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Weak compactness in Banach spaces
by

G. SIRVINT 1 (Leningrad).

The author was murdered by the Germans during the second world war.
The present work was received by the editor in 1941 and has been prepared
for print by A. Alexiewicz.

In his monography [4]") Bamaci calls only little attention
to the notion of weak compaciness. In recent years, however,
the importance of this concept for Functional Analysis has been
emphasized in several papers, to mention only its role in the
theory of stochastic processes. The present paper %) deals with
a detailed study of the weakly compact subsets of Banach spa-
ces, especially of the separable ones. When considering the com-
pact subsets in Banach spaces, I follow the way indicated by
Grrranp [10].

The contents of this paper consist of two parts. In the first
part (§ 1-§ 7), necessary and sufficient conditions for weak com-
pactness of subsets of separable Banach spaces are given and
the connectedness of the weak convergence with the weak com-
paciness are studied. In the second part (§8-§ 10) we consider the
general forms of weak compactness in some concrete Banach
spaces and we apply the results to the study of weakly completely
continuous operations.

1) The numbers in brackets refer to the bibliography at the end of the

present paper (p. 93-94).
?) the principal results of which were announced without proofs in the

note [15].
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Terminology and notation.

E {mw(x)} denotes the set of the clements x satisfying the con-
dition m(x). .
R denotes the closure of the set R in any topological space,

llx[| denotes the norm of the element x of a Banach space,
E* — the space conjugate to the Banach space L.

|Q] denotes the Lebesgue measure of the set Q.

If f(x) is a function, f(-) will denote this function considered
as an element of some class of functions.
C denotes the space of continuous functions x==x(f) in an
interval [a, b], with the norm ||x||=max x(f).
aI<b

¢ denotes the space of the sequemces x=(x®,x®,...) con-
vergent to x®, with the norm ||x||=sup |x™].
n=L2,...

m denotes the space of bounded sequences x=(x®, x(ﬁ),...)
with the norm {|x||=sup |x®].
n=1,2,...

M denotes the space of the functions y=y(t) essentially
bounded in [a, ], with the norm = t)| == in
[ ‘ ] lyli=esssuply ()| =inf sup|y(®)]
) Yo denotes the space of functions y=y(t) of bounded varia-
tion in [a, b] and vanishing for ¢ =a, with the norm ||y||=var y (0.
as<I<b
1 denotes the space of sequences x=(x",x®,..) for which

S|t <<oo, the norm of the element x being, by definition,

n=1

the sum of the last series. ‘
L denotes the space of the functions y=y(t) for which

f]y(t)ldt<oo, the norm of the element y being, by definition,
the value of this integral.
Vi denotes the space of the functions y=y({) of bounded

variation in [a,b], continuous at the left, and vanishing for ¢=a,
In the sequel the term function vefers to real-valued functions.

. §.1. A sequence f1(#), fy(x),... of real-valued functions de-
fmf:d in a quile arbitrary set G is said (Amzra [1]) to be quasi-
uniformly convergent in G to f(x) if it converges to f(x) and if,
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given any ¢>>0 and n,, there exists an index n,>n, such that

min |f, (@) —f(x)]<<e for every xeG.

<

Arzeid [1] has proved that a sequence of continuous functions
defined on an interval [a,b]=G converges to a continuous limit
f(x) if and only if it converges to f(x) quasi-uniformly in G.

We can prove without altering the proof of Arzrd’s theorem
its following generalization:

11. Lemma. Let f (x),f;(x),... be a sequence of functions
defined on an arbitrary set G, and convergent quasi-uniformly
on G fo f(x). Suppose further that x, x,x.,... is a sequence of
elements of G such that

li_l)n folen) =1, ()

for n=1,2,... Then there exists lim f(x_) and

m—yoo

lim £(s,) = £ (x,).

m—yoo

We use also another notion of convergence intermediate be-
iween the uniform and the quasi-uniform convergence, introduced

by Ficutensorz and Kanrorovircn [7]. .

A sequence f,(x), f,(x),... of functions defined in an abstract
set G is said to be almost uniformly convergent to f(x) in G, if
it converges quasi-uniformly to f(x) in G, together with any par-
tial sequence.

In order to see that the almost umiform convergence is
stronger than the quasi-uniform one, consider, given a sequence
f.(x),f,(x).... convergent not quasi-uniformly to f,(x), the new
sequence f, (x), f, ), (%), o (x)....; in order ‘to see that the almost
uniform convergence is weaker than the uniform one, consider
any sequence of continuous functions defined on an interval,
convergent non-uniformly to a continuous limit.

1.2. Lemma. 4 necessary and sufficient condition for a se-
quence f,(x),f,(x),... of functions defined in an abstract set G to
be almost uniformly convergent to 0 is that x,¢G imply

(1) : lim lim f, (x,)[=0.

n-yoo i—>os
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Proof. Suppose, that (1) does mot hold. Then there exist
elements x,eG and a sequence n,—> co such that

for k=1,2,...;

’

lim [f, ()| >8>0

hence there exists for each k an index i, such that iZ=i_ implies

[, (x) > 0/2.

