

HOMOMORPHISMS, MAPPINGS AND RETRACTS

BY

R. SIKORSKI (WARSAW)

In my earlier paper [1] I examined the problem: Under what condition every homomorphism h of a given Boolean algebra \boldsymbol{A} into any Boolean algebra \boldsymbol{B} is induced by a point mapping. The three following cases were there considered ¹):

- (1) A and B are (finitely additive) fields of sets;
- (2) \boldsymbol{A} and \boldsymbol{B} are σ -fields of sets;
- (3) \boldsymbol{A} is a σ -field of sets and \boldsymbol{B} is a σ -quotient algebra, i.e. $\boldsymbol{B} = \boldsymbol{X}/\boldsymbol{I}$ where \boldsymbol{X} and \boldsymbol{I} are respectively a σ -field and a σ -ideal of sets.

The subject of the present paper is the study of the remaining case 2):

(4) \boldsymbol{A} is a (finitely additive) field \boldsymbol{Y} of subsets of a set \mathfrak{Y} , and \boldsymbol{B} is a quotient algebra, i.e. $\boldsymbol{B} = \boldsymbol{X}/\boldsymbol{I}$ where \boldsymbol{X} and \boldsymbol{I} are respectively a (finitely additive) field and an ideal of subsets of a set \mathfrak{X} .

The main result (theorems 4.1-3) is a complete characterization of fields Y with the property

(P) Every homomorphism h of Y into any quotient algebra X/I

is induced by a point mapping φ .

This characterization is topological, The essential notion is here Borsuk's s) definition of a retract and of an absolute retract.

The final §§ 6 and 7 contain some applications of the main result to the case (3), and a generalization of the concept of retract.

Terminology and notation. A mapping h of a Boolean algebra A into another Boolean algebra B is said to be a homomorphism if h(A+B)=h(A)+h(B) and h(A')=h(A)' for all $A,B\in A$

(A+B) and A' denote always the Boolean operations corresponding to the addition and complementation of sets).

A one-one homomorphism of A onto B is called an isomor-

phism. If it exists, A and B are said to be isomorphic.

A non-empty class X of subsets of a set \mathfrak{X} is said to be a *field* if it is a Boolean algebra with respect to the usual set-theoretical operations, that is, if $X, X_1 \in X$ implies $X + X_1 \in X$ and $X' = \mathfrak{X} - X \in X$.

Let X and Y be two fields of sets. An isomorphism g of X onto Y is called a total isomorphism 4) if it can be extended to an isomorphism between the least totally additive fields containing X and Y respectively. If it exists, then X and Y are said to be totally isomorphic.

An ideal I of a field of sets is a class such that:

10 $0 \neq I \subset X$:

 2° if $X_1, X_2 \in I$, then $X_1 + X_2 \in I$;

 5° if $X_2 \subset X_1 \in I$ and $X_2 \in X$, then $X_2 \in I$.

For any $X \in X$ the symbol [X] will denote the class of all $X_1 \in X$ such that $(X - X_1) + (X_1 - X) \in I$. The collection of all (mutually disjoint) classes [X] forms a Boolean algebra denoted by X/I and called a *quotient algebra*. The Boolean operations in X/I are defined by the formulae:

$$[X_1] + [X_2] = [X_1 + X_2], [X]' = [\mathfrak{X} - X].$$

Let X and Y be fields of subsets of sets $\mathfrak X$ and $\mathfrak Y$ respectively, and let I and J be ideals of X and Y respectively. We say that a homomorphism h of Y/J into X/I is induced by a point mapping φ of $\mathfrak X$ into $\mathfrak Y$ if

$$\varphi^{-1}(Y) \in X$$
 and $h([Y]) = [\varphi^{-1}(Y)]$ for every $Y \in Y$.

In particular, a homomorphism h of Y into X/I is induced by a mapping φ of $\mathfrak X$ into $\mathfrak Y$ if

$$\varphi^{-1}(Y) \in \mathbf{X}$$
 and $h(Y) = [\varphi^{-1}(Y)]$ for every $Y \in \mathbf{Y}$;

and a homomorphism h of Y into X is induced by φ if

$$\varphi^{-1}(Y) \in X$$
 and $h(Y) = \varphi^{-1}(Y)$ for every $Y \in Y$.

A topological space $\mathfrak S$ is totally disconnected if for every pair $s_1, s_2 \in \mathfrak S$ $(s_1 \neq s_2)$ there is a both open and closed set H such

¹⁾ In the case (2) and (3), homomorphisms h are supposed to be σ -additive.

