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et, comme f(G)—G < 2%, on trouve, & plus forte raison: H,—G <2
Or on a H,CH=I—@ d’olt H,=H,—G: on trouve ainsi H < 9%,
ce qui est impossible.

Nous avons ainsi démontré qu’il n’existe aucun ensemble B
de puissance 2%, tel que E<@ et E<H. Les ensembles @ ot H étant
linéaires, il en résulte tout de suite, vu le théordme 7 que, G< A
et H< i Le théoréme 10 se trouve ainsi démontré.

I1 résulte tout de suite du théoréme 10 le

Corollaire. Si 2=y, il eriste deux types ordinauz inde-
nombrables ¢,<<A et ¢,<<2, tels qu’il n’existe aucun type ordinal indé-
nombrable p tel que p<gy et Pp<g,.

Voici une démonstration directe de ce colloraire.

D’aprés N. Lusin, si 2%=g,, il existe un ensemble linéaire
indénombrable L qui admet un ensemble au plus dénombrable de
points communs avee chaque ensemble (linéaire) parfait non dense 6).
Or, j’ai démontré que si 2%=gx, il existe un ensemble linéaire
indénombrable § qui admet un ensemble au plus dénombrable
de points communs avee chaque ensemble linéaire de mesure nulle 7).

On a évidemment Z<<1 et S<i. Je dis qu’il n’existe aucun
ensemble indénombrable & tel que B<L et <.

En effet, admettons que F soit un tel ensemble. Comme F<I
et H<G, ensemble F est & la fois semblable & un sous-ensemble I,
de L et & un sous-ensemble S; de &, et il existe une fonction crois-
sante f définie dans I, qui transforme I, en 8. Or, P’ensemble L,,
en tant que sous-ensemble de I, jouit de Ia propriété P suivante:
tout ensemble linéaire parfait non dense admet un ensemble au plus
dénombrable de points de Pensemble ;. Or, comme j’ai démontré 8)
chaque fonction de Baire d’une variable réelle transforme tout
ensemble jouissant de la propriété P en un ensemble de mesure
nulle. Une fonction croissante dans Iensemble L, pouvant &tre
étendue 4 une fonetion de Baire d’une variable réelle, ’ensemble
8;=7(L,) est donc de mesure nulle. Or, vu la propriété de 1’en-
semble S et vu que §,CS, I'ensemble 8, est au plus dénombrable,
de méme que P’ensemble F (qui est semblable 3 §,), contrairement;
& ’hypothése.

Notre corollaire se trouve ainsi démontré.

¢) Comptes Rendus Acad. des Sc. Paris 158 (1914), p. 1259,

%) Fund. Math. § (1924), p. 184.

8) Voir mon livre Hypothése du continu, Monografie Matematyezne t. IV
(Warszawa-Lwéw 1934), p. 39.
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Note on arithmetic models for consistent formulae of
the predicate calculus.

By
G. Kreisel (Reading, England).

Introduction.

The Skolem model.

1. The researches®of Loewenheim, Skolem, Godel [1],
and Bernays?) have established the following result:
Suppose the formula

(1) (@11) . (B1ny) (BYn) - (EY1m,) (wz1)...(Ey,,mn)A(;rn...ym,zn),

where A4(ay...bum,) 1s & free variable formula not containing function
symbols or formula variables without arguments, has the normal
Skolem form (HB, IT, 179-182)

(2) (1) o (22) (BY1) ... (BYo) B2y ... 20 Y1 - Ys),

where B(a;...bs) is also a free variable formula, and By(a,...bs),
1<j<CW, are the formula variables occurring in (2). Both (1) and (2)
are understood to be formulae of the predicate caleulus (HB, 11,
375-380) without free wvariables.

If (2), and therefore (1), is consistent with respect to the pre-
dicate calculus, that is their negations cannot be proved in the predi-
cate calculus, formulae B§(a,...bs) of the formalism Z, (HB, II,
293) of arithmetic can be defined so that the implication

(3) (n} [g(n) =01 (21) ... (2) (Bys) ... (By) B*(21... £21...75)

1) Hilbert-Bernays, Grundlagen der Mathematik, II, 178-189, and par-
ticularly 234-253. This work is referred to in the text by ,HB“. We usunally refer
to proofs in HB rather than in the original papers since the proofs are more
detailed, and also the hook is more accessible.
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can be proved in Z,: B* is got from B by substituting B for By,
and g(n) is a primitive recursive function so that g(n)=0 is verifiable
if and only if (2) is consistent with respect to the predicate caleulus
(HB, II, 243, 244-252).

Actually instead of (3) the stronger form

(4) () [g(n)=0]—B*[ay...200, $57(@y... %)+ L. 8y7(@y ... 20} + §]

can be proved in Z,, where *(#;...z,) is the primitive recursive
numbering of 7-tuples of integers <z,...z,» given in HB, IT, 235.
(4) is called an arithmetic model of the formula (2).

Applications of the model.

2, The model is used to establish

(i) the completeness of the predicate calculus (with respect to
predicates of w-consistent extensions, [2], para. 18 (b), of Zy) in
Godel [1],

(i) the relativity theorems of Skolem [1], which, since Go-
del [3], are more appropriately known as undecidability theorems,

(ii) has been used for a critique of the concept of infinite
cardinals.

8. 2(i) raises the problem whether the predicate calculus is
complete with respect to decidable predicates, (HB, IT, 191).