Choose now freely two integers k, and k,>k,, and put

i>max I
R
thus

min x| =0
Jin, I, =1,

which inequality shows that the sequence fn1 (), fng (x),... does not

converge quasi-uniformly to 0. The condition is thus necessary.

Suppose now the condition (1) satisfied and the sequence
fi(x).f,(x),... not almost uniformly convergent to 0. Thus there
exists a >0, an integer k,, and elements x,¢ G such that

min |, ()|>8

for i=1,2,...,
[

and this implies
lim|f, (x)[> 6
i-yoe

contrarily to (1). The condition is thus sufficient.

.1.3. Corollary. f,(x).f,(x),... being a sequence of functions
defined on an abstract set G, convergent almost uniformly to 0
in G, suppose that li31 f.(x)=¢£, exists for n=1,2,... Then

lim §, =0.

n-yeo

§2 A subs‘e‘t R of a topological space P ([1], p. 37) will be
called compact if any infinite part of P contains a sequence con-
vergent to some element of P.

By a familiar argument of General Topology we can easily
prove the following
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2.4. Lemma. Let the sequence U,U,,... of open sets cover?)

the set. R and let the set R be compact. Then there exists a fi-
nite sequence U,,U,,...,U_ mwhich covers the set R.

Let E be any Banach space. Consider the following neigh-
bourhood system in E: given an x,¢E, an ¢>0, and n elements
fisfes-esf, of the space E* (with arbitrary n), every set

Efihe—x)i<e... fla—x) <e)

constitutes a neighbourhood of x,. The topology generated by
this neighbourhood system is called the meak fopology of E.
With this topology E is a locally convex linear topological space
(Wenausen [17]).

Any set compact in this topology will be said to be meak-
ly compact.

It is easy to see that a sequence x,x,,... of elements is
convergent to x, in the weak topology, if and only if for any
functional fe E*

(2) lim f(x)) = f(x,).
n-yoo

Any sequence satisfying the condition (2) for each feE* is
termed meakly convergent to x,.

Hence a set RCE is weakly compact, if and only if any in-
finite part of R contains a sequence weakly convergent to an
element of E.

§ 3. Now a sufficient condition for weak compactness in the
space C will be given, which will be proved later on (p. 79
to be also necessary.

Let R be any set of functions x(f) defined in an interval {a,b].

We can define the equicontinuity as follows: the set R is
said to be equicontinuous, if a,,b,e[a.b], b,—a,— 0 implies

(3) x(b)—x(a)—0,
uniformly for all x(tf)eR.

Using the language of Functional Analysis we can express
this fact otherwise.

3) The sequence Uy, U,,... covers the set Q, it QIU,+U,+...
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Considering the functions x(f) as elements of the space C,
one will see that the expressions x(b)—x(a) are linear func-
tionals on the space C:

(4) x(b)—x(a,)=T, ().

Thus the set RC C is equicontinuous, if and only if b, —a -0
implies that the sequence of functionals (4) converges {o 0 uni-
formly in R. .

We now introduce an analogous concept. A set R(Z C will
be said to be quasi-equicontinuous if b,—a, >0 implies the cuasi-
uniform convergence in R of the sequence of functionals (4)%).

It is well known (Banacu [4], p. 134) that the weak conver-
gence in the space C has the following meaning: the sequence
%;,%;,... converges weakly, if the functions x,(¢) are equiboun-
ded in [a,b] and converge at any point to a continuous function.

3.4. Theorem. If the functions of a set R C are equibounded
and quasi-equicontinuous in [a, b], then the set R is meakly compact..
Proof. Let x,x,,... be a sequence of elements of R.
* By the diagonal method we can extract a subsequence

.
x]:n =Xy

such that x}(f) converges for every rational ¢ to x (f); we shall

prove that x,(f) is uniformly continuous in the set OW of the ra-

tional numbers of the interval [a,b]. Let t,1"¢W, t,—t)—->0)

and put I T )
fole) =2 (t) —x (£).

. The sequence f,(x), f,(x),... converges to 0 quasi-uniformly
in R; moreover

}"‘_ﬂfn (o) =x, &) —x,(2]).
By Corollary 1.2
Yim [, () — s, ()] =0

4) 4The quasi-equicontinuity may be defined directly as follows: a set R
of f:ontmuous funf:ﬁons in |a,b] is quasi-equicontinuous if from any system X
o.f intervals coniaining intervals of [2,D] of arbitrary small length it is posqiblc;
given eny ¢>0, to choose a finite subsystem [o;.8]e¥, i=1,2,....m such thn;
_min m]x(ﬁi)——x(ai)l<e for any xeR. ,,

i=1,2,...,
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The function x,(f) being uniformly continuous in W, there
exists a continuous function F(f) such that x(f)=x3(t) in W
To prove that x* converges weakly to xj, it suffices to prove
that the sequence x%(t),x¥(t),... converges everywhere to xj(f).
Given an arbitrary tela,b]. let t, e W, {,—1,, and write

fre=x(t,). @=x.

