248 J. Dieudonné.
V,,,J (@) est le cube de centre x; et de coté 1/n; on a, avec les notations
ci-dessus, et en vertn du th. de Fubini

[tan = [0
Vn,J v

Vn,J

d’autre part, .anY J($)=[LJI7"’ (). Le th. de Vitali rappelé ci-dessus
montre done que, pour tout J, on a

lim g, (®)=f,(%) presque partout.
ndoo

Comme I’ensemble ¥' est dénombrable, il existerait donc dans
P=I¥ un ensemble de mesure nulle dans le complémentaire du-
quel on aurait

limg, (2)=f,(z) pour tout JeF.
ndoo

Mais alors si g, ;(¢) tendait presque partout vers f(x) suivant
N X F, le th. de la double limite ([1], p. 49) montrerait que f,(z)
tend presque partout vers f(#) suivant F, ce que nous avons reconnu
étre inexact.
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Some Theorems on the Theory of Sets.
By
G. Fodor and L. Ketskeméty (Szeged).

‘W. Sierpinski and S. Piccard have considered the following
problem: '

Let E be a given non countable set and suppose that there
exists a relation B between the elements of F, such that, for any
= € B, the power of the elements y e B for which xRy, is smaller
than the power of E. The problem is whether E has a subset B
of the same power and having the property that no two elements
@,y € B, bear the relation R to each other?

In the present Note we shall consider relations between ele-
ments and subsets of a set:

Let E be a non void set. Denote by H the set of all subsets
of E. Let B be a relation between the elements z ¢ Z and re H,
hayving the following property:

(A) for any r € H, there is one and only one x e r such that xRr holds.

Problem I. Let ¥, be the subset of E consisting of all the
elements « ¢ E for which the power of the set of the elements r ¢ H

.connected with z by the relation zRr, is <n (n is at most equal

to the power of E).
The question is: what is the power of E,?

Theorem I, Denoting by z the power of By, we have for z and n
(B) 221 n-2.

Proof. For any given x e ¥, the power of the set of the r ¢ H
for which 2Ry, is by definition <Cn. Thus there are at most nz elements
of H in the relation R with some elements of E;. But the power
of the set of all subsets of H, is

9z 1
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the void subset being not counted. It is therefore evident that the
inequality
2E—1>nz

would contradict to the condition (A), consequently:
21 ne.

It may be seen from (B) that

when n»=1 then z<1 when n=4 then <4
n=2 2 n=h <N
n=3 23 n=Ry, z==Tfinite.

Problem II. Let E be a countably infinite set. Denote by H
the set of all finite subsets of E. Denote further by E* the subset
of E consisting of the elements z ¢ E which are in the relation 7Rz
with countably many r ¢ H.

The question is: what is the power of E*?

Theorem II. The power of B* is x,.
) Proof. Denote by E, the subset of E consisting of those « ¢ E,
for which there are only a finite number of r ¢ H such that sRr.
By Theorem I ¥, is finite. The power of E* cannot be finite, because B
is countably infinite and by condition (A) each element of F is in
the relation with at least one element of H. The theorem is proved.

Let E be again an arbitrary set. Let H be the set of all sub-
sets of E and » a cardinal number less than the power of E. Denote
by E, the set of those © ¢ E which are in the relation #Rr with only
such subsets » ¢ H for which F< n.

Theorem III. The power of B, is at most n. .

Proof: Suppose the contrary, i. e. that the power of E; is
greater than n. Then by (A) there is an « ¢ , such that oRE, holds.
But, by the definition of E,, this element z cannot belong to E,
which is a contradiction.
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Remark on an Invariance Theorem.
By

Casimir Kuratowski (Warszawa),

Borsuk gave a set theoretic proof of the following theorem 1),
which was previously proved by algebraic topology 2).

Let & denote the n-dimensional sphere; then:

(i) For -any closed set FCE the number of components of the
set E—F is a topological invariant of the set F.

Call (i*) the more general statement obtainable from (i) by
omitting the assumption that F is closed 3). B

Theorem (i*) has been shown by Eilenberg using algebraic
topology 4). .

In this note I shall deduce (i*) from (i) using set theoretic
methoed. )

In fact, I shall show that:

(ii) Theorem (i*) holds in every locally connected continuum &
satisfying (i).

"The proof of (ii) will be based on the following theorem 3):

(iii) Let E be a subset of a locally connected space &. In order
that the set & —E be decomposable into n separated non void subsets,
it is necessary and sufficient that E contain a closed set F such that
for each closed set H satisfying the condition PCHCE the set & —H
is decomposable into n separated non void subsets.

Theorem (iii) may be established as follows.

1) See 4 Set Theoretical Approach to the Disconnection Theory of the
Euclidean Space, this volume, p. 217-241.

2) 0f, J. W. Alexander, Trans. Amer. Math. Soc. 23 (1922), p. 333,
P. Alexandroff, Annals of Math. 80 (1928), p. 163.

3y If ¥—F consists of an infinity of components, the ,number of com-
ponents® is to be understood as being equal to co (not to be confused with the
cardinal number of the set of components).

4) Bull. Amer. Math. Soc. 47 (1941), p. 73. See also P. Alexandroff,

Doklady Akad. Nauk SSSR 57 (1947), p. 110.
5) See my Topologie I1.(1950), p. 174.
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