The proof of 2(ii) was only indicated in Skolem’s paper [1],
and no precise conditions were laid down on the formula (1) under
which undecidability results can be established. Also the relation
between 2(ii) and Godel’s work [3] does not seem to have been
discussed in the literature in satisfactory detail.

Development of the model.

4. It is shown in Theorem I below that 2(ii) holds for for-
mulae (1) in which recursive number theory can be ,developed”
in a sense which is made precise there. The basic method of proof
is Cantor’s diagonal argument just as in the classical proof [3] of
Godel’s first undecidability theorem.

Also, under suitable ,,derivability“ conditions on systems (1),
the formula (n)[g(n)=0] cannot be proved from (1); this is our
Theorem IT, which is an analogue to Gdel’s second undecidability
theorem since (n)[g(n)=0] is Bernays arithmetization of ,.con-
sistency of (1) with respect to the predicate calenlus®.
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In section I1 the relation between Godel’s undecidability
results and the present ones is discussed. It appears there that our
Theorem I is a pure undecidability result; that is while Godel
decides the w-consistency of the formula which he shows to Dbe
undecided by the axioms of the formalism considered, the proof
of Theorem I leaves open the question whether the relevant un-
decided formula is w-consistent or not.

The present note concludes with some remarks on the diagonal
argument, and the connection between non enumerability and
undecidability.

Limitations of the model.

5. It is an easy consequence of Theorem I that the model (4)
is w-inconsistent: that is, there is a formula (=predicate, set) I(n) of
the system (1) which ,,represents” the set of integers, and a formula
R(n) which represents a set to which all recursive integers 0,1, ...
belong, yet there is an n so that

I*(n) and — R*n).

Another consequence of Theorem I is that the predicates Bg;
of a system satisfying the conditions of Theorem I are not decidable
in Z,, and therefore not decidable predicates in any of the general
senses of Church, Kleene, Post or Turing [4]. In the literature
there is, as far as I know, no system (1) (set theory) which has
been proved to satisfy the conditions of Theorem I (the crucial
condition is w-consistency). Such a system would show that the
predicate calculus is not complete with respect to decidable predi-
cates. This would prove Bernays’ conjecture (HB, IT, 191).

I. Undecidability results.

6. In discussing the Skolem model (4) we use the notation
of HB, IT, except that German letters are generally replaced by
Roman ones.

Thus the jt s-tuple of integers is denoted by (nyj...n.), the
formula  B(ny...ny sj+1...8f+s) by B;, and the conjunction
By&...&B by Iy The distinct prime formulae of B, are labelled
P;...Py,, those of By, which do not appear in Fy by Prypy1,...,Pry "
where two prime formulae are called distinet either if the formula
variables are different symbols or if the arguments are different
numbers.
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If the distinet prime formulae of F, are replaced by in-
dependent formula variables V,..V,,, F; becomes a truth function
of the propositional calculus which we denote by T”(V 1...V,k), or,
for short, by T*. A distribution of truth values on V. 1--Vr, is called
true making at stage k it they make T* true.

It is shown in HB, II, 187 that if in all true making distri-
butions on T*, ¥, is true, V, is also true in all true making distri-
butions on 7™, m>Fk, provided only (2) is consistent. Thus if P, is
the formula Bojttys. .1t st-+1...548) also B§(ns... 1, st+1.. 801 5)
of (3) is true.

We say Bij(nie..tix, st--1...st+38) is decided at stage k. Note
that if Bi(tus...1q, st+1...5t+s) is decided at some finite stage,
the formula Bg(m...1i st41...804-8) ean be proved in Z, from
the formula (n)[¢(n)=0], HB, II, 240, formula (2).

Remark. The definition of B§ from true making distribu-
tions on T* is a particular case of the Unendlichkeitslemma of
Konig [5]. Conversely, the elimination of the selection axiom in
the definition of B§ by the least number symbol can be adapted
to the proof of Konig’s lemma. The most familiar application of
this lemma is the bisection definition of limits in analysis.

7. We now give numbers t* to terms t of the system which
represent these terms in the model. More precisely, we prove the

Lemma. Let formula (1) be written in free variable form
(aufgeloste Form of HB, IT, 1-9),

) A[an...aim‘..a,fnn...gbij(...fl,x...)‘..], .

1<ikn, I<KiKmy, 1I<Sre, 1<Ks<nr
We define primitive recursive functions @§(...dy...) so that
if Bof{ty.--tam,) has been proved from (5) by the predicate cal-
cnlus?), where the terms t are made up of the symbols @y and free
variables, then Bi(tfi...t3n,) is decided at some finite stage %, and
conversely; here t* is got from t by substituting @* for @ in t, and the
stage & is got from the proof of Boj(tyy - tam,). Also B* is the pre-
dicate of Z, which replaces the formula variable B in the arithmetic
model of the normal Skolem form (2).

%} ef. HB, I, 105: provable in the predicate caleulus — ableitbar im Prii-
dikatenkalkil, provable by the predicate calculus — ableithar durch den Prii-
dikatenkalkil.
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Note. It can be shown that this result is also true if instead
of formulae Byfty...tmm,) We consider quantified formulae whose
formula variables are By; but the extension is not needed below.

It is convenient to prove the result for normal Skolem forms
first:

(i) Suppose a formmula Byfs,...5.4s) has been proved from the
free variable form Bla,...a,p,(ay...a;)...95¢;...a;)] of (2), and s are
made up of . -

Then Bgj(st...skys) is decided at a stage k where s* is got
from s by substituting the functions ¢} (= sy*(a,...a,)+1) for 3 in s.