1t is obvious that the sequence fT(x),f;(x),... conv:erges to
F*(x) quasi-uniformly in the set § composed of the functions
) x5, &}, x5
and that
lim £*(x%) =17 (x5) for n=1, 2,...
m-yoc
Hence by Lemma 1.1
Lm f*(x®)=F*(x}), iLe x5{t,)> x5
m—yoo

§ 4. We now can prove the first criterion of weak compact-
ness in separable spaces.

41. Theorem. A subset R of a separable Banach space is
weakly compact, if and only if any sequence of functionals con-
pergent to 0 on the whole of E, converges quasi-uniformly on R%).

Proof. Let R be weakly compact, and consider any sequence
of functionals f,(x),fy(x),... convergent everywhere to O. Let
£>>0 and n, be arbitrary, and consider the sets

U,=E{lf.(x)l<e)

since the sets U. are open in the weak topology and cover the
set E, by Lemna 2.1 there exists a n, for which

- ! .
n=n,, ny11, ...

ny
RC T,
n:vlo
i.e. f.(x) >0 quasi-uniformly on R. Thus the condition is neces-
sary. ]
Let now the set R satisfy the condition of the theorem. We
prove first that the set R is bounded. In the contrary case there

5) When this paper was finished, Mr. Smulian informed me that be had
found a modification of Gelfand’s and my criterion valid in non-separable
spaces.
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would exist a linear functional f(x) for which su;‘)! fla)| =—+c

{(Banacu [4], p. 80), hence there exists a sequence x,, x,,... such

that xR, |f(x,)|<|f(x,,)l, |£(x,)]>co. Put f,(x)=f(x)/ (x,):

obviously £,(x) =0 in E, not quasi-uniformly however in R. "
In fact, choose n, = n, arbitrarily; then

Fu(x,) = Fl,)/ F(x,) =1

for n,«<Cn-Jn,<<m, and this shows that the sequence f.(x) does
not converge quasi-uniformly. :

‘ The space E being separable, it is equivalent to a subspace
of the space C. Denote by U(x,f) the element y(f) of € which
corresponds- in this equivalence to the element x. Gerranp has
shown ([10], p. 266) that there exists for cach te[a,b] a lincar

functional £, such that

(5) Ulx,t)=1/(x),

moreover, £, - t, implies f,"(x)—>f,0(x) for any x.

_ The set H into wfrhich the operation (5) maps the set R being
ev1denﬂyl bouvnded, it is sufficient to prove that the set H is
compact in Ci.e. quasi-equicontinuous in [a,b]. Let (a,—b ) 0;
the sequence of functionals g (x)=( fo —7F. ) (x) cor’llverg,,:es to
0 in E, hence by hypothe§is 8.(x) > 0 quasi-uniformly in R; thus
by '}’heorem 3.1 the set R is compact in €. The condition is thus
sufficient. '

Remark. The condition of Theorem 4.1 is necessary for
non-selzgrablg spaces t0o. In that Theorem we can replace the
words “quasi-uniformly” by “almost uniformly™.

In virtue of Lemma 1.2 we can reformulate Theorem 4.1
as follows: -

42. Theorem. 4 subset R o

f a separable B ace is
mweakly compact, if and only if g anach space is

limlim i f,(x )] =0
ne>es ipan

for each sequence f.f, of element
; >i2ee s of the space E*, ¢ _
gent fo 0 in the whole of E, and for arbitrary xl,)eR.  conver
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43 Theorem. 4 subset H of the space C is mweakly com-
pact, if and only if it is bounded and quasi-equicontinuous ©).

Proof. The sufficiency of the condition having been proved
in 3.4 we prove only its necessity. The set H must be equi-
bounded, for in the contrary case there would exist elements
x,eH such that |x,||» oo, and this sequence cannot contain any
weakly convergent sequence. To prove that the set H is quasi-
equicontinuous, let (b,—a,)—>0 and put g,(x)=x(b,)—x(a,) for
x¢C; these linear functionals converge to 0 in C; hence by The-
orem 4.1 this sequence converges to 0 quasi-uniformly in H.
Thus the set H is quasi-equicontinuous.

In a quite analogous way we can prove the following

44. Theorem. 4 subset H of the space ¢ is mweakly
compact, if and only if it is bounded and the sequence x* con-
verges to x® quasi-uniformly on H.

§ 5. Some new considerations must forego the proof of the
second criterion of weak compactness.

I shall say that the sequence f,(x),fy(x),... of real-valued
functions defined on an abstract set (¢ u-converges to 0 on the
set G, if, given any ¢>0, we can choose non-negative numbers
AsAys... s 2, such that

=1, sugl‘Zl,.fi(x)]<e.
i==1 xeCG i=1

In other words, u-convergence to 0 means that there exists
a sequence of weighed means of the functions fi(x) convergent
to 0 uniformly on G. :

5.14. Lemma. Let B be a subset of a Banach space E and
suppose that every sequence of elements of E convergent to 0 in
the whole of E, u-converges to 0 on R. Then the set R is bounded.

