subcontinuum of an irreducible loeally connected
{6) cutting € of H; such that p}(C)=0. Then A cannot be diseon-
nected by a finite sum of disjoint simple ares lying in 4 —0—A.

2. Polyhedral irreducible euttings. If the irreducible
cutting 0 of E; is a polytope1%). then E,—C contains exactly two
regions 11). One of these regions has finite diameter; it will be called
the interior region and dencted by I'. The other region, with infinite
diameter, will be called the ewxterior region and denoted by A. Since !
is a Cantorian surface, every triangulation v of ' is homogeneously
2-dimensionil i. e. every simplex of 7 is either a triangle or a face
of a triangle belonging to 7.

Let L denote the mormal to the triangle T'= o(ag,a,,a) et
at the bavycenter i2) b of T. There exist on L two points &' and b”
different from b and such that the interior of the tetraeder
o(@gya1,a5,5") lies in the interior region I' and the interior of the
tetraeder o(ag,a,,a,b"') —in the exterior region 4. We shall say
that every point belonging to the interior of ofag.a,,a.,b') Yes on
the interior side of ihe triangle T (relative to the cutting €).

9) E. Cech, Théorie générale de Thomologie dans un espace guelconque,
Fund. Math. 19 (1932), p. 178.

10) We shall consider polytopes in the elementary sense, as sets contained
in some Euclidean space Ej and decomposable in a finite collection of simplexes.
By a k-dimensional simplex with the linear independent vertices ag,ay,...,ax € Ep
we understand the irreducible convex subset of E, containing ag,ay,...,ex; it
will be denoted by o{ap, a1, ...,az). It is known (see P. Alexandroff and H. Hopf,
1. ¢. p. 136) that every polytope can be triangulated, i. e. simplicially decom-
posed. i.e. decomposed in a finite collection of simplexes in such a manner
that the common part of each two simplexes is the simplex determined by their
common vertices. The collection of all simplexes (and their faces) of a triangula-
tion of a polytope will be called a geomeirical complex.

) See P. Alexandroff and H. Hopf, L c. p. 393.

12) By the barycenter of the simplex olag,ay,.-.,az) we understand the point

b{o)=

1
Lo
FII (ao+ a1+ ...+ az).
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A plane x is said to le on the interior side of the triangle T if
z-T=0 and = contains at least one point lying on the interior
side of T. )

Two triangles 7' and T’" belonging to the triangulation (C)y
are said to adjoin if they have one 1-face J common, and for every
two points b’, b'’ such that b’ lies on the interior side of 7 and 5"
on the interior side of 7"’ there exists in every neighborhood of the
center of J a point b such, that the polygonal line o(b,b')4o(b,d"')
lies in the interior region I". Tt can be geen without much difficulty
that to every 1-face J of every triangle 7" e v there exists exactly
one triangle T e v such, that 7"-T"'==J and the triangles 7’ and T"*
adjoin.

Let T* and 7" be two adjoining triangles of the triangulations.
7(0) and let J denote their common face. Let =’ and ='' denote
two half-planes containing respectively T and 7"’ and such that J
Heg on their common edge. There exists exactly one plane m passing

by J and such that =’ and ='* lie symmetrically to =. This plane =

will be called the plane separating the triangles 7" and T". The
eommon edge of =’ and #'' cuts « into two half-planes. Exactly one
of them cuts every plane lying on the interior side of the triangles
77 and T". This half-plane will be called the half-plane of the
segment J.

3. The zone of a geometrical subcomplex of a triangu~
lation of an irreduectible cutting. Let t(() be a triangulation of
a polyhedral irreducible cutting C of the space E,. For every simplex
o e 7(C) let us denote its barycenter by b(s). If ¢ is a triangle T,
then we understand by the inner normal of o the ray starting from
b(o), perpendicular to T and containing at least one point lying on
the interior side of o. If ¢ is a segment J, then we understand by
the interior normal of ¢ the ray starting from the center d(c), perpen-
dicular to the segment J and lying in its half-plane.

Let us denote, for every t>0 and every simplex o € 7(C) (a==0),
by b:(c) the point defined in the following manner:

10 If dim =0, i.e. o contains only one vertex a, then we
put by(o)= ‘

2 Tf dim o>0, then bc) denotes the point lying on the
interior normal of ¢ in the distance ¢ from b(s).-
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Let ¢ be a positive number. Dennte by 3 (o) the e-zone of the
simplex o, i. e. the set defined in the following manner:
(] Tt o=o(a,). then vy (o)={(ay},
(&) If o=olaga), then y, (a)=a(ao,a1 (),
I o=o(a,a,,a), then y(c)=0{ag,a,dasb:(0))
(0 Fola,.a,b(0lag,@1)),be(0)) T 0{ag, A2 b (6(a4, @5)), be ()
+ o{ay, ax,be(0(ay,85)),be{0)).

Hence, in the case o= o{ay, a;,a,} the e-zone y, (o) is a geometrical
complex consisting of 4 tetraeders. Those tefraeders and their faces
will be called the simplexes of the zone y, (o).

Clearly, if the diameter of o is <z then the diameter of y.(o)
is <2+

Now consider anyv subecomplex K of the triangulation (C).
By |K| we denote the polytope composed of all simplexes of K,
By the e-zone of K we mean the polytope y.(K) being the sum of
e-zones of all simplexes constituting the complex K. We see at
once that, for e sufficientiy small, the simplexes of those s-zones
constitute a complex. In particular, it holds if e<§o(z,y) for every
two points @,y belonging to two disjoint snnplexeq of the triangu-
lation 7(C). The number ¢ satisfying the last inequality will be said
to be adequate to the triangulalion ©(C). Speaking of an e-zone of
a subcomplex K of 7{C) we shall allways suppose that ¢ is adequate
to the triangulation <(C).