For, if Byfs,...5r4s) has been proved from the free variable
form of (2), by the Deduktionstheorem (HB, I, 150),

(Bzy)...(Bae) {— Bl@y ... 0 (g oo 1) o9y . )1}V Bogls, .. Srpes)

can be proved in the predicate calculus. By the first e-theorem
(HB, I1, 18), we find terms ul..u!, 1<i<N, made up of the
symbols »; 8o that the disjunction

= By} uly, (ul.oul) ey (ub L ul) TV LY
> Blul .y (Ul Ly (u L ul) ]V Byyls; Sy

can be proved in the propositional caleculus. Replace in the terms u
and s the symbols y; by the functions yf, and let the highest u* be
less than M. Then the above disjunction can only be identically
true in the propositional calculus if s*< M, and therefore Bfj(st...s7 )
is certainly decided at a stage <<y7(M...HM).

Note that this part of the proof does not use the fact that
the »* are disparate.

(ii) The proof of the converse is a little less direct.

Suppose that at some stage, k say, Bglst..sfys) is decided
(to be true), that is the formula

(6) —=B(0...0 1...8) VY ...V = B(Rag gy Sk-F 1... 85+ 5) V Byylst ...5%45)

is proved Dby the propositional caleculus.

Then we can prove Byls,...5,4) from the free variable form
of (2).

Recall that every integer can be expressed wniguely by terms
made up of the symbol 0 and the functions y*; for a method of
doing this see HB, II, 193. Let the integers other than 0 occurring
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in (6) be replaced by such expressions, and let 0 be replaced by the
free variable a; denote the term replacing n; by %y. Then the dis-
junction

a)]V .Y
Trx) ]V Bof5F

via.
. ﬁr}z)--vw:(ﬁlk-n

—Bla...ayf(a...a)..

_/.B[‘ﬁlk." ﬁrkwf(ﬁlk"

7 _
(7) )
is also an identity of the propositional calculus, where y* are now
arbitrary function symbols, and 5* is got from s* simply by replacing 0
by the variable a.

Now, from the free variable form

Blay...ar pf(ay ... ar) ..piay ...ar)]
f (2) we prove the conjunction (8):
Bla...ayf(a...a)..y5(a...a)]& ... &B[ g ... Roppt (Fan - g o 05 (Foan .- Bora) ]

by substituting 7y for a; in turn, 1<<I<k. From (7) and (8) we
get Boys, .- Sr4s)-

Note that this proof uses the disparateness of the system uf.

(131} While the usual set theories could be thrown into normal
Skolem form, and the development of integers, ordinals ete.
carried .out in the Skolem form, this is usually not done. It is
therefore convenient to give the construction of ¢* for proofs of
Bojty -:tam,) from formulae (5) as stated in the lemma. The con-
struction is obtained from the standard reduection of a general
prenex formula of the predicate caleulus to its normal Skolem
form (HB, II, 181; HB, I, 159). (In other words, we show explicitly
bhow from a model of the normal Skolem form (2) can be obtained
a mode] of (1)).

(a) We define functions qng].(...
symbols yia,...a;), so that

@...), made up of the function

Bla, ... ). ps(ty - )]

and -A[“u"'ann‘i’gx(“u"-“mx g n(a’ll )} are together con-
sistent or inconsistent with respect to the predicate caleulus; ac-
tually, the latter can be proved from the former by the elerentary
caleulus with free variables.

(The usual reduction is stated in the form that (1) and (2),
and not their free variable forms are equivalent in the sense above).

trpy(dy ...
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We denote the complex of all-variables (zy)..
(ef. Godel [1]), (Bya)...

9

(@) by ()
(BYim,) by (Ev:) so that (1) becomes

(x:) (Ep1) - (20) (Bya) A(

Let P, be the formula A(x
following the quantifiers of

-(ni;f,) (En’+‘““)

E SO S0 TS O

-Da), and P,y be the formula

(30) (2, 0) x.,) (By,,,)-(x,) (By,)

(10) {[F(x r)i;_’;l 1):‘*‘1*3..‘)]&
&LF (351 1)1_—‘_';..; i) =P 1},

where 0<j<4, 1)g+1 is the variable Dy, I<i<r—1, 1<s<r+1,
1<iK<r—2, ISut, 1<or, and F, is a formula variable with
the number of arguments indicated above, P, does not contain
the symbols pr+i—s, 1<{s<(r, and F (x,.. <D DE) does
not contain z.y. We call (10) the ;Skolem form of (9) after r steps
(of the reduction).

The normal Skolem form of (1) is (10) with r=n—1.

Now, suppose we replace the existence symbols yr+—s in (10)
by the function symbols yI+—s (¥, Egi D)y ANG Dryw, w22,
by wpi_w(xl.‘.xrﬂ; ...z)g;fj...; o) Let the resulting formula
be denoted by (10’). From (10°) we get by the propositional calculus

(11) Flz oz pize; ..

Ha 1/];+l_s( E

< Daa) ],

where an arbitrary symbol « is substituted for the terms x.., and
yi -9, Denote g7+ (x,...x_a; e DI @) DY PEFE g e IR )
Now substitute the terms

Fmt )

Pl X i), Ny 2 i)

for the all variables r—..
the implication

-p, in (10'). We prove thereby from (10’)

(12) F (%

ETNE AR A @f?ui)——)-l?';,
where PN, is got from P, by substituting Yriw TOY Dryw, and piv -
for the all variables pr—». From (11) and (12) we get F,, a free
variable form for the normal Skolem form at stage (r—1) of the

reduction.
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Consider then the free variable form 1&",,_1 of (2) with function
symbols py(a,...ar). From this we prove a free variable form P',,__z,
where the function symbols of the new form are made up of symbols
w; and o as deseribed -above. Going back, we eventually get a free

variable form of (9)
Alay ... anpi(a) ...qpnlay... az)],

where the ¢ are made up of ¢. The free variable formula is proved
from P, by the elementary free variable calculus.

