74 L. Henkin.

dfeseribed for the system Hj, the only change being that to the con-
ditions (i), (ii), (iii) and (iv) we add a condition (v) which »" must
satisfy:

(v) 2" (A4, dn))=+@'(4y), ...,v"(4,)) for all wits Ay .oy dn

From this description it ean be seen that the presence of symbols
from the propositional ecaleulus (other than »2%) is drrelevant for
the characterization of quantifiers which we have given. It is this
faet which provides the justification for our having abstracted from
these symbols and worked with the system of hasic implication.
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The Tychonoff Product Theorem Implies the Axiom
of Choice.

By
J. L. Kelley (Berkeley, California, U.S.A)).

Recently S. Kakutani has conjectured that the axiom of
choice is a consequence of that theorem of Tychonoff?) which
states that the Cartesian product of compact topological spaces is
compact. It is the purpose of this note to show that this conjecture
is correct.

1. Definitions. We first review the pertinent definitions.
A topological space is a set X, together with a family J of subsets
(called open subsets), the family J having as members the void
set, X, all finite2) intersections and arbitrary unions of members
of . If we adjoin the requirement that complements of finite sets
be open, the topological space is a Kuratowski closure space?).
In the proof which we give the topological spaces constructed are
closure spaces.

The space is compact (=bicompact) if each covering of X
by members of J has a finite subcovering. (In particular, the void
set A1 with the topology {4}, is compact). If, for each member o of
a set 4, X, is a set, the product Paes X, is the set of all fanctions #
on A for which, for each aed, z,¢ X,. If each X, has a topology
we let § be the family of all subsets of the Cartesian product which,
for some set U open in some X,, are the set of all  with @, ¢ U.
The product is then topologized by calling a set open if it is the
union of finite intersections of members or .

') Mathematische Annalen, vol. 111 (1935), pp. 762-766.

2) In the absence of the axiom of choice it is necessary to define ,finite*.
‘We agree that a set is finite if it may be ordered so that every non-void subset
has both a first and a last element in the ordering. Then the axiom of choice for
finite families of sets can be proved. See A. Tarski, Fund. Math. 6 (1924),
Pp- 49-95, for a full discussion of this and related questions.

%) See C. Kuratowski, Topologie I, Monogr. Mat. 3 (1983), p. 15.
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2. Proof of the theorem. We now demonstrate the fol-

lowing statement of the axiom of choice:

If for each a e 4, X, is o non-void set, then the Cartesian pro-
duct Ppea X, is non-void.

‘We begin by adjoining a single point, say 4, to each of the
sets X,: Let ¥,=X,U{A}. We assign a topology for ¥, by defining
the void set and complements of finite sets to be open. It is clear
that ¥,, with this topology, is compact.

For each a <A, let Z, be that subset of Pges ¥, consisting
of all points whose a-th coordinate lies in X,. Surely Z, is closed
in Puea ¥, since X, is closed in ¥,. Moreover, for any finite subset
B of 4 the intersection NgepZ, is non-void, for, since each X, is
non-void we may by the finite axiom of choice choose x, ¢ X, for
aeB, and set x,=A for ae<A—B. Consequently the family of
all sets of the form Z,, for some a ¢ 4, is a family of closed subsets
of Piea¥,, with the property that the intersection of any finite
subfamily is non-void. Hence, since by the Tychonoff Theorem
PoeaX, is compact, the intersection M,e4Z, is non-void. But this
intersection is precisely P,c4X,, and the axiom of choice is proved.

3. Remarks. 1t is of some interest to note, in the various
proofs of Tychonoff’s theorem, the precise lemmas which require
the axiom of cholce. In each of the proofs which have been published
the axiom of choice is used in the proof of two distinct subsidiary
propositions. In what is probably the most illuminating proof %),
that of J. W. Alexander, these results are:

i) Let & be the family of subsets of a Cartesian product of
compact spaces as defined in Section 1. Then every covering of the
product by members of & has a finite subcovering.

ii) Let & be any family of sets with the property: any sub-
family which covers the union U,.2A4 has itself a finite subfamily
which 2lso covers. Then the family @ of all finjte intersections of
members of K enjoys the same property.

Proposition i) implies the axiom of choice. Indeed, the above
proof uses only i). However, I am unable to discover whether ii) does
or does not imply the choice axiom.

University of California.

%) Proceedings of the National Academy of Sciences 95 (1939), pp. 296-298.
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A Paradoxical Theorem.
By.
J. Novak (Praha).

In this paper the following theorem is proved: B being. Mi
ancountable closed subset of the set C of alll countable ordlgsz'
numbers, let f(z) be & single-valued transformation ¢f B onto A‘ )
having the property that j(z)<w for all £ ¢ B. Then there efé ;
a countable ordinal number a4 and an uncountable subset B

; z)=a for all z e B*.
soeh ‘;11112:: ’gl(lez)rem is used in the first instance to prove Theorem 2, -
which in a special case gives this paradoxical result: We take away
one element s, from the given infinite countable set 4,, we add
2 new infinite countable set 4; to the remainder, from the set

U A;—U s, we take away one element: s,, add a new infinite countable

}'<2 . - - . N
?sé% A, and we continue in this way so that from the set}(}uA 2 zgus,,
(unless it is empty) we take away one element s, and then we add
a new infinite countable set A,. Then there exists a countable
ordinal number ¢ such that the set of all given and added elements

is the same as the set of elements taken away 1.e ;.%Al ZL<JH 2

In the second instance the theorem mentioned above is us'e(‘i to
prove Theorems 3 and 4, in which necessary and sufficient c.ondltlons
are given for ordered continuum with the Souslin prope?rty (i.e. every
disjoint system of intervals is countable) to be a hne:fnr set. .O'ne
of these conditions is the existence of a rational dyadic partition
of the ordered continuum with the Souslin property (Theorem 3)
and the second condition is the existence of a closed dyadic par-
tition (Theorem 4).

Theorem 1. Let
(1) By< br<<. <P
be an increasing sequence of ordinal numbers fa<<0Q such that

) Hm fy=Prim »
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