Remark, For ¢ sufficiently small the s-zone y,(K ) lies evidently
in an arbitrarily given neighborhood of the subcomplex K. Further-
more, it can be easily proved, that for every polytope W contained
in the polytope C-+I" and constituting a neighborhood in C--I
for every point % e|K| different from all vertices of the triangulation

7(C), there exists a positive number ¢, such that, for every 0<<e<eg,,
the e-zone y.(K) lies in W.

Theorem. If C is a polyhedral irreducible cutting of Ey an(l K is
a subcomplex of a triangulation ©(C) of C, then for every >0 adequate
to the itriangulation (C) there ewists a mapping 7.{x,t) reiracting by
deformation 13) the e-zone y (K) to K in such a manner that ro(2,t)=x
Jor' every xe|K| and 01K, and 7(z,t) ey (0) for every simplex o of K,
every x ey (o), and every U<t<1

= +

1
T

13) The mapping 7(x.1) will be called a refraction of the get X to its subset X,
by deformaticn, if it is defined and continuous in the Cartesian product of X and
of the interval 0 <t 1 and is such that: 10 r(x,?) e X for every weX -and 01,
2 iz, 0)==z and r{z,1) e Xy for every reX, 30 r(x,1)=2 for every »e X,.
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Proof. If x ey (K), then there exists exactly one simplex o
of K such that # belongs to y (K) but does not belong to the e-zone
of any proper face of o. If o=0(a,), then y (¢)=0(a,) and z=aq,.
Then we put

re(e,l)=a

for every 0<i<1.

It o= o0(a,,a;), then by (8) it is y (0)=0(ag, a1, b(aya,)). Hence
r=1lg g+ A + Ay -be(@g, @),
where Ay, 4y, 25, ave positive numbers such that 1,4+ A+ L, =1.
In this case we put
¥e (a:_.t)v= Ao gt Ay Ao b_pe(ag, as).

If o=o0(ay,a,a,), ther x lies in one of the four tetraeders
appearing on the right side of the formula (9). If 2 € o(a, 4y, @y, b (0)).
then

T=Ry A+ Ay a, -+ Ay @+ A5 b (o).

In this case we put
Te(@, )= Ay @g+ Ay @y + Ay - Gyt A5 bg—ps(0).
I xe a(aio,a,},bt(a(a,n,&f‘)),bs(a)), where 0<Cig<<i;<<2, then
=Ryt Aty Ay be(0(ay, @)+ A5 o(0).
In this case we put
Pe(@, )= A Qs Ay g4 2y Ba—p o (0(a4,04)) 4 25 -b—ne(0)-

‘We verify that the transformation 7 (z,t) defined in this manner
is a retraction of the e-zone y,(K) to |K| by deformation, and that
for every 0<C1<C1 and & ¢ ¢ the point 7. (x,t) lies always in the set y (o)-

~Thus the proof of the theorem is finished.

In particular, if the polytope |K| is contractible to a point
(i. e. there exists a transformation ¢(2,t) retracting | K| by deformation
to a point), then putting

p(@,1)=1r:(2,21) for
p(o,t)=g(r.(2,1), 2t—1) for

0<t<4,
1<l

we obtain a transformation y retracting y, (K) by deformation to
2 point.
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Using the theorem that a polytope is an absolute retract 14)
if and only if is contractible, we obtain the following

Corollary. |E| is an absolute retract if and only if y (K) is
an absolute retract.

4. Smoothly connected subpolytopes of a polyhedral
irreducible cutting. Let P be a homogeneously 2-dimensional
subpolytope of a polyhedral irreducible cutting ' of the space Ei.
There exists a triangulation {C) of C such that P is representable
as a subcomplex K of C. This subcomplex will be said smooihly con-
nected on C if for every two triangles I' and 7" of it there eixsts
in K a finite sequence of triangles

IT=ToTy..;Tey Thps=T"

such that T; and T, adjoin for every i=0,1,...,k. Obviously this
property is independent from the choice of the triangulation =(0);
it depends only upon the polytopes P and (. Consequently, we can
speak of the smooth connectivity of the polytope P lying on the
polytope C.

5. Flat rosaries. Let ( be a polyhedral irreducible cutting
of the space FE; with the l-dimensional Betti number vanishing.
Let P be a smoothly connected subpolytope of C. Consider a triangu-
lation 7(C) of (' such, that P constitutes a subcomplex K of 7(C).
Let R denote the sum of all triangles of 7(C) not belonging to K.
Hence R=(—P.

From (6) (where we put A=_P) and from the smooth connect-
ivity of P we infer, that there exists for every triangle 7' ¢ K a poly-
gonal simple arc

LyCP—FR

such that:

1° Ly has as its starting point a7 an interior point of the
triangle 7.

20 Ly has as its end point a7 an interior point of a triangle
of K.

3% If T'and 1" are two different simplexes of K, then Lp-Lp=0,
and Lp-T'5=0.

) See K. Borsuk, Uber eine Klasse von lokal zusammenhingenden Riumen,
Fund. Math. 19 (1932), p. 229.
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4 No vertex of K lies on Lg.

50 If @ is a point of Ly lying on a segment J ¢ I, then there
exists a neighborhood U of a such that U-L; is formed of two
segments perpendicular to J and lying in two adjoining triangles
of K.

If follows that there exists a natural number # such that I,
i8 decompos'a.ble into a sum of n»-+42 segments -5)

Ly=Lqo+Lgs+...+Lants

having disjoint interiors and satisfying the two following condi-
tions:

6° The interior of every segment Lg; lies in the interior of
one of the triangles of K.