Note also that if in the formula (9) we replace the formula
variable F (x,...x; . 9825 .97 7...) by Uy, i e

(13) (%r41) (E9rda) - (%n) (E9n)Pra

(when necessary, avoiding clashing of variables by suitable change
of name), (10) turns into the normal Skolem form of (9) after (r=-1)
steps of the reduction. In particular, if ¥,,F,, ... are replaced in
turn by the formulae (13), the Skolem normal form turns back
into the original (9).

Example. Consider the intersection axiom

(241} (15) (BYyy) (3) (g € Yy~ - 2y € 1y & 2y € 73,),
whose normal Skolem form is got after one step to be

(211) {12) (1) (@) (Eyi){F(fcumw?/}.) &

(14) &L F (it B1oY1) = (a € Yy~ - &g € 21y &0y € @) 1]

Eliminate the symbol y; by vi(z, 2%, 2,). If now
(1) Flayx, %Ui(l'nmrﬂh‘rz)] & [F iy 21571 ) — (By €Yy~ Lp € 20y, & T € 23]

is true for all @y,,2,,¥;,%,, in particular for y,=az,=a, then

F[mnxlggui(mummaar)] is true for all @,,xy,, where a is a free variable.
Tey s 1 N

Also (15) is true for all xy,2,,2, and y,=yi(2y2paea), and hence

(16) L € Y (Xy Tpo 0 Q) ~ <y € Xy & Ty € Ao

Thus from the free variable form (15) of the normal Skolem
form (14) of the intersection axiom, we get a free variable form (16)
of the intersection axiom itself, g(&,®,) =T, £,aa).

Plainly, from (15) we have proved (16) by the predicate
caleulus.
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(b) Now let us define ¢} as the functions which replace the b}
of (9) in the reduction described in (a). For the function symbols y;
in the free variable form P, ; we take the funchions syr{(ay ... ay) 4.

. 1f Byfty - tum,) has been proved from (5), Byfty...tus,) can
be proved by (a) from the free variable form of the normal Skolem
form, where { is got from t by replacing the function symbol ¢y in t
by the function symbol ¢ made up of the symbols ;.

By part (i) of the lemma, proved for normal Skolem forms,
Bi{th ... Hm,) is decided at o finite stage.

Next suppose BY(tf;...1am,) is decided at stage k. Then, by
part (ii) of the lemma, Byt; ... thm,) can be proved from the Skolem
form by the predicate calculus. Since ¥, is a formula variable, we
may replace it throughout the proof by the formula 9, defined
in (13), and still retain a proof by the predicate calenlus. But by
this substitution By(ly...twm,) is not affected since it does not
contain F,, and the normal form is turned into (5); thus, if
Bt Bim,) is decided at stage Byftyy - tnm,) can be proved
from (5).

In the language of set theory the result of the lemma is this:
not only are the predicates Bj arithmetic models of the pre-
dicates Bgy;, but the numbers $* are numbers (in the model) of the
sets (defined by the terms) t.

Note an obvious consequence of the lemma: if Boyfty .. tnm,,)
is undecided by the axiom system, Bij(th...t3m,) is not decided
at any finite stage: it will be explained in section II how the w-con--
sistency of Ba}(fﬁ...t:mn) is then decided by the minimum condition
used in defining Bg;, together with suitable free variable formulae
of arithmetic.

8. We prove the undecidability theorem for a set theory con-
taining the formula variable characterizing set membership: a e b.
For typographical convenience we write e(a,b)=0 instead of a &* b.

Theorem I, Suppose the formula (1), a set theory, is written
in free variable form (5) where the function symbols ¢y replace
the existence variables of (1), and suppose it satisfies the following
conditions: .

(a) Representation of Z, in the set theory:

The recursively defined integer 1t is represented by a term 4,
made up of the symbols ¢y — but without the letter n! — and 4, has
the number ¢*(n) in the sense of the lemma, where *(11) is a pri-
mitive recursive funection of n.

Fundamenta Mathematicae, T. XXXVIL. . 18
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A predicate P(n) of Z, is represented by a term p with
number p*.

By representation we mean:

(i) if P(m) can be proved in Z, for the recursively defined in-
teger m, then ¢, ep can be proved from (5);

(ii) if —P(n) can be proved in Z, for the recursively defined
integer n, — 14, ep can be proved from (5).

(b) w-consistency of the set theory.

If —%P(n) can be proved in an w-consistent extension of Z,,
then é,ep cannot be proved from (5).

Then we find a formula U made up of the symbols ¢y and the
formula variables of (1) so that U is undecided by (5).

Proof. Observe first that by condition (b) the formula (1) is
consistent, and therefore the formula g(n)=0 of para. 1 is verifiable;
i. e. the formal system consisting of Z, and the axiom g(n)=0 is
an o-consistent extension of Z,.

Consider the predicate of Z,

(17) e[i*(n),n]=1

and suppose it is represented in the set theory by the term .
Then

(18) iy €U

is undecided by (5).

For, suppose (18) were proved from (5). By the lemma,
e[t*(«*),4*]=0 would be decided (to be true) at some finite stage.
Therefore e[i*(u*),u*]=0 would be proved in the w-consistent
extension of Z, by the formula g(n)=0, as observed at the end
of para. 6. This conflicts with the condition that w represents the
predicate (17) in the sense of (a) (i) and (b).