¢ The reader will observe that the quasi-uniform convergence plays the
same role for the weak compactness in the space C as the uniform one for the
(ordinary) compactness. The later has been characterized by Arzela [1]; the
same author has also introduced [2] the concept of the quasi uniform conver-
gence, and only the insufficient development of Functional Analysis in Arzeld’s
time accounts for the fact that he did not find the criterion of weak com-
pactness in the space C.

B
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Proof. Suppose the contrary. Then there exist (.BANACH‘[4],
p- 80), elements x,eR and a linear functional f(x) for which
TICAIESTICAMIR

Put f (x)=f(x)/f(x,); we have f (x) >0 in E.
Let 4.>0, and ’

Hie ) = oo,

then
She=3al00 5,
= [ (ex,) ’_gl Flx) ™ ié’lﬂl 1,
contrarily to the hypothesis.
' ]?enote by B, the Banach space composed of the bounded
functions f=/f(x) defined on an abstract set G, with the norm

Hfﬂ=sxgglf(x)l‘

52. Theorem. Let f,(x),f,(x),... be a sequence of eleinenfs
of the space Bg; the follorving statements are equipalent:

() the sequence is equibounded and converges to 0 almost
uniformly on G,

(D) it converges mweakly to 0,

(I) i p-converges to 0 together mith any partial sequence.

PFoof. By Lemma 1.2 the almost uniform convergency to ()
on G is equivalent to the condition

@ lim lim |£, ()| =0,

n—eca i-yoo
thus by a theorem of Bawacu ([4], p.219) together with the equi-
boundedness it is equivalent to (I); by a theorem of Mazur (12,
p- 81) (II) it is equivalent to (III).

_ 53. Theorem. .A subset R of a separable Banach space L
is mweakly comgact, if and only if any sequence f,(x) of elements
of the space E*, convergent to 0 on the whole of E, p-converges
fo 0 on R.

Proof. This follows from Theorem 4.1, Lemmas 5.1 and 5.2,

and from any linear functional being bounded in any weakly
compact set.

Weak compactness in Banach spaces. 81

Remark. The condition of Theorem 5.3 is necessary for
non-separable spaces too.

Theorem 5.3 permits us to establish some properties of weakly
compact sets. E.g. the convex span of any mweakly compact sub-
set of a separable Banach space is weakly compact 7).

§ 6. We now investigate more precisely the notion of quasi-
equicontinuity.

6.1. Lemma. Let H be a quasi-equicontinuous set of functions
in [8,b]. Given any «.fela,b), there exists a constant M(a,p) such

that
sup x(a) —x(f < M(a.p).

Proof. Suppose this is not the case. There exist «,,f, ¢[a,b]
and a sequence xVe¢H such that

lin (e (ay) — 2 B) = =

This implies that
T ) 02 2) i o ) — 0 g o
n-yce & n—yco =~

hence there exist a,,8, and a sequence x{ extracted from x{)
such that o,—g,=(a,—p,)/2, and

lim lx® (a,) — & (8,) | =co.
n—yoo

Continuing this process we obtain functions x®eH such
that each of the sequences x®,x%®,... contains the following, and
intervals [, .,/ [a.b], such that o,—p,—0 and

lim|x® (a,) — x@ (8,) | =2z,

Write x,(f)=x7(f); we have

lim|x, (@) —x, (B =< for k=1,2,...

n-yse

7) This theorem has been extended to non-separable spaces by Krein and
Smulian ({11], p. 581).

Studia Mathematica, T. XI. [
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The set H being quasi-equicontinuous, we have
fx(e) —x(B)] =0

quasi-uniformly on H; hence there exists a k; such that for
each xeH

min |x () —x (8= 1.
1<k,

It follows that there exists a k, and a sequence of indi-
ces n, such that

[xni(ako) —xni(ﬂko)|< L for i=1,2,...,

which is impossible.

Concerning the Lemma proved above, let us remember  that
for the equicontinuous sets of functions a stronger proposition
holds : it is possible to choose a constant M independent of the
intervals [a, ] such that

sup |x (@) —x ()| <M.

xeH

A set HC € will be said to be pointwise compact if any se-
quence of functions of H contains a subsequence convergent
everywhere to a continuous limit.

Arguing similarily as in §4 and §5, using the topol%y of
Tycuonorr [16] instead of the weak topology, and applying
Lemma 6.1 we can prove the following

6.2. Theorem. 4 set HCC is pointrise compact if and
only if the functions of this set are bounded at any point and
quasi-equicontinuous.