70 Ly; has as its end points ag; and aqgy and age=an,
A p40== (1:;1

Let kg, denote the centre of the segment Lg;.

There exists a positive number a 80 small, that the distance of
bqy from every segment Ly y==Lg, (for every two triangles T, T eK
and every two indices 4, i’) is
>al2 and also the distance
of br; from every segment
belonging to K is >al/2. Let
@ r; denote the quadrat lying
in P and having br; as its
centre, a as the length of the
sides and let the direction of
one pair of its sides be parallef
to Lg;. The choice of the
number « implies that the
quadrates @Qg; are disjoint
sets (see Fig. 1) lying 1n the interiors of the triangles of K, and
that the common part of @; with the polygonal line } Ly is a sub-

T
segment of Ly; having by, as its centre and a as its length. Let us
denote the end points of this segment (ordered as they appear on
the oriented segment Lz; from agz; t0 aguq) by af, and afy;. -

%) Obyiously we can assume that the number n is independent from 7.
This assumption is of no true importance for the sequel but simplifies the notations.
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Let us put:
{10) Mpi=Qri+ 67071+ drin a'r.H-l%(;’r.i-;—: .
where QT 1 denotes the houndary of the quadrate Qr..;.
Putting
n
{11) M=) My,
=0
(12) M =33,
T

we shall say that M is a flat rosary (corresponding to the triangu-
lation 7) for the polytope P. The polytopes M, will be called compo-
nents of M, and the polytopes My; — links of M. The quadrates Qg
will be called guadrates of the rosary M, their sides — sides of the
rosary M, the segments of the form bgsars;q — exit segments and
the segments of the form arusaf.., —entrance segments of the
rosary M. The sides, exit segments, and entrance segments will
be jointly called segments of the rosary M and the quadrates and
segments will be jointly called elements of the rosary M.

If the diameters of the simplexes of the triangulation r are
all <# it will be said that the flat rosary M corresponding to the
triangulation 7 is & flat n-rosary. Clearly the diameters of all links
of the z-rosary are <27.

6.. Space rosary. Let ¢ be a positive number adequate to
the triangulation 7(C) and supposed arbitrarily small. Consider
an e-zone y.(K) of the complex K and choose a positive number g
so small that:

1. If ¥ is an element of the flat rosary M contained in the
triangle T, e K, and & is a point. lying on the inferior side of 7,
in the distance <2f from E, then z ey, (K). In particular, if E lies
in the interior of Ty, then z ey, (T,).

2. It 2,y are two points belonging to two disjoint segments
of the rosary M, then p(z,y)>28.

3. The length a of the sides of the quadrates of the rosary M
is >4p.

Cousider for every quadrate Qp; of the rosary M the pyramid
A(Q@r;) lying on the interior side and having the height equal to g.

- It follows from 3. that the triangles being faces of this pyramid

constitute with its base the angles <<30°.
Fundamenta Mathemsticae. T. XXXVIL 10
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Let us observe that the intersection of the pyramid 4(Qg;)
with the plane parallel to the base and lying on the interior side
in the distance $/2 from the base is a quadrate, its sides having the
lengths equal to «/2>24.

Now let us consider a side J of a quadrate @q; of the rosary M.
Let Tye K denote the triangle containing @y;. Consider two planes
7y, and w, containing 7 and constituting with the normal to T, the
angles 30°. Futhermore let us draw through the centre bp; of the
quadrate @r; two planes 7, and =, perpendicular to T, and passing
through both end points of J. Finally let us denote by =y the plane
parallel to T, and lying on the interior side of T, in the distance §/2
from T,. Clearly there exists exactly one region hbounded by planes
Ty, Ty -y 705 SUCH that its closure V(J) is a polytope its common part
with K being the segment J. The polytope V() has the shape of
a prism cut off obliquely; the normal profile of this prism is an
equilateral triangle with the length of the sides equal to f/)5<8.
The distance of all points of the polytope V(J) from the quadrate
Qr; 18 <f. From 1. we infer that they belong to y,(T)C 7 (K).
Futhermore we see at onee that y (K) constitutes in the set I
@ neighborhood of the set V(J). Finally let us remark that by 2. the
sets V(J) and V(J') for disjoint sides J and J’ are disjoint.

For every quadrate QT:} with the sides Jy, J,, J,, J, let us

denote by V(@r,) the sum Y V(J,). Clearly V(@) is a polytope
w=1

homeomerphic to the anchor ring, and the boundary Qr,=V(Qr,)-C
of the quadrate Qr,) corresponds to one of the parallels of the
anchor ring.

‘We now consider two segments of the rosary M with a common
end point arga: an ewit segment J=bgyar.y and an enirance
segment J'=drpq,a7:41. Let us draw through J two planes =,
and m, cutting the normal to the triangle T\DJ at the angles 300.
Similarly let us draw through J” two planes @j and =} cutting the
normal to the triangle T5DJ’ at the angles 30°. Denote by m, the
plane perpendicular to J and passing through bg; and by x5 the
plane perpendicular to J' and passing through a74q. Furthermore
we draw through ar;, a plane xz, such that the rays starting
from ar;y and containing respectively J and J' are symmetric
t0 m,; it is easy to see that if the triangles T, and 7§ are different,
the plane =, is the plane separating those triangles (defined in 2).
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Finally let us denote by = and =} two planes passing parallelly
respectively to the triangles T and Tj on their interior sides in the
distance § from the segments J and J’. It is clear that the planes
Ty, gy Ty Ty, 7 constibute the boundary of exactly one region
such that its closure V(J) is a polytope, and V(J)-T,=.J. By 1. the
polytope V(J) lies in the zone 7:(T,), and the zone 7 (K) constitutes
a neighborhood of V(J) in the set (‘-1 Similarly the planes
w1, 7, 7, w4, 75, constitute the boundary of one connected region
such that its closure V(J') is a polytope, and V(J'}-Ty=J". The
zone y.(K) constitutes in ("4-I" a neighborhood of V(J').