Next, suppose (18) were disproved by (5). By the lemma,
e[i*(v*),u*]=1 would be decided (to be true) at a finite stage,
«* would have the property (17), and the supposition conflicts
with (a) (ii).

Note on the Theorem.

Theorem I is still hypothetical. The construction of a set
theory which satisfies the conditions of the theorem, is still out-
standing. Conditions (a) are satisfied by many of the usual set
theories, e. g. Godel [6], 26-29. It is probable that Godel’s model
of a set theory based on ordinals up to the first e-number provides
a system which satisfies also condition (b) of the theorem.
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Corollary to the Theorem.

Under the conditions of the theorem the formula (1) has no
computable model. For, if e(a,b) were a computable function it
could be represented by a term of Zy, and e[i*(u*),u*]=0 would
be decided in Z,.

The result is true not only of the particular model (4), but
of any arithmetic model of (2) which is defined in Zy, and where
the formula wvariables By; of (2) are replaced by computable pre-
dicates Bg; so that

(@) ...(2r) (By,) o (BY ) BX( @y . Yy oY)
can be proved in some w-consistent extension of Zy. For, if the
predicates Bf; are decidable, and the formula above is proved from
a verifiable free variable formula (the w-consistent extension), by
bara. 13 of (2), we find computable functions wil@y ... ), 1<Ki]s,
80 that
By ..y (@ .. ) gl @y - ) ]

is verifiable. Part (a) of the lemma, the only part used in the proof
of Theorem I, is still valid for introducing a numbering of terms.

9. Remark on Theorem I.

For reference below, we must examine what the undecided
formula e[¢*(w*),u*]=0 means.

To fix ideas suppose that the formula i*(u*) e u* occurs in
some FY.

Consider now the (finite) number of true making distributions
in ¥, whose numbers, defined by the rule at the bottom of p. 186
of HB, II, are

<y, <3 Mg, <M< <P < el

where in m2rH, 12+ 1<p, *(u*) eu* is put false, and in m3,
1<2rp, i¥(w*) e w* is put true; also s,—0 means that in the truth
distribution with lowest number i*(u*) ¢ «* is put true.

Recall that on p. 240 of HB, II, the recursive formula
H{(k,l,m,n) is defined which holds if and only if » is the number
of a truth distribution on 7% and m the number of that truth
distribution applied to T Also, since n is restricted, (En) H(k,l,m,mn)
is a recursive formula; it holds if the truth distribution on T* with
number m can be continued up to I, and.we denote the formula
by Hy(k,1,m).

18%
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Then el#*(u*),u*]=0 is equivalent to
(19)  (NEL(FP'&Q,- V - > P &Q,- V..V - PP &Qpya),
where p'=p—1 ifpiseven, p’=p—2ifp is odd; P!is the disjunction
H(k,m4L1)V ... H(k, Zl),
Pl the disjunction
PV H (b, m?2r+L, 1)V LV H (E,m2rt L),

spr 41’ 1
and @, is the disjunction
Hl(k,mgf,l)\/.‘.\/Hl(k,m';’;r,l).

That is, either !

(i) the distributions m}...m;l cannot be continued beyond
the stage l;, and one of the distributions m’h{..‘mg2 can be continued
indefinitely,

or

(i) mi...my, m]..m cannot be continued heyond the stage ;
and one of the dlstnbumons mi,. m4 can be continued indefinitely;

and so forth until all dlstmbumon% m¥ with even index are
exhausted.

The formula (19) is the prenex form of the undecided formula
of our system, considered in Theorem I.

Note that even if the formula (19) were proved in an w-con-
sistent extension of Z, it would not show which truth distribution
can be continued indefinitely; we could only be certain of finding
the number I, so that — H (k,mil), 1<<i<s,. A condition by which
the formula (19) is decided, is given in Theorem II; its w-consistency
is discussed in section II.

10. The next theorem is a (rather weak) analogue of Godel’s
second undecidability theorem, first proved in detail in HB, II.

‘We denote the term of the set theory considered, which re-
presents the property ,n is an integer” by w, the property g(n)=
by ¢, and the property e(n,m)=0 by e; further we suppose that
ordered pairs can be defined by terms made up of gy, and we denote
by <e*b*> the number given by the lemma to {ab>.

Theorem II1. Suppose the formula (5), which we denote by %,
satisfies the conditions of Theorem I, contains the set of all integers,
and a set of pairs of integers; further we suppose that the formula

(20) Wz e € ¥ > W > G u*> e e
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can be proved in the predicate calculus. Then

(1) [g(n)=0]
is undecided by .
For, by HB, II, 243-252, the formula (n)[g(n)=
proved in Zj,, and hence from . Hence we get

0]—>2U* can be

Az en > (B) (New —>neg) > (u*),uDee.
By the propositional caleulus
Y—:(n) (0 € 0N € @)= 7 iy e Y FF(WF)u*d ee.

But, by the definition (17) of u, {G*(w*)u*>ee—>—>ipeu, so
that A—:(n)(New—>Neg)—>"7ixeu.

(n)[g(n)=0] were decided by A, i.e. (n)(new —>neq)
were proved from %A, we should also have a proof of —i{«eu from %,
contrary to Theorem I.

Note that if we add (n)(new-—>neg) to A, and if (20) holds,
the present theorem shows thabt e[i*(u*),u*)=0, i.e. provable in
an o-consistent formalism.