Taking into account the fact that for continnous functions
defined in an interval the quasi-uniform convergence is equivalent
to the almost-uniform one, and using Lemma 6.1 we can easily
prove the following )

6.3. Theorem. The following statements are equivalent: '

(A) the set HC C is quasi-equicontinuous and the difference
|%(B) —x(a)| is uniformly bounded for-all a,fela,b] and xeH,

B) (a,—p)—0 implies u~-convergence to 0 on H of the se-
quence of functionals x(a,)— x(8).
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§ 7. In the space E* conjugate to a Banach space E, the
weak convergence of the sequence f,.f,,... to f, means that
F(f,) > F(f) for every FeE**. A weaker notion of convergence
is also introduced: the sequence f,,f,,... is (*)-meakly convergent
to f, if f,(x)->f,{x) for every xeE.

24. Theorem. 4 sequence f,,f,,... of elements of the space E*
converges weakly to 0, if and only if f (x)—>0 almost uniformly
on the unit sphere of the space E.

Proof. Put G=F{lx]<1}; given an element feE*, denote

by f the functional f(x) with its domain restricted to the set G.
The correspondence f«f establishes an equivalence (Bawacu [4],
p. 180) between the spaces E* and Bc. The convergence £ (x)->0
in G implies boundedness of the sequence of the norms. Thus,
the theorem results from the invariance of ihe weak convergence
under equivalent transformations, and from Theorem 5.2.

The theorem proved above together with the foregoing one
permits us to establish some already known facts. E.g. the meak
compactness of the unit sphere in E is a sufficient condition for
the coincidence of the mweak convergence®) mwith the (*)-mweak con-
vergence in E*. In the case of E being separable this condition is
also necessary (Ganrvacuer and Swuuian [9)).

Further we can formulate a general principle of' characteri-
zation of weakly compact sets: a subset of a separable Banach
space is weakly compact if and only if each (*)-weakly con-
vergent sequence of elements of E* behaves on E as weakly
convergent.

§ 8. We shall now characierize the weak convergence in
some spaces.

84. The space m.

Denoting by N the set of positive integers, we see that the
space m is identical with the space By. Thus 5.2 gives the following

814.4. Theorem. A sequence y_ =(y®,y?,...) converges
weakly to 0, if and only lf 3up, ly(")l<oo and limy™=0

m—yoa

almost uniformly in the set N.

§) Note that in this paper the weak convergence implies the existence of
the weak limit (this is not required by some authors; see e. g. Gelfand [10])
6*
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82. The space M.

82.1. Theorem. 4 sequence y,=y,(t)eM converges mweakly
to 0, if and only if there exists a set QCla,b] and a constant K
such that |Q|=b—a. esssuply,(®)l<<K, and y,(f)—>0 almost
uniformly on Q. astsh

Proof For each y=y,(f)e M denote by Q, the set of the
points at which y(f) is equal to the derivative of its integral. We
prove that QCQ,. Q—Q,I=0 implies

(6) esssup|y (f)| = s:u&) ly(t)l.

asiLh

The inequality esssuply(f)|<<suply(#)| being obvious, we
2 t<h t6Q

prove only the opposite inequality. Suppose that there exists an
y(#) for which esssup ly (£)|<<a-<suply (f)}; then there exists a £,¢Q
ass feQ

for which y(fo)?;a\or y(t)<-—a; suppose the first possibility.
ty+d
Thus there is a >0 such that fy(t)dt>&6; on the other
i
ty+d ’
hand esssuply(f)l <<a implies Jy(t)dt<a5.
t<b .

a<t<

[
co

Put Q0=]__11Qyn and denote by M, the lincar span of the

to

elements y,,Y,.... From (1) we infer that

lyll=suply @I for each'yeM;
teQy
this shows that the linear subset M, M is equivalent to a part
of the space B,. By the theorem on ihe extension of linear
functionals (Banacu [4], p.55) the weak convergence of the se-
quence Y,.Y,.... in M is equivalent to the weak convergence of
this sequence as elements of the space B,. It suffices now to
apply Theorem 5.2.
83. The space V.

‘We denote by Z;dé:y(t) and va<rby(t) respectively the positive

At A

and ‘the negative variation of y(f).
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83.4. Theorem. A sequence y,,Ys,... of elements of the
space V, converges weakly to 0, if and only if the sequence
Iy, .My, l,... is bounded and the relation

m

lim 2 [y, (b)—y,(a)]=0

n~yoo i=l
holds almost uniformly in the set & of all finite systems of non-
overlapping intervals (a1,bi),..., (@m, ba).
Proof. The set & consists of all finite systems oc=(es,e2,...,€mn)
of non-overlapping intervals. Write for yeFo and e=(a,f),
yle)=y@B—yla).

Now, we define an operation U(y,o) which makes correspond
to each ye Vo an element f(o) of the space Bz. Write

(7) L"(y,a)=__§1y(ei) for o=/(e1,es,...,6€m).
The operation U(y)=Ul{y.o0) is obviously linear. Since
Uy, «)|=sup | X yle)i=max var y(t), var y (Al
ce® i=1 et as<t<b
we get .
10w, i <iiyll, 200, I=1yl,
®) Yyl <0y, <yl

Denote by BY the range of the operadon U(y). The for-
mula (8) shows that thé operation (7) establishes an isomorphical
mapping of V, into BY. The weak convergence being invariant
under isomorphical mappings, it suffices to apply Theorem 5.2.