Let us also consider two planes =¥ and =} passing through
the exit segment J= briaryys at the angles 459 to the normal to
the triangle 7. Let af denote the plane perpendicular to J and
passing through the centre by; of Qr,. The planes =, 75y 7§, 70, g
constitute the boundary of a polyhedral region. Let us denote it
closure by V(J). It is easy to see that the set V*(()TJ) defined as the
closure of the set

ViQr)—V(J)
is a polytope homeomorphic to a figure obtained from the sphere
by matching two different points of its surface. The boundary QT,
of the guadrate @, constitutes the common part of the polytopes
V*(Q’p’i) and (.

The polytope V(J)-+V(J’) constitutes a kind of a bar, with
the triangular profile, joining the pyramid A(Qr,;) with the polytope
V{@r:41) in such a manner that it adheres to the triangles T’y and T§
along the segments ./ and J* and meets the polytope V*((;)m) only
in the point az;.

We put: .
(13) Nu= Q) V) + VT )+ VH (o),
(14) No=3 Ny, N=3¥,.
=0 T

The polytope ¥ will be called the space rosary (corresponding
to the triangulation = and to the zone 7e(K)) for the polytope P.
The polytopes Ny will be called components and the polytopes Np; —
the links of this rosary.

It is clear that the common part of the polytope (' and the
space rosary & is the flat rosary M. We shall say that M is the
base of N. Besides

C-Npy=Mp;; C-Np=Mp.
10%
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By our construction the rosary N lies in the zone y (K) and
moreover the zone y (K) constitutes a neighborhood of N in the
set ('+I". Furthermore it is easy to see, that for every point xe Ny,
there exists exactly one point of My; next to 2; let us denote it by
7(z). We define now a transformation 7g:(x,f) retracting the poly-
tope g, to the polytope My; by deformation, putting 7g(z,)
equal to the point of the segment =y (2)CNyp; which divides this
segment in the ratio #:(1—1%). The transfrrmation ry(x,t) evidently
satisfies the condition:

for every we Ny,

(15) olro,t),z)<e 0<t<1.
Now if we put
r{zt)==x for weP and 0<¥<1,
ry(@t)=rp(x,t) for zelNp, and 0<IKL],

we obtain a mapping ry(#,?) retracting, the polytope P-+N to P by
deformation. In view of the inequality (15) we obfain the following.

Theorem. There exists a mapping ry(x,t) reiracting by defor-
mation the polytope P+N to the polytope P in such a manner that

o(ry(2,0), w)<e for every «eP+N and 0<EL1.

Repeating the reasoning used at the end of 8 we have

Corollary 1. In order that P should be an.absolute refract it
45 necessary and sufficient that PN be an absolute retract.

Finally, let us remark that if ¢ is a simplex of the complex K
then the mapping #(#,t) considered only for

& ey, (o) (P+N)

is a retraction by deformation of the polytope 7.(0)-(P+N) to
the simplex ¢. Thus we have

Corollary 2. The set (P+N)-y,(0) is an absolute retract.

By the construction every link Ny; of N lies in one or in two
adjoined triangles of the triangulation 7. Hence the diameter of N i
is <2(e+1), where n denotes (as at the end of §) such a positive
number that the diameters of all simplexes of the triangulation =
are less or equal to 7.
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The link Ng; is homeomorphic to the sphere in which two
points belonging to the surface are identified. By this homeomorphism,
2 set homeomorphic to a cercle lying on the surface of the sphere
beyond the identified points corresponds to the guadrate @y,.
It follows that the set i

‘\’T’J"[QTJ_QTJ]
(where N, denotes the boundary of the polytope Ny, is a retract
by deformation of Ng;. It means that there exists a continuous
mapping #7(@,1) defined for » e Np; and 0<<¢<<1 such that

(16) rrir,t) e Ngy for zeN;;, and 0<i<1,

(17 rrgz,0)=x  for xreNg,

(1%) rril@,1) € Noy—[Qri—Qrd for eNq,

(19) rralTt)=a  for reNp—[Qp—05] and o<i<1.

From the fact that the diameter of the link Ny, is <2(et9)
we infer

(20) olrp (), &)< 2(e-y) for areNp; and 0<i<{1.

Remark. It follows from the construction of the rosary N
that if # is a point of PN, not being a vertex of the complex K,
then the zone y (K) constitutes a neighborhood of z in the set
P+ I.

7. Subordinate polytope. Let N denote the boundary of
the space rosary N. The polytope

N .
P'=P+ NN N{Qr—r]

T =0
Wwill be said to be the subordinate polytope to P (corresponding to
the triangulation 7 and to the zone y (K)). We see at once that the
common part of P’ and R=(C—P js the same as the common part
of P and R and that the polytope
=P +R

is an irreducible cutting of the space E, with the interior region
~ I"=I—XN '
and the exterior region

A=A (F—N) N S"(QTJ"‘QTJ‘-
T =0
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Moreover it is clear that the polytope P’ is smoothly econ-
nected on €' and that the 1-dimensional skeleton of P 16) (corres-
ponding to the triangulation 7) is a subpolytope of P'.