Remark. (20) is the analogue to condition (3) on p. 286 of
HB, II, where sufficient conditions for the second undecidability
theorem of Gédel are enumerated. But while it is established in
HB, II, 312-323, that the condition (3) holds in the formalism Z,,
and therefore in any formalism containing Z, in the sense of Theo-
rem I(a), the derivation of (20) for the usual formalisms of seb
theory is highly problematic.

As far as the undecidability of the formula (n)[g(n)=0]in U
is concerned, Theorem II is uninteresting because under our con-
ditions, Goédel’s second undecidability theorem can be applied,
which already establishes that (n)[g(n)=0] is undecided by «.

II. Discussion.

Relation between Gddel [8] and Theorems I and 11,

11. Godel’s proofs are much more direct and general than
those of the present paper. In fact as far as the construction of
undecided propositions in the relevant logieal systems is concerned,
the interest of our work is restricted to having shown how the un-
decidability results are actually got from the Skolem model where
they were first suspected.
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12. w-consistency®). The main point of difference, which is,
perhaps, worth mentioning, in the form of the undecided formula
(18): the proof of Theorem I does not show whether (18) is w-con~
sistent or not. Concerning this business of w-consistency recall that
Godel’s formula is of the form (x)4 (%) where A(a) is a decidable,
in fact primitive recursive, predicate. Now, from this it follows
that his formula, if undecided in the system, is verifiable (HB, I, 238)
or e-consistent, that is 4(m) is true for any recursively defined inte-
ger m; for if A(m) were false, we would have a disproot of the general
formula by an example. Conversely, if (Ez)A(s) is undecidable in
a suitable system then it is o-inconsistent, because .4(m) cannot
hold for any recursive m.

All this is clearly true for any undecided formula (z)A(x) or
(Bx)A(x), where 4(a) is decidable. But now suppose that the formula
known to be undecidable is of the form (@) (By)A(z,y); its w-con-
sistency (in the sense that we can find a computable function f(n)
so that (@)A[x,f(2)] is o-consistent) cannot be decided on inspection:
for we may be able to find an f(n) so that Aln, f(n)] is verifiable, but
of course undecided in the system considered if f(n) can be represented
in the system; or, again, it may be that (Ey)A(0y) is undecidable.
In the former case we should say that the formula is w-consistent,
in the latter w-inconsistent. Trivial examples of both cases can
be got from a G d el undecidable formula, namely (2)(Ey)[4(z)&y=1]
or (x)(By)[z>0 & 4,(y)], where (z)4(x), (By)A,(y) areunde cidables
of the system.

The previous paragraph applies to our formula (18). If we
recall para. 9, it may be that

(i) we find a number I, for which —H,(k,mL]), 1<i<s,
holds, and the disjunction H (k,m2 OV ..V H (k,m2,]1) is undecidable
(verifiable), in which case e[i*(u*),u*]=0 is w-consistent,

or

(i) (BL)[—>H,(k, my,%) & ... & H,(ky, “1;1711)] is undecidable,
when e[i*(u*)u*]=1 is w-consistent.

In case (i) e[i*(u*)u*]=0 is proved in the extension of Zyu by
the verifiable formula H(k,m3)V...VH (k,m2,l); in ease (ii)
e[#*(w*)u*]=1 is proved in the extension of Z, by the verifiable
formula H (k,mi V... \’Hl(k:mb 1).

3) Contrary to custom we speak also of w-consistent formulae, not only
w-consistent systems.
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Note that we only consider the first disjunct of the formula (19),
but this definition of w-consistency is easily extended to the whole
of (19).

As pointed out at the end of para. 9 the w-consistency of
e[i*(u*)u*]=0 is established by Theorem II provided

(i) the system 92U is itself w-consistent,

(ii) (20) is provable in the predicate caleulus.

Since, however, it is doubtful whether (ii) holds for general
systems we have the following unsolved

Problem. Can we set up formulae %, A, satisfying the con-
ditions of Theorem I so that the formulae

e[i*(u*),u*]=0 eoldd(ud),ufl=1

can be proved in some w-consistent extension of Z,, where e(a,b),
7*(a), w* are the relevant terms of the model of U, eya,b), ig(a), u}
those of A,

18. Remark. Note particularly that we restrict here as in [2] the notion
of w-consistent extensions to extensions by e-consistent formulae of the form
(x)A(x), where A(a) is a decidable predicate. These extensions are sufficient for
our purpose hecause they decide any formula of the form e(a,b) by para. 12.

Sinee however several definitions of w-consistency have been given,
e. g. Mostowski [7] (4.1), we must explain briefly our restriction. It depends
on the general principle of para. 6in [2] according to which a logical problem should
be so formulated that its solution consisis in the proof of a free variable decidable
formula; in particular, the necessary and sufficient condition for the w-con-
sistency of a (prenex) formula R should be that a free variable formula K, of
a given sequence K, associated with R, is verifiable. It will also be demanded
that if ® is eo-comsistent, —>R should be &-inconsistent.