§ 9. An operation from a Banach space E to a Banach space
E, is said to be meakly completely continuous, if it maps each
bounded set of the space E into a weakly compact set of the
space E,.

We prove a theorem analogous to a Grirasp’s characteriza-
tion ([10], p. 269) of completely continuous operations.


GUEST


86 G. Sirvint.

9.1. Theorem. A necessary and, if E, is separable, also suf-
ficient condition for a linear operation y=U(x) to be meakly
completely continuous is that the conjugate operation f=U*(g)
maps any sequence of elements of E} (¥)-meakly convergent to
0 into a sequence of elements of E meakly convergent to 0.

Proof The condition is necessary ?). In fact, let the ope-
ration U(x) be weakly completely continuous and let a sequen-
ce g;,8,;... of elements of E} converge (¥)-weakly to 0. Put
f,=U*(g,), then

(9) ) =g,(U(x),
and because of the weak compactness of the set

Ely=U),Ixl< 1)
we get by Theorem 4.1 f (x) >0 almost uniformly on the unit
spherc of E, and this implies, by Theorem 7.1, the weak con-
vergence to O of this sequence.

In order to prove that the condition is sufficient, SUppPose
the operation U(x) satisfies this condition and I, is separable.
Suppose the sequence g, g,.... of elements of E* converges (%)-
weakly to 0. Writing f,=U*(g,) we have f,(x)~0 almost uni-
formly on the unit sphere in E; hence formula (9) shows that
&.(y) >0 almost uniformly on the set [ {y="U(x), ||x| <) =LZ.

Yy

By Theorem 4.1 the set Z is weakly compact.

9.2. Theorem. dny linear operation U(x) from the space ¢
to a meakly complete Banach space E is completely continuous.

Proof. Let us say that a sequence x,,x,,... of elemenis of
E converges meakly in itself, if lim f(x,) exists for every feL*.

n=yoo

In the space ¢ every hounded sequence contains a sequence
weakly convergeni in itself. Hence the operation [/(x) maps any
bounded set PC ¢ in a set P, which has the property that any
sequence of its elements contains a subsequence weakly conver-
gent in itself. Because of the weak completeness of the space
the set P, is weakly compact. Thus we have shown that the
operation U(x) is weakly completely continuous.

?) proved independently by Vera G antmacher (8], p. 302).
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Now, the range of U(x) being separable, we can suppose
without loss of generality that the space E is so. By Theorem
9.1 the conjugate operation f=U*(g) maps any (*)-weakly con-
vergent sequence of elements of the space E* in a weakly con-
vergent one. But in the space ¢* the weak and the strong con-
vergences coincide (Basacu [4], p. 67 and 157). [t suffices now ‘to
apply a theorem of Geuranp ([10], p. 269) %)

§ 10. We presenily establish general forms of weakly com-
pletely continuous operations in some concrete Banach spaces.

The general form of a linear operation y=/(x) from a Banach
space E to the space C is (cf. §4)

(10) o Ux=f,(x),

where f,eE* and t, >, implies the (*)-weak convergence of the
sequence {f,n} to f. Moreover .

U = AR
U assygbllfu

10.1. Theorem. The operation (10) is mweakly completely
continuous, if and only if the function f, is weakly continuous ™).

Proof. Suppose the operation (10) io be weakly completely
continuous. and put

(11) R=FE{y=U).llxl< 1}
¥

this set is weakly compact. Let f,—1,: then (f, —f,){x)->0
for each xeC: hence by Theorem 4.1 this sequence converges
almost uniformly on R, and Theorem 7.1 implies that f, conver-
ges weakly to f,. Thus the condition is necessary.

Suppose now the condition satisfied. We prove tha.t the set
(11) is weakly compact. This set is obviously boundedk in C. Let
(bn~a,1)~> 0, and let F be an arbitrary element of E*"‘.. By h}‘-
pothesis F(f,) is continuous in the interval [a,b]. and this implies

) In its formulation it must be added that the considered space is sepa-
rable. This theorem can be proved directly by using the gener}al form of linear
functionals in the considered space and a theorem of Orlicz ([14]. p. 246).
The result of Gelfand ([10], p. 274) is weaker. ) )

1y The function f, is meakly continuous if, given any Fe E**, the function
F*{f,) is continuous.
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F(f,,—1,) >0 ie. f»,—f,, converges weakly to 0. By Theorem
7.1 (fb"——fnn)(x) -0 almost uniformly on the unit sphere in E.
We apply finally Theorem 4.1.