Theorem. There exists « retraction by deformation ry(x,t) of
the polytope PN to the subordinate polytope P’ such that

a(ryfa,t).w) < 2-(e+9y) for weP+N and 01,

Proof. Consider the mappings 77i(x,t) (defined et the end
of 6) retracting by deformation the sets ¥ r:to the sets 1\7'7,,-—[(}7; —0 7.4
By the equalities

P+N=P'+Y Y N;, and ;\"1,1"P,:;\"I’,i""f,qmi“()hi]’

T i=0
and the formulae (16), (17), (18), (19) and (20) we infer that putting

e d)=x for reP’ and 0<iL1,

ralyt)==1pla.t) for aeNg,

(i=0,1,..,2) and 0<i<<1.

Wwe obtain the retraction required. :
Using the same reasoning as at the end of 3, we obtain from

the last theorem the following

Corollary 1. In order that P’ should be an absolute retract
it s necessary and sufficient that P4+N be an absolute retract,
Combining this result with the corollary 1 of 6 we obtain

Corollary 2. In order that P’ showld be an absolute retract it
s necessary and sufficient that P be an absolute retract.

8. Subordinate zome. Let (' be a polyhedral irreducible
cutting with p'(()=0. Consider = homogeneously 2-dimensional
subpolytope P of (' and the complementary polytope R= (C —P.
Let v denote the triangulation of the polytope € such that P ig
representable in the form of a subcomplex K of 7. As before, let
us denote hy #u a positive number greater or equal to the diameters
of all simplexes of the triangulation =, and by & a positive number
adequate to the triangulation 7. In 7 we have constructed the sub-
ordinate polytope P’ corresponding to the triangulation r and to
the zone v (E). Let us denote by I the interior and by A’ the

) By the 1-dimensional skeleton of | K| we understand the polytope built
of all 0- and 1-dimensional simplexes of K.
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-exterior region of E;—C’, where ('=P’'+R. Now consider a trian-

gulation ¢’ of the polytope ' such that P’ is representable in the
form of a subcomplex K’ of ', and so are the polytopes P', P-P’
and P'—P-P. We can assume that the diameters of all simplexes
of the triangulation 7’ are <7, and that for the 1-dimensional
skeleton of A, the triangulation 7’ is a subdivision of the triangu-
lation r.

Theorem. For every sufficiently small number & >0 there
cxists a retraction ,(x) of the e-zome y (K| to the ¢'-zone y (K') satisfying
the eondition

{21) o(ry(®), @) < Le+-2y  for every xrey (K).

Proof. Let ¢’ be a simplex of the triangulation 7’. There exists
atriangle T e K such that the zone y (T) constitutes a neighborhood:
in C4TI of every point « o’ not being a vertex of z. Hence, by the
remark in 3, we infer that there exists a positive number ¢ so small
that y_(a’)Cy (T). We may assume that the number &' is so small,
that the last inclusion holds for every ¢’ ¢ K'. Let us observe that,
for every 1-dimensional simplex J e K, if ¢'Cy (J), then y (o')C P (J)-
If J lies only on one triangle of K, then in a neighborhood of every
interior point of J, the polytopes P and P’ are locally identical and
consequently ¢'CJ and y,{(¢")Cy (J). If J is a common side of two
adjoined triangles 7y and T, of P, then in a neighborhood of every
interior point of J, the polytope P-y (Ty+T,)=T,+1T, is locally
symmetrical to the plane x of the triangle y (J). It follows by the
construction of the subordinate polytope P’, that the polytope
Py (T;+1T,) in a neighborheod of the triangle ¥ (J) is also locally
symmetrical to the plane =. Consequently y,(o')Cx and, for & suf-
ficiently small, y_(¢')Cy ().

The polytope P’-y (J) is the sum of the segment J and of
a finite number of triangles each of which has exactly one vertex

on J. It is easily seen (Fig. 2)
that the set @ @ ) @

W)=y Py (T)+N -y, (J) J
Fg. 2

is an absolute retraet.

Let ry(z) denote a mapping retracting y (J) to W(J). Thus the
mapping 7, is detined on the zone of the 1-dimensional skeleton of
the complex K. If T is one of the triangles of K and 7 denotes its
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boundary, then the mapping 74(«) is defined on the zone ?’s(T) and
it retracts this zone to the set ’
PoA Py (TN -y (D)Cy (P oy (1) +N -, ().

But from the theorem in 3 it follows that the polytope
(P+XN)-y (T) is a retract by deformation of the set

;l}}(P’ '2‘JT))‘4‘A”~}IJT).

i

By the corollaxy 2 in 6, the set (PN ) ¥ (T) is an absolute
retract. Consequently the set yz,(P’-y{(T)H—.\‘-y:(T) is an absolute
retract. Hence, putting

ry(e)=a for every xeya,(P’-ye(T))—{—l\Vys(T)

Wwe obtain a mapping 7y(#) which can be extended over the set v (LY
in such a manner, that its values lie in Yl Py ()N sy (D).
If we extend 7, in this manner over all zones 7,(T), of the
triangles T ¢ K, then we obtain a retraction r,(z) of the zone ¥, (¥
to the set y (K')4+-N. By this retraction every point z ¢y (T) will
be mapped on the point lying in v (). :
Now consider the mapping r(@,t) defined in 7. Putting .

@)=z for @ey, (K').
gle)=ry(2,1) for zeXN,

and
74() = gry(ir)

we obtain a retraction r, of 7.(K) t0 y,(K’), such that for every
point £ ey _(T) the point r,(z) belongs to ¥,(T) or to y (T'), where T"
is a triangle adjoined to 7. But the diameters of v(TL) and » (1)
are <2e-+y and V(T)-y.(I')5=0. Hence the inequality (21) holds.