The definitions of w-consistency, or of truth functions (e.g. HB, II,
329.388), which are naturally given, either do not satisfy the above dex‘nands,
or make proved formula of Z, w-inconsistent; e. g. the definition of w-consistency
of ® by the condition that Q has an Erfillung (para. 1 of [2]) makes the ?I?Yed
formula 9% of Z, in appendix I of [2] w-inconsistent. Conversely, the dehfntmn
that R is w-consistent if there is a computable counter example to any Ij]riullung
of —R, makes bhoth 9N and — 9N w-consistent. The definition ﬂ_lat R is w-con-
sistent if — R cannot be proved in extensions of Z, by w-consistent form.ulla,a
(%) A(x) means only, by para. 38 of [2], that thereisn o counter example of finite
order to every Erfillung of ®. There might, it seems, be a computable counter
example of a higher type, and thus the condition is rather weak. The truth
definition of HB, II, 329-338, is, of course, not of free variable form. )

In view of these doubts about a satisfactory definition of m-cans‘lstency
we feel it is an advantage to restrict w-consistent extensions to extensions by
free variable formulae. At any rate they are sufficient for our purpose.
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We note in passing that the definition of @-consisteney of a system:

»If for every recursive integer n2{(n) can be proved (in the system con-
sidered) then we cannot prove in the system the formula (Ex) —9l(x)“.

[7] 4.1, is in general not equivalent to

»If (Bx)—9(x) can be proved, then we can find a number n so that —A(n)
can be proved®.

The equivalence holds in Z, if l(n) is a decidable predicate, but not if
A(n) is the predicate (w)[d(x)v—A(n)], where (x)4(z)is undecidable in Zy: for,
we ean prove (Ey) () [A(x)V—A4A(y)], but forno nean we prove (z)[A(x)v—4(n)].
(However, we cannot find an o-inconsistency, i. e. a function fy(n) so that folm)
is the number of a proof of 9(n) in Z,; for from a proof of (Bx) — A(x) we
find a recursive functional gc[f(c)], gc[/,(¢)]=n, say, so that fo(ng) is not the
number of a proof of 2A(ny)).

The diagonal argument.

14. Both the present paper and G&del [3] use the diagonal
(non-enumerability) argument to construct undecided propositions.
Though this point is obvious, it seems worth mentioning: for one
thing it connects undecidability proofs which are usually referred
to paradoxes and self references, with a familiar technique of
mathematics, and, roughly speaking, allows one to convert non-
enumerability proofs into those of undecidability. But also it
throws light on the diagonal argument, and its »permissibility
e. g. [8].

When one uses the diagonal definition one usually thinks of
a sequence of decidable, say recursive, predicates An(m) from which
we get a new predicate B(m). The formula by which B(m) is defined
is not one of the sequence A,(m). This argument is used, e. g. to
construct to any logical system all of whose formulae are decidable
a new decidable predicate, as in HB, I, 330.

But what Gédel [3] or we do is to apply the diagonal de-
finition to a system of predicates which are mot systematically deci-
dable, but quantified; now we must expect that the formal definition
of the diagonal predicate is one of the given sequence Any(m), say
the pt; then Uy(p) is undecided in the system. This situation oceurs
in Theorem I, and also in Godel’s argument. Reeall that in the
latter a formula Prov (a b) is set up which holds if and only if & is
the number of a proof of the formula with number b; and s(a, b)
is a function whose value is the number of the expression got when
the free variable in the expression with number b is replaced by
the number a. Then Godel orders all expressions of a formalism
by his numbering, so that, say, Y,(a) with the free variable @
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has the number n. He considers the sequence of formulae
(By) Prov[y,s(m,n)] which will be provable if An(m) can he proved
in the system. The diagonal definition is

(y) = Prov [y,s(n,n)]

and this formula has the number g; i. e. the diagonal definition is
one of the sequence, and here the diagonal argument establishes
undecidability. .

The diagonal argument does not provide a new (formula
for a) predicate as it does when applied to a sequence of decidable
predicates, but —if one looks for something ,new™ — it provides
a new axiom 4).

The Skolem Paradox.

15. It was mentjoned in para. 2 that the definition of an
arithmetic model (4) was thought to constitute a difficulty for
axiom systems of the predicate calculus with non-enumerable
cardinals. While we do not pretend to give a coherent account of
cardinals, it seems worth while to discuss by the light of nature
what exactly is at the bottom of these difficulties.

Three points which are more or less naively made on the basis
of the model, can be distinguished.

(i) The paradox proper.

It was thought that by applying Cantor’s diagonal argument
to the model, we should somehow get a contradiction. This is
not so because if one applies the argument to the model in the
manner intended, we get an undecided proposition, and not a con-
tradietion, provided of course that the conditions of Theorem I
are satisfied.

4) A great deal has been written since Poincaré on diagonal definitions
occurring in a system of definitions. A veryneat way of putting the point is due
to Prof. Wittgenstein:

Suppose we have a sequence of rules for writing down rows of 0 and 1,
suppose the pth rule, the diagonal definition, say: write 0 at the a'™® place (of the
pt row) if and only if the ni® rule tells you to write 1 (at the a2 place of the nth
row); and write 1 if and only if the =th rule tells you towrite 0. Then, for the pt
place, the ptt rule says: write nothing!

Similarly, suppose the g8 rule says: write at the nt* place what the n*2rule
tells you to write at the nt® place of the nth row. Then, for the ¢ place, the g
rule says: write what you write!
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(i) Indefinability of sets.

If. then, we do not get a contradiction, what happens to the
diagonal class? Is it ,lost™?

Now, as has been pointed out in para. 14, such a question
may well depend on a naive misundersbanding of the diagonal de-
finition where it is supposed that it provides a ,new™ class. Yet
it is worth while to make the question precise.

Skolem [1] stated that the enumeration of classes, and the
diagonal class are not definable in the model. But that is not yet
precise: what is to be meant by saying that a class ('is not definable
in a system 8, C being defined in some system §'% It is to be expected
that the answer to this question will also make clear why the diagonal
class is indefinable in the model, how it is excluded.