Now, we illustrate Theorem 10.1 by some examples. Using

the gemeral form of linear functionals (Bawacn [4], p. 59-72) and
the results of § 8 we get the following

10.1.2. Theorem. The general form of the mweakly comple-
tely continuous linear operations from Ito C is

U(x)=U(x,t) =§x<n)y(n)(t)’
n==l

where the sequence y"\(t) is equibounded and quasi-equicontinuous
in [a,b]; moreover

T = sup L
10l a;?ggy ().

10.1.5. Theorem. The general form of the mweakly comple-
tely continuous linear operations from L to C is

b
U(x)=U(x,t)=[K(s,t)x(s)ds,
mwhere '
1° K(-.,9)eM for every t,
20 f,—>t, implies K(s,,)~>K (s,t,) almost uniformly on a set
Q (depending upon the t.’s) such that |Ql=b—a,

3 sup esssup|K(s,f)|<<oo.
asi<b  a(s<Cb

1014, Theorem. The general form of the weakly comple-
tely continuous linear operations from C to C is

b
Ulx)=Ulx,t)=x(s) &K (s, 1),
mhere *
(a) K(:-.t)eVi for any ¢,
(b) K(s,-)eC for any s,

c) su var K(s,t
(c) 2, var, (s,t)<<oo,

(d) the set of the functions E[K(ﬁi,t)——K(a. t)] is
i=1 e

bounded and quasi-equicontinuous in S (cf. § 8)

equi-
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Moreover, denoting by Ci the closed linear span of the range
of the operation U(x), me have K(s,-)eC: for each s.

Proof. Only the last part of Theorem requires a proof.
Since K(a,-)=U(0) and K(b,-)=U(1), it suffices to consider
the case a<<s<Cb. Put

{1 for a~‘§;ﬁ‘.~'{:s
=0=10 for s<#<b,

and let z. (9 be a non-decreasing sequence of continuous functions
convergent to z:(9). The sequence

(12) AR SN

being bounded, the sequence U(z.) is weakly compact; moreover,
since the sequence (12} is weakly convergent in itself, U(z.) con-
verges weakly to an element y,e¢C;. We have then for every
tefa,b]
b N
yslt)= 1inl | zns(0) doK (8, 1) = Tim Jzns(9)dsK (8,1),
and the continuity (in #) at the left of the function K(9.1) implies
for 9=s
y,(=K{(s,1).

10.2. Now, we investigate the linear completely continuous
operations from the space € to an arbitrary Banach space E.

Let us recall first some concepts and results on abstract
functions of bounded variation.

Let y, be an abstract function from an interval [a,b] to the
space E. We denote by F(y,) the set of the elements

£

Z [ygi_ ya»ls

i=1 v
where (¢,.) is any finite system of non-overlapping intervals.
If the set F(y,) is bounded and feE*, then f(y) is of bounded
variation: the function y, is then called of bounded variation.
Let x () be any real-valued function, continuous in [a,b]; for
any function y, of bounded variation, consider the Stieltjes sums

1.

(13) Sxlw)y,—y;
i==1

i==

i—1
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Dunrorp ([6], p. 312) has shown that these sums converge (in

the sense -of Moore and Swmita [13]) to an element yeE. This ele-
b

"ment is denoted by f x(t)dy, and termed the Stieltjes integral of

x(t). It has the following property:

10.2.1. If f is any linear functional in E, then
b b

F( ) dy) = [ =) df(y).

a a

. Gereanp ([10], p. 280-282) has proved that the general form
of the linear operations from the space € {o an arbitrary weakly
complete Banach space E is

b
(14) Ulx) =[x () dy,

where the set F(y) is bounded. Moreover, if we assume that the

. set V(y) is compact, (14) gives the general form of the comple-

tely continuous linear operations from € to an arbitrary Banach
space.

.10.2.2. Lemma. The general form of the mweakly completely
continuous linear operations from the space C to an arbitrary se-
parable 2) Banach space E is (14), mhere

i® V(y,) is weakly compact,
(i) y,=o0,
(iii’) y, is meakly continuous at the left for a<<t-<b.

Proof. The space E is equivalent to a subspace C, of the
space C (Banacu [4], p. 185). Let

{15) Wi, t)=f,(x)

be the equivalent mapping of C inio C, (cf. § 4). Now let U(x)
be any linear operation from C to C. The operation W (x) being

2y The .lemma is frue also for non-separable spaces FE: then (i is to be
read “V(y,) is separable and meakly compact”. But this formulation does not

Present any generalization since the range of any operation of considered type
is separable.
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isometrical, the operation y=U(x) is weakly completely con-
tinuous if and only if the operation z=fU(x) is so. By
Theorem 10.1.4.

b
(16) £UGx)=[x(s)d K (5.1).

where K(s.t) satisfies the conditions (a)-(d), and K(s,)eC; for
any s. Hence there exists for any s an element y,eE which is
mapped into K(s,+) by the operation {15):

(17) K(s.ti=f,(y,).