³⁾ The case where A is a quotient or σ-quotient algebra is not interesting since it can be reduced to the case (1) and (4), or (2) and (5) respectively. See 1.1 and Sikorski [1], p. 19.

⁸⁾ Borsuk [1], p. 153 and p. 159,

³⁾ This notion is due to Marczewski [2], p. 136.

will be termed a B-space.

that $s_1 \in H$ and $s_2 \in \mathfrak{S} - H$. A totally disconnected bicompact space

A (closed) subset $\mathfrak S$ of a topological space $\mathfrak S_0$ is a retract of $\mathfrak S_0$ if there exists a continuous mapping \varkappa of $\mathfrak S_0$ onto $\mathfrak S$ such that $\varkappa(s)=s$ for every $s_{\mathfrak S}\mathfrak S$. The mapping \varkappa is called a retract mapping $(\mathfrak S,\mathfrak S_0)$.

A topological space $\mathfrak S$ is said to be an absolute B-retract provided $\mathfrak S$ is a retract of every B-space $\mathfrak S_0$, $\mathfrak S \subset \mathfrak S_0$. An absolute B-retract is also a B-space.

1. Lemmas. In this section X, Y, and Z are fields of subsets of sets \mathfrak{X} , \mathfrak{D} , and \mathfrak{Z} respectively. I and J are ideals of X and Y respectively.

It follows directly from the definition that

1.1 A mapping φ induces a homomorphism h of Y/J into X/I if and only if φ induces the homomorphism g (of Y into X/I) defined by the formula

$$g(Y) = h([Y]) \epsilon X/I$$
 for $Y \epsilon Y$.

The following lemma is obvious:

1.2 If a mapping φ of \mathfrak{X} into \mathfrak{D} induces a homomorphism h of Y/J (or: of Y) into X/I, and if a mapping ψ of \mathfrak{D} in \mathfrak{Z} induces a homomorphism g of Z into Y/J (or: into Y), the mapping $\psi\varphi$ of \mathfrak{X} into \mathfrak{Z} induces the homomorphism hg of Z into X/I.

The property (P) is not invariant under isomorphisms. However,

1.3 The property (P) is invariant under total isomorphisms (i.e. if \mathbf{Y} has the property (P), and \mathbf{Z} is totally isomorphic to \mathbf{Y} , then \mathbf{Z} has also the property (P)).

This follows from 1.2 and the following lemma which is an easy consequence of a theorem of Marczewski⁵):

1.4 An isomorphism g of Z onto Y is a total isomorphism if and only if both g and g^{-1} are induced by point mappings.

2. B-spaces. For every topological space \mathfrak{S} , the symbol $K(\mathfrak{S})$ will denote the field of all both open and closed subsets of \mathfrak{S} . By 1.3 and 1.4 the property (P) of $K(\mathfrak{S})$ is a topological invariant of the space \mathfrak{S} .

Stone 6) has proved that

2.1 Every Boolean algebra (in particular, every field of sets) A is isomorphic to the field $K(\mathfrak{S})$ of a B-space \mathfrak{S} .

If \mathfrak{S}_1 is another *B*-space such that $K(\mathfrak{S}_1)$ is isomorphic to A, then \mathfrak{S} and \mathfrak{S}_1 are homeomorphic. Stone's space \mathfrak{S} is thus uniquely determined by A. It will be denoted by \mathfrak{S}_A .

If a space \mathfrak{S} is bicompact, every two-valued measure on $K(\mathfrak{S})$ is trivial. Consequently,

2.2 If $\mathfrak S$ is a B-space, every homomorphism of $K(\mathfrak S)$ into any field of sets X is induced by a point mapping φ .

Suppose \mathfrak{S}_0 is a B-space and \mathfrak{S} is a closed subset of \mathfrak{S}_0 . Then \mathfrak{S} is also a B-space. Let J be the class of all sets $TeK(\mathfrak{S}_0)$ with $S_0\mathfrak{S}=0$. J is an ideal of $K(\mathfrak{S}_0)$. For every $SeK(\mathfrak{S})$ there is a set $TeK(\mathfrak{S}_0)$ such that $S=\mathfrak{S}_0$. If $S_1eK(\mathfrak{S}_0)$ be another set with $S=\mathfrak{S}_1$, then $(S_1-S_0)+(S_0-S_1)eJ$. Consequently the formula

 $g(S) = [S_0]$, where $S \in K(\mathfrak{S})$, $S_0 \in K(\mathfrak{S}_0)$, and $S = \mathfrak{S}S_0$, defines an isomorphism of $K(\mathfrak{S})$ onto $K(\mathfrak{S}_0)/J$, called the natural isomorphism $(\mathfrak{S},\mathfrak{S}_0)$.

