COMMUNICATIONS

193

AN EXAMPLE OF A FINITE DIMENSIONAL CONTINUUM HAVING AN INFINITE NUMBER OF CARTESIAN FACTORS

## BY K. BORSUK (WARSAW)

A set A is called a Cartesian factor of the space M, if there exists a set B such that the cartesian product  $A \times B$  is homeomorphic to M. Obviously, for every space M, the set consisting only of one point is a Cartesian factor of M, and the same applies to every set homeomorphic to M. If a space M has no other Cartesian factors, then it is called  $prime^{-1}$ .

Obviously, every finite dimensional continuum has a decomposition into a finite number of prime factors. The question arises whether the number of all topologically different prime Cartesian factors of such a continuum can be infinite. In this paper we shall give an affirmative answer to this question.

Theorem. There exists in the 3-dimensional Euclidean space a 3-dimensional absolute retract having an infinite number of topologically different prime Cartesian factors.

Proof. For every natural n consider in the Euclidean (x,y) — plane two segments:

 $K_n$  with the end-points  $(\frac{1}{n},0)$  and  $(\frac{1}{n},-\frac{1}{n})$ ,  $L_n$  with the end-points  $(\frac{1}{n},0)$  and  $(\frac{1}{n}+\frac{1}{n^2},-\frac{1}{n})$ . Obviously,

 $(K_n + L_n) \cdot (K_m + L_m) = 0 \quad \text{for } m + n.$ 

Let Q denote the square  $0 \le x \le 1$ ,  $0 \le y \le 1$ . Putting

 $A_n = Q + L_n + \sum_{m=1}^{\infty} K_m.$ 

we obviously obtain a sequence  $\{A_n\}$  of topologically different continua which are absolute retracts.

We shall show that all the sets

$$K_1 \times A_n$$
,  $n = 1, 2, \dots$ 

are homeomorphic. In fact,  $K_1 \times A_n$  consists of the cube  $K_1 \times Q$  and of a sequence of the rectangles  $K_1 \times L_n$ ,  $K_1 \times K_1$ ,  $K_1 \times K_2$ ,..., each of which has one of its sides common with the surface S of the cube  $K_1 \times Q$ . Let  $K'_m$  denote the side of the rectangle  $K_1 \times K_m$  lying on S. We see at once that  $\{K'_m\}$  are disjoint and constitute a sequence convergent to an edge of the cube  $K_1 \times Q$ . There are two rectangles  $K_1 \times K_n$  and  $K_1 \times L_n$  which adjoin to the segment  $K'_n$ , and there is only one such rectangle  $K_1 \times K_m$  for all remaining segments  $K'_m$ . Evidently, there exists a homeomorphic mapping  $\varphi_n$  of the cube  $K_1 \times Q$  on itself such that

$$\varphi_n(K'_n) = K'_{m+1} \quad \text{for} \quad m = 1, 2, ..., n-1, 
\varphi_n(K'_n) = K'_1, \quad \text{for} \quad x \in K'_m, m > n.$$

It is not difficult to extend the mapping  $\varphi_n$  on all rectangles  $K_1 \times L_n, K_1 \times K_1, K_1 \times K_2, \ldots$  in such a manner that the extended mapping  $\varphi_n^*$  maps homeomorphically  $K_1 \times K_m$  on  $K_1 \times K_{m+1}$ , for  $m=1,2,\ldots,n-1$ , and  $K_1 \times L_n + K_1 \times K_n$  on  $K_1 \times L_1 + K_1 \times K_1$  and is identical on all others rectangles.

Thus, we obtain a homeomorphic mapping  $\varphi_n^*$  of the set  $K_1 \times A_n$  on the set  $K_1 \times A_1$ . The last set, as a product of the segment  $K_1$  and of the 2-dimensional absolute retract  $A_1$ , is an absolute retract of the dimension 3. Clearly, it lies in the 3-dimensional Cartesian space. Hence, all sets  $K_1 \times A_n$  are homeomorphic to the 3-dimensional absolute retract  $K_1 \times A_1$ . Thus the proof of the theorem is complete.

P 90. Does there exist a finite dimensional continuum having 280 topologically different Cartesian factors?

P91. Does there exist a polytope having an infinite number of topologically different factors?

<sup>1)</sup> Comp. K. Borsuk, Sur la décomposition des polyèdres en produits cartésiens, Fundamenta Mathematicae 31 (1938), p. 137.