++ The condition (d) implies that the set of functions

PTIEAEATRIES IPH S}
is weakly compact. The mapping (15) establishing an equiva-
lence between C and (), we see that the set V(f) is also wea-
kly compact. Lemma 10.2.1 and the formulae (16) and (17) imply

b b
LU =[x t)d, fly)=F]x ) dy,.
L2 a

The mapping {15) being one-one, we get the formula (14) with
y, satisfying the condition (i°. The conditions (ii’) and (iii°) result
from the formula (17) and from the condition (a). Thus the neces-
sity is established.

It is easy to see that, conversely, the conditions (i%, (% and
(iii®) imply for the kernel K(s,t) the conditions (a)-(d).

Lemma 10.2.2 shows the usefullness of functions satisfying
the condition (i%. The following theorem throws some more
light on those functions:

102.3. Theorem. If for an abstract function y, the set }'(y,}
is meakly compact, then for each te(a,b) there exist the weak
limits y,.g» Yo, and at the ends of the interval there exist
Yaros Yp—o-

Moreover, if the space E is separable, then y, =1y, 4. except
a denumerable set.
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Proof. The weak compactness of the set V(y,) implies the
same for the range of the function y,. For any feE* the function
f(y,) is of bounded variation; hence for any f e[a,b) there exists

lim f(y,)-

13440

Thus ¢, —t,, where ¢,=>1,, implies the weak convergence in it-

self of the sequence {y, }, and the weak compactness of this
sequence implies the existence of the weak limit y, .,, which
obviously does mnot depend upon the particular choice of the
sequence f,. We prove the existence of Y,—o by changing the
variable t into —t.

Let now the space E be separable. Then there exists a se-

quence f,, f,, ... of elements of the space E* (*)-weakly dense
in E* ie. dense in the sense of the (*)-weak convergence
(Baxacu [4], p. 124). For each n, the set D. of the points of dis-
continuity of the function f,(y,) is denumerable. We prove that

t,e(a,b) —n%‘ an implies Yns 01: Yo

In fact, let feE* and let fn,, converge (¥)-weakly to f. Since
by Theorem 4.1 f"k(y,) = f(y) quasi-uniformly in [a,b], and
since the functions fnk(y,) are continuous at f,, the function f(y,)
is also continuous at t,.

Theorem 10.23 shows that the conditions (ii®) and (iii®) are
superfluous in Lemma 10.2.2. In fact, write

I 0 for t=a
y,*=l Yyo—Yy, for a<t<b,
Yy—UY, for t=>5.

According to a theorem of Krem and Smuuan ([11], p. 581)
a.nd io Theorem 10.2.3 the function y?* satisfies the conditions
(i% - @ii®. It is obvious that

b b
fx(t)dy,*=fx(t)dy, for every x(t)eC.
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Hence we obtain the following
102.4. Theorem. The general form of the weakly continuous
linear operations from the space C to a separable Banach space E is

b
U =[~(t)dy,

where, for the function y,, the set T'(y,) is weakly compact.

We give an application of the above theorem. Using the
conditions for the weak convergence in the space L (Bawacw, [4].
p. 136), the Dunrorp’s criterion ([5], p. 643) of weak compaciness
in the space L and the remarks at the beginning of 10.2 we have:

1025. Theorem. The general form of the meakly comple-
tely continuous linear operations from the space C to the space L is

b

U(x)=gifx(s) d Ki(s,t),

where
(#*) K(s,-) is an absolutely continuous function for every s,

(#*) the set of functions';zl[K(ﬂ‘.,f)-—K(ai,t)], where the sys-

tem (a;,B;) runs over the set & (cf. §8), is equi-absolutely conti-
nuous *%).

Tokhovo, 1939 - Leningrad, 1940.
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Sur les solutions de I’équation linéaire du type elliptique,
discontinues sur la frontiére du domaine de leur existence

par

M. KRZYZANSKI (Krakéw!.

Introduction.

1. L’'une des généralisations du probléme classique de Di-
richlet pour I'équation de Laplace dans un domaine ouvert borné
consiste & admetire que la solution cherchée peut devenir dis-
continue en cértains points de la frontiére de ce domaine. On
doit & ZaremBa!) un théoréme imporiant, concernant 'unicité¢ de
la solution de ce probléme. D’aprés son théoréme, si la fonction
u(x,y) de deux variables indépendantes, harmonique dans D
est continue et sannule sur la frontiére Fr(D) de ce domaine
sauf aux points Py, P,,..., P, appartenant & Fr(D), et si elle satis-
fait en outre a la condition

lim»l%’;—’r‘@=0 pour »=1,2,...,u et (x.y)eD-4¥r(D),
ry—>0 v

r. désignant la distance du point (x,y) au point P,, clle est iden-
tiquement nulle dans D. Dans le cas de trois variables indépen-
dantes. on doit remplacer la derniére condition par

lim u(P)-rp=10
PP,>0

pour »=1,2,.... 4

1} S. Zaremba, Sur Vunicité de la solufion du probléme de Dirichlet,
Bulletin de P'Acad. des Se. de Cracovie (1909}, p. 561-563.
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