2.3 A closed subset \mathfrak{S} of a B-space \mathfrak{S}_0 is a retract of \mathfrak{S}_0 if and only if the natural isomorphism $(\mathfrak{S},\mathfrak{S}_0)$ is induced by a mapping κ of \mathfrak{S}_0 into \mathfrak{S} .

More precisely:

A mapping \varkappa is a retract mapping $(\mathfrak{S},\mathfrak{S}_0)$ if and only if \varkappa induces the natural isomorphism $(\mathfrak{S},\mathfrak{S}_0)$.

This follows from the fact that a mapping \varkappa of \mathfrak{S}_0 into \mathfrak{S} is a retract mapping $(\mathfrak{S},\mathfrak{S}_0)$ if and only if

$$\kappa^{-1}(S) \in K(\mathfrak{S}_0)$$
 and $S = \mathfrak{S} \kappa^{-1}(S)$ for every $S \in K(\mathfrak{S})$,

i. e. if $g(S) = [\kappa^{-1}(S)] \epsilon K(\mathfrak{S}_0)/J$, q. e. d.

3. The space \mathfrak{C}_{μ} . Let \mathfrak{C}_{μ} denote the set of all sequences $c = \{c_{\hat{t}}\}_{\hat{t}} < \omega_{\mu}$ where $c_{\hat{t}} = 0$ or 1. Let $\mathfrak{C}_{\mu}^{\hat{t}}$ be the set of all sequences $c_{\hat{t}}\mathfrak{C}_{\mu}$ such that $c_{\hat{t}} = 1$, and let C_{μ} be the least field (of subsets of \mathfrak{C}_{μ}) containing all sets $\mathfrak{C}_{\mu}^{\hat{t}}$. Consider \mathfrak{C}_{μ} as a topological space

⁵⁾ See Marczewski [2], p. 140, (ii).

⁶) Stone [1], p. 378.

⁷⁾ See my paper [1], pp. 9-10.

with C_{μ} as the class of neighbourhoods. The so-defined space \mathfrak{C}_{μ} is a *B*-space and $C_{\mu} = K(\mathfrak{C}_{\mu})$.

Every closed subset of \mathfrak{C}_n is also a *B*-space. Conversely:

3.1 If $\mathfrak S$ is a B-space and $\overline{K(\mathfrak S)} < \mathfrak K_\mu$, then $\mathfrak S$ is homeomorphic to a closed subset of $\mathfrak S_\mu$.

The homeomorphism is given by the characteristic function ") of a (transfinite) sequence $\{S_{\hat{s}}\}_{\hat{s}<\omega_{\mu}}$ which contains all sets $S_{\hat{s}}K(\mathfrak{S})$.

3.2 Let J be an ideal of C_{μ} . Every homomorphism h of C_{μ}/J into any quotient algebra X/I is induced by a point mapping.

On account of 1.1 it is sufficient to prove that

3.3 The field C_{μ} has the property (P).

Let h be a homomorphism of C_{μ} into a quotient algebra X/I, and let $X_{\xi} \in X$ be a set such that $h(\mathbb{C}_{\xi}^{k}) = [X_{\xi}]$. The characteristic function φ of the sequence $\{X_{\xi}\}_{\xi < \omega_{\mu}}$ satisfies the equation $\varphi^{-1}(\mathbb{C}_{h}^{k}) = X_{\xi}$. Consequently

$$h(\mathfrak{C}_{\mu}^{\,\xi}) = [\varphi^{-1}(\mathfrak{C}_{\mu}^{\,\xi})].$$

Hence, by induction,

$$h(C) = [\varphi^{-1}(C)]$$
 for every $C \in C_n$,

i. e. the mapping φ induces the homomorphism h.

- 4. Fundamental theorems on the inducing of homomorphisms. We shall now prove the following theorem:
 - 4.1 The three following conditions are equivalent for a B-space 5:
 - (i) K(S) has the property (P);
 - (ii) S is an absolute B-retract;
 - (iii) S is homeomorphic to a retract of a space Un.
- (i) \rightarrow (ii). Suppose $\mathfrak{S}_{\mathbb{C}}\mathfrak{S}_{0}$ where \mathfrak{S}_{0} is a B-space. By (i), the natural isomorphism $(\mathfrak{S},\mathfrak{S}_{0})$ is induced by a point mapping. Consequently, on account of 2.5, \mathfrak{S} is a retract of \mathfrak{S}_{0} .
 - $(ii) \rightarrow (iii)$ follows from 3.1.
- (iii) \rightarrow (i). Since the property (P) of $K(\mathfrak{S})$ is a topological invariant, it is sufficient to prove this implication in the case where \mathfrak{S} is a retract of \mathfrak{C}_{μ} . Let h be a homomorphism of $K(\mathfrak{S})$ into a quotient algebra X/I, let J be the ideal of all sets $C \in C_{\mu}$ such that $\mathfrak{S} C = 0$, and let g be the natural isomorphism ($\mathfrak{S}, \mathfrak{C}_{\mu}$). By 3.2, the

