J. Dieudonné.

 $\overline{V}_{n,J}(x)$ est le cube de centre x_J et de coté 1/n; on a, avec les notations ci-dessus, et en vertu du th. de Fubini

$$\int\limits_{V_{n,J}} f d\mu = \int\limits_{\overline{V}_{n,J}} f_J d\mu_J;$$

d'autre part, $\mu V_{n,J}(x) = \mu_J \overline{V}_{n,J}(x)$. Le th. de Vitali rappelé ci-dessus montre donc que, pour tout J, on a

$$\lim_{n\to\infty}g_{n,J}(x)\!=\!f_J(x)\quad\text{presque partout.}$$

Comme l'ensemble ${\pmb F}$ est dénombrable, il existerait donc dans $P{=}I^{S\!f}$ un ensemble de mesure nulle dans le complémentaire duquel on aurait

$$\lim_{n\to\infty}g_{n,J}(x)\!=\!f_J(x)\quad\text{pour tout}\quad J\in \boldsymbol{F}.$$

Mais alors si $g_{n,J}(x)$ tendait presque partout vers f(x) suivant $\mathcal{N} \times F$, le th. de la double limite ([1], p. 49) montrerait que $f_J(x)$ tend presque partout vers f(x) suivant F, ce que nous avons reconnu être inexact.

Bibliographie.

[1] Bourbaki N., Éléments de Mathématique, livre III: Topologie générale, chap. I-II, Actual. Scient. et Ind., 858 (1940), Paris (Hermann).

[2] Dunford N. and Tamarkin J. D., A principle of Jessen and general Fubini theorems, Duke Math. Journ. 8 (1941), p. 743-749.

[3] Jessen B., The theory of integration in a space of an infinite number of dimensions, Acta Math. 63 (1934), p. 249-323.

Some Theorems on the Theory of Sets.

Вy

G. Fodor and I. Ketskeméty (Szeged).

W. Sierpiński and S. Piccard have considered the following problem:

Let E be a given non countable set and suppose that there exists a relation R between the elements of E, such that, for any $x \in E$, the power of the elements $y \in E$ for which xRy, is smaller than the power of E. The problem is whether E has a subset E_1 of the same power and having the property that no two elements $x, y \in E$, bear the relation E to each other?

In the present Note we shall consider relations between *ele*ments and subsets of a set:

Let E be a non void set. Denote by H the set of all subsets r of E. Let R be a relation between the elements $x \in E$ and $r \in H$, having the following property:

(A) for any $r \in H$, there is one and only one $x \in r$ such that xRr holds.

Problem I. Let E_1 be the subset of E consisting of all the elements $x \in E$ for which the power of the set of the elements $r \in H$ connected with x by the relation xRr, is $\leq n$ (n is at most equal to the power of E).

The question is: what is the power of E_1 ?

Theorem 1. Denoting by z the power of E_1 , we have for z and n

(B)
$$2^z - 1 \leqslant n \cdot z.$$

Proof. For any given $x \in E_1$, the power of the set of the $r \in H$ for which xRr, is by definition $\leq n$. Thus there are at most nz elements of H in the relation R with some elements of E_1 . But the power of the set of all subsets of E_1 is

$$2^{z}-1,$$

250 G. Fodor and I. Ketskeméty.

the void subset being not counted. It is therefore evident that the inequality

$$2^z-1>nz$$

would contradict to the condition (A), consequently:

$$2z-1 \leqslant nz$$
.

It may be seen from (B) that

when
$$n=1$$
 then $z\leqslant 1$ when $n=4$ then $z\leqslant 4$
 $n=2$ $z\leqslant 2$ $n\geqslant 5$ $z\leqslant n$
 $n=3$ $z\leqslant 3$ $n=\mathbf{x}_0$ $z=\text{finite}.$

Problem II. Let E be a countably infinite set. Denote by H the set of all finite subsets of E. Denote further by E^* the subset of E consisting of the elements $x \in E$ which are in the relation rRx with countably many $r \in H$.

The question is: what is the power of E^* ?

Theorem II. The power of E* is \$0

Proof. Denote by E_1 the subset of E consisting of those $x \in E$, for which there are only a finite number of $r \in H$ such that x R R. By Theorem I E_1 is finite. The power of E^* cannot be finite, because E is countably infinite and by condition (A) each element of E is in the relation with at least one element of E. The theorem is proved.

Let E be again an arbitrary set. Let H be the set of all subsets of E and n a cardinal number less than the power of E. Denote by E_1 the set of those $x \in E$ which are in the relation xRr with only such subsets $r \in H$ for which $\overline{r} \leq n$.

Theorem III. The power of E_1 is at most n.

Proof: Suppose the contrary, i. e. that the power of E_1 is greater than n. Then by (A) there is an $x \in E_1$ such that xRE_1 holds. But, by the definition of E_1 , this element x cannot belong to E_1 , which is a contradiction.

References.

Sierpiński W., [1] Sur un problème de la théorie des relations, Fund. Math. 28, pp. 71-74.

Piccard S., [1] Solution d'un problème de la théorie des relations, Fund. Math. 28, pp. 197-202.

 [2] Sur un problème de M. Ruziewicz de la théorie des relations, Fund. Math. 29, pp. 5-8.

Remark on an Invariance Theorem.

B

Casimir Kuratowski (Warszawa).

Borsuk gave a set theoretic proof of the following theorem 1), which was previously proved by algebraic topology 2).

Let \mathcal{X} denote the n-dimensional sphere; then:

(i) For any closed set $F \subset \mathcal{X}$ the number of components of the set $\mathcal{X} - F$ is a topological invariant of the set F.

Call (i*) the more general statement obtainable from (i) by omitting the assumption that F is closed 3).

Theorem (i*) has been shown by Eilenberg using algebraic topology 4).

In this note I shall deduce (i*) from (i) using set theoretic method.

In fact, I shall show that:

(ii) Theorem (i*) holds in every locally connected continuum \mathfrak{X} satisfying (i).

The proof of (ii) will be based on the following theorem 5):

(iii) Let E be a subset of a locally connected space \mathfrak{X} . In order that the set $\mathfrak{X}-E$ be decomposable into n separated non void subsets, it is necessary and sufficient that E contain a closed set F such that for each closed set H satisfying the condition $F \subset H \subset E$ the set $\mathfrak{X}-H$ is decomposable into n separated non void subsets.

Theorem (iii) may be established as follows.

¹⁾ See A Set Theoretical Approach to the Disconnection Theory of the Euclidean Space, this volume, p. 217-241.

²⁾ Cf. J. W. Alexander, Trans. Amer. Math. Soc. 23 (1922), p. 333, P. Alexandroff, Annals of Math. 30 (1928), p. 163.

³⁾ If \mathcal{X} —F consists of an infinity of components, the "number of components" is to be understood as being equal to ∞ (not to be confused with the cardinal number of the set of components).

⁴⁾ Bull. Amer. Math. Soc. 47 (1941), p. 73. See also P. Alexandroff, Dokłady Akad. Nauk SSSR 57 (1947), p. 110.

⁵⁾ See my Topologie II. (1950), p. 174.