The set »,(K') will be called the zone of the polytope P’ sub-
ordinate to the zone y,(K). Evidently:

(22) P (E)Cy, ().

for zey (K)

9. Sequences (P} and {D;}. Let H be a regular tetraeder
lying in the space B, with the sides of the length 1. Let C de-
note the boundary of H, P one of its 2-dimensional faces and R
the sum of all other faces. We shall denote by R the boundary of
the polytope R or, which is the same, the boundary of the triangle P.

~ We shall define in B, two sequences of polytopes,” {P,} and
{Ds}, satisfying the following conditions:
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. 1z Og=Pr+ R is a polyhedral irreducible cutting of E,
with p1(0z)=0. The interior region E;—(; will be denoted hy I,
and the exterior region — by .1;.

2. PxR=R.

3k. Py is smoothly connected on (.

dg- 1) is the gp-zone of the polytope P, by some i triangu-

and ¢, is adequate to the triangn-

. 1
T where »
lation 7, of (%, where ’lk,gyzfx

. 1
lation 7, and less than T

3z DppCDy and there exists a retraction ri{x) of D, to Dy
such that ofx,rp(z)) <% for every el

The sequences {P} and {D;} will be defined by induction.
We put P,=P and denote by I, the }-zone of the polytope Py, cor-
regsponding to the arbifrary triangulation z; of C,. By virtue of
the corollary in 3 the polytope D, is an absolute retract.

Assume that the polytopes Py and D, and the triangulation
satistying the conditions 1x, 2%, 3;, 4z are alveady defined. We shall
define the polytopes Ppi; and Dy in the following manner:

Let Pgy; denote the subordinate polytope to Py corresponding
to the triangulation 7, and to the zone yEk(rk(Pk)). By the remark
made at the end of 6 the polytope D, constitutes a neighborhood
in Pp--TI for every point of P,y different from all vertices of the
triangulation v, (P,). Moreover there exists a positive number

1 . . R
Yprt1 S T3 and an sy y-triangulation 1,5y of the polytope Py,
sueh that:
1.in 744 the polytopes Pi-Pryy and Pryy— Py P, are
representable in the form of subcomplexes.
By the same reasoning as in 8 there exists a positive number

Epp1 < L adequate to the triangulation z,, and such that

Ty 251
2. the zone Dk+1"—"7’ak+,(rk-;_~1(Pi+1)) of ‘PH_
the triangulation 7, is a subset of D,.
3. There exists a retraction rpyq{x) of Dy to Dyyy such that

, corresponding to

Conp ) i, 1 1
(23) g('rHi{_m),m) < 451;{‘ 27, <4';_;§;'}*-3m <§;:§

for e Dy.
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From 7 we infer that P,y satisfies the conditions ety 2a44,
and 3gq1. The conditions 41, and 5; follow from the construction
of the set Dpy,.

As we have already stated, the set D), is an absolute retract.
By 5,—); we conclude that

{24) Dypyq is an absolute retract.

By the theorem in 8 and the condition 4, there exists a re-
traction r,(xr) of Dy to P,. This retraction maps every point x e D,
Iving in the zone of a simplex ¢ of the complex v »(F,) onto a point

1

Tx(w) € 5. But the diameter of the zone of o is <2 +7,< Pr=

Hence the retraction ri(r) satisfies the condition

- P 1 .
{25) o, 15{2)) <gm— for every xeD,.

Remark 1. Putting ri(xj=ux for every ze¢R we extend the
mapping r(r) over D,+ R without a loss of continuity and of the
condition (25).

Remark 2. By the construction of the polytope Py, the

1-dimensional skeleton of the complex 7,(P) lies in Puyy and
Py CP+I=1%. Hence AR CApyy and LpaCTy.

10. Construction of the set P.. Now consider the se-
quence of the mappings {f,) defined on the polytope D; by the
formula

eiry(@) for we D

By 5; the mapping fu(x) is a retraction of D, to the polyvtope
Dy, and

Tul@)=rerp—_y..

olfa(@) frul@)) < Sgis for every e D,

It follows that the sequence { {fe(2)} uniformly econverges in D;.
Putting
for every

Fealit)=1m fg(a) r el
k=00

we get a continuous mapping f., of D, onto a set
Peoo=1foo(D,}CD;,  for every k=1,2

Since rp()=ux for every # e P., and k= 1,2,..., also fo(z)=2.
It means that f,, is a retraction of the po]ytope D to P.. Hence
P is an absoluie retract.
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For »<ky and e Dy, 7(r)=2. Consequently the mapping

Je can be defined in the set D, as the limit of the mappings

PRT gy - Py ().
By (23) we conclude that

. < ! 1 ,
{27) olfo(®), ) < S s for red,,.
k=k,

By Pk;CDk“ we infer that

(25) u(J‘ P

1 .
,k. for every xre Py

Moreover, by (25) and by the inclusion PoCDy,. we obtain

{29) olx, Pr) < o7 for every @ e P,

Both relations (28) and (29) imply that the absolute retract P

ix the limit of the sequence of absolute retracts {P,l:
lim Py= P,.
hk=no

11. Elementary properties of P..

Property 1. By the remark 2 at the end of 9 the 1-dimen-
sional skeletons of all sets P, lie in P,. On the other hand the
polytope Ppyy—PF; P, is an 1-dimensional subcomplex of the
triangulation 7,.4. Consequently

Pra—PrPyC P, for every k=1,2 ..