homomorphism hg^{-1} of C_{μ}/J in X/I is induced by a mapping ψ . By 2.3, the isomorphism g is induced by a retract mapping $(\mathfrak{S}, \mathfrak{C}_{\mu})_{\mathcal{K}}$. By 1.2, the homomorphism $h = (hg^{-1})g$ is induced by the mapping $\varphi = \varkappa \psi$.

4.2 A field \mathbf{Y} has the property (P) if and only if it is totally isomorphic to the field $\mathbf{K}(\mathfrak{S})$, where \mathfrak{S} is an absolute B-retract.

More precisely (see 2.1):

4.3 In order that a field Y have the property (P) it is necessary and sufficient that Y be totally isomorphic to $K(\mathfrak{S}_Y)$ and that Stone's space \mathfrak{S}_Y be an absolute B-retract.

The sufficiency follows from 1.3 and 4.1. Suppose Y has the property (P) and let g be an isomorphism of Y onto $K(\mathfrak{S}_Y)$. Thus g is induced by a point mapping. By 2.2 the converse isomorphism g^{-1} is also induced by a point mapping. Consequently, by 1.4, Y and $K(\mathfrak{S}_Y)$ are totally isomorphic. On account of 1.3 and 4.1, the space \mathfrak{S}_Y is an absolute B-retract.

Consider the following property of a class L of sets:

(S) every subclass $L_0 \subset L$ of mutually disjoint sets is at most enumerable.

4.4 If a field Y has the property (P), it has also the property (S).

By theorem 4.3, the space \mathfrak{S}_{Y} is then a continuous image of \mathfrak{C}_{μ} . The property (S) is invariant under continuous mappings and the field C_{μ} has this property 9). Consequently $K(\mathfrak{S}_{Y})$ hat the property (S). Since Y is isomorphic to $K(\mathfrak{S}_{Y})$, the field Y has also this property, q. e. d.

It follows from 4.4 that, for instance, if Y is the field of all subsets of a non-enumerable set or the field of all Borel subsets of a non-enumerable space, then the field $K(\mathfrak{S}_{Y})$ has not the property (P).

The property (S) is not a sufficient condition for the field $K(\mathfrak{S}_{\mathbf{r}})$ to have the property (P) ¹⁰).

^{*)} That is, a mapping $\varphi(s) = \{c_{\hat{k}}\} \in \mathbb{S}_{\mu}$ such that $c_{\hat{k}} = 1$ if $s \in S_{\hat{k}}$ and $c_{\hat{k}} = 0$ if $s \in S - S_{\hat{k}}$. See Stone [2], p. 29 and 32, and Marczewski [1], p. 211.

⁹⁾ See Marczewski [3], p. 131, (vi) and p. 142, (i).

¹⁰⁾ Let $\mathfrak S$ be the B-space obtained by splitting every point of the segment (0,1) into two new points. Then $K(\mathfrak S)$ has the property (S). Since $\mathfrak S$ is not a continuous image of a space $\mathfrak S_\mu$, the field $K(\mathfrak S)$ has not the property (P). See Sanin [1].

- 5. The representation problem of von Neumann and Stone. J. v. Neumann and M. H. Stone [1] have examined the question under what condition a quotient algebra X/I has the following property:
- (R) X contains a subfield X_0 such that, for every $X \in X$, there is exactly one set $X_0 \in X_0$ with $[X] = [X_0]$.
- 5.1 A quotient algebra A = X/I has the property (R) if and only if, for every B-space \mathfrak{S} , every homomorphism h of $K(\mathfrak{S})$ into X/I is induced by a point mapping φ .

Suppose X/I has the property (R). Then the formula

$$g(S) = X_0$$
, where $X_0 \in X_0$, $[X_0] = h(S)$, $S \in K(\mathfrak{S})$,

defines a homomorphism g of $K(\mathfrak{S})$ into X_0 induced by a mapping φ on account of 2.2. We have

$$h(S) = [\varphi^{-1}(S)]$$
 for every $S \in K(\mathfrak{S})$,

that is, φ induces h.