To consider the notion of definability (of classes of integers)
we ask: Suppose A(n), W(n) are two predicates of systems S and S,
both systems containing recursive integers; under what conditions
are these predicates (or their classes) different?

(a) Strong difference.

If we can find an nt so that A(n), W(n) are decided in §, §’, one is
proved, the otherdisproved, we say that the two predicates are different.

If, further, A'(n) is a predicate of & so that every predicate
of § can be shown to be different from '(n) in the sense abhove,
A'(n) is said to be indefinable in 8.

Let us apply this to the model. We say that U'(n) differs from
the class with number g of the model if we can find an n so that
efi*(n),a]=0
is decided in the model, W(n) in &, and one is disproved, the other

proved.

From this point of view the diagonal class u of the set theory (1)
defined by the predicate e[i*(n),n]=1, is nct indefinable in the
model, i. e. does not differ from the class with number u*. Provided
the set theory is consistent, if e[7*(n),n]=1 has been proved from (1),
e[i*n),u*]=0 can be proved in Z, from (n)[g(n)=0]; and, con-
versely, if e[i*(n),n]=0 has been proved from (1), e[¢*(n),u*]=1
can be proved in Z* from (n)[¢g(n)=0]. In other words, where one
expects the two predicates of n, e[4*(n),n]=1 e[i*(n),u*]=0 to be
different, one is undecidable in the systems considered. (Note however that
we have not established that both are undecidable because, though
when e[i*(n),n]=1 is undecided in the set theory, e[¢*(n),u*]=0 is
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not decided at a finite stage, the minimum condition may decide
e (n),w*]=0 in Z,+ (n) [g(n)=
(B) Threefold difference.

If we can find an n so that either (a) applies, or A(n) is decided
in 8, AW(n) undecided in S’, or A(n) decided in &’y An) undecided
in 8§, we. call A(n), A(n) different predicates. This amounts to eon-
sidering predicates not as a division of integers into two classes
T, F, but three T, F, U. With this definition it has neither been
shown that the diagonal class is not indefinable in the model, see
note to (u), nor that it is indefinable.

() o-consistent difference.

If An) is decided in some o-consistent extension (see para. 13)
of §, and A(n) in some w-consistent extension of 8, one true, the
other false, we call U(n), A'(n) different predicates.

With this definition the diagonal class is not definable in the
model. For, by the argument of para. 12, a formula ¢(a,b)=0 is
decidable in the o-consistent extensions of Z, considered, and clearly
the class y of the model is different from the class e[i*(n),n]=1
since e[#*(y),y] is computable for every 1y in the extensions
considered.

This fact may also be stated thus: the model (4) is only a model
of the set theory (1), but ot of all w-consistent extensions of (1). The
model is w-inconsistent in the following sense: by para. 12 it can
be decided in an w-consistent extension of Z, whether the integer u*
has the property e[i*(n),n]=1; if it does, its representative *(u*)
does not belong, in the sense of the model, to the representative u*
of the property e[i*(n),n]=1; ,representatives” were defined in the
lemma and in Theorem I. The impossibility of finding a model (4)
for all w-consistent extensions of a set theory containing Z, may
be regarded as the counterpart in the formal theory of the naive
notion of non-enumerability; and the w-inconsistency of the model
as the reason why the diagonal class is excluded.

Remark. The last definition (y) is sufficient for our purposes.
But it must not be regarded as a sabisfactory general definition
of indefinability.

(i) It is easy to see that there are predicates A(n) of Z, so that
A(nt) is not decided in the w-consistent extensions of Z, which we
consider, and two predicates A(n), A'(n) may fail to be called dif-
ferent, because at the crucial values of 1, one cfthem is undecided.


GUEST


284 G. Kreisel-
(2) The definition says nothing about the difference between
two predicates defined in o-inconsistent formal systems.

(iii) Lastly, return to the most naive (picturesque) interpre-
tation of the diagonal argument: that there are more predicates
than integers.

Since [1] and [3] this idea is rejected because the formulae
by which the predicates are defined can be numbered. This argu-
ment is not convincing since, when ,,difference” between predicates
has been explained, the same formula may define different predi-
cates in systems with different axioms. The matter is easily settled
for our (¢)—(y) by showing that any predicate defined in forma-
lized systems is equal [for (a)—(y)!] to a predicate of w-consistent
extensions of Z,, 3 say, which is a system whose formulae can
be enumerated by a primitive recursive function (but not its proofs).

{a) Since here only decidably different predicates of integers
are counted different, and decidable predicates can be represented
in Z,, any predicate considered is equal in sense (a) to a predi-
cate of 3.

{) By a formalized system we mean one whose formulae and
proofs can be enumerated by primitive recursive functions: with
the notation of para. 14, where (b) with the free variable b has
the number q, —%(n) the number #(n), and W (n) is the formula

(Ex) Prov[z,s(n,a)] V b=0-& - (¥}~ Prov[z,i(n)],

then U’ (n) defined in § is the same predicate in sense (8) as A(m).
For if A(n) is proved in a consistent S, the second conjunct of
' (n) is verifiable, hence provable in 3, and the first provable by
an example for «; if —%U(n) is proved in 8, the second conjunct
of A (n) is disproved by an example, and hence —~%’'(n) provable
in 3; if A(n) is undecided, the second conjunct is verifiable, the
first equivalent in 3 to =0, and therefore also undecided (with
free variable b). )

() The result is trivial if § and §° are the system Z,. We
do not discuss the general case.
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