Property 2. The sets P, and R as absolute retracts are
acyelic and Pe-R=F is a ~1mp1e closed curve. Hence, by the
well-known Mayer-Vietoris- Cech formula

PP+ R)=1. -
Property 3. From the property 2 we conclude that P+ R
cuts E, into exactly two reglons. Let us show that the ext enm region

Ag is identical with the sumn®Y.1,. By the remark 2in 9 5‘ 1,C oo
A=}
If rpede, then there exists a simple arc LCde ]ummg :vo with

a point z; e.1,. Then for k sufficiently great LC E,—P, and con-

sequently &, e,, which proves that A,CY A,.
=t
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On the other hand the set nr. constitutes the interior re-
=1
gion Iy of E;—(Pe+R). For, by remark 2 in 9, [[ICrI...
k=1

- . ;
Moreover, if w,<[[I%, then m,e¢E,—I, for some % Hence
A=t

24 € Ppt [pCPo+ .

If 4 is a closed proper subset of Po+ R, then B,—d is con-
nected. For, suppose on the contrary that A cuts Ey; then (by (25)),.
for k sufficiently great the set ri(4) also cuts %, 17). On the other
hand, choosing a point 2, € P,—4, we have for sufficiently great k-

rp{iy) € Pp—ri(A4).

Hence ri(4) is a proper subset ct the irveducible cutting Py R
and consequently it dces not cut E,. This contradiction shows that
the supposition that 4 cuts B, was wrong.

Property 4. P, is a 2-dimensional Cantor-surface.

For if P, is not a Cantor-surface, then it contains a 0-di-
mensional closed set 4CP, and two closed subsets P’ and P
of P, such that

P=P'+ P’ and A=P'-P".

At least one of the sets P’ and P’ does not contain £. Let us
admit that there exists a point x, e R—P".
" Putting @'=P’; Q”"=P"+ R we have

Q-Q'CR+P-P". and 2y €Q Q.

Thcn_ pl(Q’:Q’v’):O, and pX(Q')=p*(Q""}=0. By the formula of
Mayer-Vietoris-Cech P(Q'+Q")=0, contrary to Q'+ Q"'=P R
and to the property 2, .

12. 2-dimensional subsets of P.

Le*{nma. Let A be a 2-dimensional closed proper subset of P,
?’lm-c e:m.st.s- a natural number by such that for every b=k there ewists
e the triangulation ©,(P,) a triangle T swuch that T P CA.

) 8ee K. Borsuk and 8. Ulam, Uber isse Tnrari ’ 1bbi
S U s gewisse Invarionten der g-Abbil-
dungen, Math. Annalen 108: (1933). e dor e-45bd

icm

On an irreducible retract 157

~ Proof. Suppose the contrary: that for every triangle T of the
triangulation 7,(P,) there exists a point a eT-P,—A4. The 1-di-
mensional skeleton of P, being a subset of P, we have a¢ T—7,
where 7' denotes the boundary of 7. The zone yq(T) of T'is composed
of 3 triangles erected on 3 sides of the triangle 7. It is seen at once
that there exists a mapping ¢{x) retracting Vsk(i’) to 7' and that
all such retractions are homotopic.
Now counsider a sphere § with the centre a and the radius so
small, that § does not meet the sets A4, ygk(l") and Fk“?’ek(T)ﬁ

where I'; denotes the interior region of E,—(Px-+R). Then ySk(.’L")

does not cut the region I',—S. Let a; be a point of the surface &
of 8§ lying in the interior of 7"5,,(11)‘ Hence a, lies in . Let a, be

a point of the surface 8 lying in the exterior region A, of the set
E;—(Py+ R). Then the segment Ly=a;a, euts T in a point belonging
to the interior of 7. Deunote by a, the vertex of the tetraeder H
opposite to the triangle P. Since the zone Vak(i’) does not cut the

region I',—S, there exists a simple are I; joining a, with a, such that
its interior lies in the set I‘k—ysk(T)——S. Moreover, there exists

a simple are L, joining a, with a, such that its interior lies in A,—§8.
‘The set
Q=L,+ I+ L,

ig o simple closed curve and the absolute linking number 18) of £
and T is equal to 1. Tt follows 9) that there exists a mapping (x)
retracting E,—0 to 7. The mappings ¢(x) and y(x), considered
only on the zone ?’;,,(T) are homotopic. It follows #) that ¢ can

be extended on E;—Q, without loss of continuity, in such a manner
‘that the values of the extended mapping ¢, lie on 7. This means
that g, is a Tetraction of Ey—®2 to 7. In partiéular g, is a retraction

18) By the absolute linking of two polygonal simply closed curves 2, and 0,
we understand the absolute value of the linking coefficient of two 1-dimensional
cycles obtained by coherent orientation off all segments constituting 2, resp. Q..
See K. Borsuk and 8. Eilenberg, Uber stetige 4bbildungen der Teilmengen Eukli-
discher Riume auf die Kreislinie, Fund. Math. 28 (1938). p. 215, footnote 17.

9 1. ¢., p. 215.

20) See K. Borsuk, Sur un espace des transformations continues et ses appli-
cations topologiques, Monatsh. f. Math. u. Phys. 38 (1981). p. 382.
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of the set A-y_(T)+ 1 to 7. But the diameter of the zone v, (Ty
V3

is <2£k+”k<bz_i—‘2‘ Hence ' .

1 ' .
oly ((2),2) < S5y 10T every red -y£k(T)+T.

Now consider the mapping @*(@) defined in the set 4 Y ATV -1
3
(for every triangle T of the triangulation ,(P,)) by the formula

e @)=g¢ (x) for xed 'V;k(TH'T'

) We obtain a continuous mapping ¢* transforming 4 in the
1-dimensional skeleton of P, and satisfying the condition
1
olg*(x),2) Sszps  for every e d.
But this is incompatible with the supposition dimA=2. Thug
the lemma is proved.

Theorem. Ij 4 is a 3-dimensional proper closed subset
then pi4)=co. ? o P

_Proof. It is sufficient to show that p1(d)>m for every natural
number m. To prove it consider m disjoined closed 2-dimensional
subsets Al,ﬁig,...,:lm of 4 and a closed 2-dimensional subset 4,
of P, contained in P, — 4. By the preceding lemma, there exists
a .natural ‘number ko such that for every k>F, there exists in the
triangulation 7,(P,) such triangles 7, Ty..,T, that T,-P_CA
for v=0,1,...,m. T

The.set Pk—}-} is the polytope subordinate to P;, corresponding
to the tnangulatwn‘ 7 and to the zone ;v%(‘r;,(P,i ). By the con-
struction_of the subordinate polytope (see 5, 6 and 7) there exists
for every triangle T, (v=1,2,...,m) a component

i

n
~ Ty =Z N Ty, ;
i=0 .
of the space rosary N. The base of N 7, 18 .the component
n
o Tv:izﬂ"'vi
== *

of the rosary M. The set I, 7, containg quadrates lying

- in each tf'a, 1
belonging to the triangulation Tx(Pg). e
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Consider the boundary Qr,,,o of the first of the quadrates of My,.
It les on the triangle 7,. We have

Qr7,,0CT. PoCA.

Among the quadrates Qr,¢ (i=0,1,..,n) of My, there exists
one Iying on T',CP,—4. We infer that there exists an index 0<i,<n
such that the boundary Q'I'wiy of the quadrate @7, lies on 4 and
the boundary QTMH of the quadrate Qr, ;.1 does not lie on 4. Hence
there exists a point

e Tynly=1 7 4.

By the construetion of the space rosary in every neighborhood
of a, there exist points a,, ay such that a) belongs to V*(qu,-vﬂ),
the point a; belongs to .1, the segment

Li=a.a;

does not cut the set . and the points ¢, and a, can be joined
in dp1Cde by a simple arc Lj lying arbitrarily near the link
(-‘Y’I',.,i‘,_QT,.,i.,.)+Q.T,,,i,. in such a manner, that the ares L, and L7
have disjoint interiors. We infer that the ciosed simple curve
Q,=L,+L;CE;—4 has the absolute linking number with the
curve Qr . CA equal to 1 and with each curve Qr, i, (7=7) equal
to 0. It follows that if we give to each curve Qu,i., an orientation,
we obtain in 4 a system of m linearly independent 1-dimensional
cycles. Thus p(4)>=>m and the theorem is proved.

The set P, is an absolute retract, but no one of its 2-di-
mensional proper subsets is an absolute retract. Hence P, is an
irreducible 2-dimensional absolute reiract. The only proper subsets
of P, being absolute retracts are dendrites?). In particular the circle
cannot be topologically imbedded in P 2?). Moreover, for every
2-dimensional closed set Ang, pY{A)=oco. Hence®) A is not

) A continuum M is said to be a dendrite if it is locally connected and
contains no simple closed curve. Among the spaces of the dimension <1 the
elass of the dendrites is the same as the class of the absolute retracts.

) Another example of a 2-dimensional absolute retract which contains
10 homeomorphic image of the cirele is given in K. Borsuk, Sur les rétracies,
Fund. Math. 17 (1931), p. 164.

23) See S. Lefschetz, On locally connecied and related sets, Annals of
Math. 35 (1934), p. 118 and K. Borsuk, Zur kombinatorischen Eigenschaften der
Relrakte, Fund. Math. 21 (1933), p. 97.
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locally contractible. Consequently P, is also an example of an
irreducible 2-dimensional locally contractible compactum. Every
locally contractible closed proper subset of P, is of the dimen-
sion <1. ’ )

If we submit the space E, to a transformation consisting in
the identification of all points of the set R, we obtain the space E%
homeomorphic to Ej, and the image PE of P is a loecally con-
nected compactum cutting Ef into two regions I'Y and A% and
being their common boundary. It is easy to see that P% is an absolute
neighborhood retract being a closed Cantor-surface and containing
no 2-dimensioral absolute retract.

Panstwowy Instytut Matematyczny.

Linear functionals on spaces of continuous functions,
By

Edwin Hewitt (Seattle, Washington, U.S.A.).

1. Introduction. The present paper is concerned with the
problems of classifying, representing, and approximating to linear
functionals defined on spaces of real-valued continuous functions.
Let X be any topological space; let ©(X,R) denote the set of all
continuous real-valued functions defined on X 5 let €% X, R) denote
the set of all bounded functions in C(X,R). We shall denote the
real numbers throughout the present paper by the symhbol R.
A real-valued function I defined on C(X,R) (or G X,R)) is said
t0 be a'linear functional if I{af - fg) =al(f)+ pl(g) for allf, geG(X,R)
{or XX, R)) and all o, § ¢ R. We employ the usual definitions of
sum, scalar multiplication, produect, and positivity in G(X,R) and
C*(X,R). A linear functional T is said to be positive if it is not the
zero-functional and if it is non-negative for positive functions.
A linear functional is said to be bounded if it carries bounded sets
of functions into bounded sets of real numbers.

In G(X,R), there are at least four interesting topologies. They
have been widely studied, and are described, for example, in [7],
pp- 48-49. It is of some interest to consider the linear functionals
on G(X,R) which are continuous under these four topologies for
(X, R). We shall say that a linear functional is -5 k-, u-, or m-con-
tinuous if it is a continuous mapping of €(X,R) into R under the
?-; k-, u-, or m-topology, respectively.

) Representation of linear functionals by means of integrals,
which forms the central theme of the present paper, has been
studied by a number of writers during the past four decades. (We
limit ourselves to linear functionals defined on spaces of continuoiig
Fundamenta Mathematicae. T. XXXVII, 11
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