On the other hand, if Stone's isomorphism g of $K(\mathfrak{S}_A)$ onto A is induced by a mapping φ , then the class X_0 of all sets $\varphi^{-1}(S)$ where $SeK(\mathfrak{S}_A)$ satisfies the condition (R).

6. σ -homomorphisms. X/I is called a σ -quotient algebra if X is a σ -field ¹¹) of sets, and I is a σ -ideal ¹²).

For every B-space \mathfrak{S} , the symbol $K_{\sigma}(\mathfrak{S})$ denotes the least σ -field containing the field $K(\mathfrak{S})$.

Analogously as lemma 1.3 one can prove that

- 6.1 The following property of a σ -field \mathbf{Y} is invariant under total isomorphisms:
- (P_{σ}) every σ -homomorphism (i. e. a σ -additive homomorphism) of \boldsymbol{Y} into any σ -quotient algebra $\boldsymbol{X}/\boldsymbol{I}$ is induced by a point mapping φ .
- 6.2 If \mathfrak{S} is an absolute B-retract, every σ -homomorphism h of $K_{\sigma}(\mathfrak{S})$ into any σ -quotient algebra X/I is induced by a mapping φ . On account of 4.1 there is a mapping φ such that

$$h(S) = [\varphi^{-1}(S)]$$
 for every $S \in K(\mathfrak{S})$.

h being a σ -homomorphism, the last formula holds also for every $SeK_{\sigma}(\mathfrak{S})$, q. e. d.

The field of all Borel subsets of a topological space $\mathfrak T$ will be denoted by $B(\mathfrak T)$. $\mathfrak T$ is said to be a Borel space provided it is homeomorphic to a Borel subset of the Hilbert cube.

6.3 If $\mathfrak T$ is a Borel space, every σ -homomorphism h of $B(\mathfrak T)$ in any σ -quotient algebra X/I is induced by a point mapping ¹⁸).

If $\mathfrak X$ is at most enumerable, $\mathfrak X=(t_1,t_2,\ldots)$, let X_1,X_2,\ldots be disjoint sets of $\mathcal X$ such that $h((t_n))=[X_n]$ and $\mathfrak X=X_1+X_2+\ldots$. Then the mapping $\varphi(x)=t_n$ for $x\in X_n$ induces h.

If $\mathfrak Z$ is non-enumerable, theorem 6.3 follows from 6.1-2 and from the fact that the field $\boldsymbol B(\mathfrak Z)$ is totally isomorphic ¹⁴) to the field $\boldsymbol B(\mathfrak C_0) = \boldsymbol K_{\sigma}(\mathfrak C_0)$ ($\mathfrak C_0$ is obviously Cantor's discontinuous set).

7. Final remarks. Theorem 4.2 gives a topological characterization of fields with the property (P). It is also possible to characterize such fields without introducing the topological terminology. In fact, the study of *B*-spaces is the study of perfect ¹⁵) reduced ¹⁶) fields of sets, and conversely.

The topological notion "retract" which is fundamental in this paper can be so defined in the terms of the theory of fields:

Let Z be a field of subsets of a set \Im , and let U be a subset of \Im which does belong to Z or not. The class of all sets UZ where $Z_{\ell}Z$ will be denoted by UZ. It is a field of subsets of U.

The field UZ is said to be a retract of Z if there is a mapping \varkappa of \Im into U (called retract mapping (U,Z)) such that 17)

$$\varkappa^{-1}(Z) \in \mathbb{Z}$$
 and $U \varkappa^{-1}(Z) = Z$ for every $Z \in U\mathbb{Z}$.

A field Y is called an absolute retract if, for every field Z, every field UZ totally isomorphic to Y is a retract of Z.

¹⁷) If UZ is reduced, then \varkappa has the characteristic property: $\varkappa(z)=z$ for every $z \in U$.

¹¹⁾ A field X is called a o-field if $X_n \in X$ (n = 1, 2, ...) implies $X_1 + X_2 + ... \in X$.

¹²⁾ An ideal I is called a σ -ideal if $X_n \in X$ (n = 1, 2, ...) implies $X_1 + X_2 + ... \in I$.

¹³⁾ This theorem was proved in another way in my paper [1] (theorem 4.3, p. 17).

¹⁴) For there is a generalized homeomorphism (in the sense of Kuratowski) of ⊙ onto ⊙o. See Kuratowski [1], p. 280 and p. 358.

¹⁵⁾ A field Y is perfect if every two-valued measure on Y is trivial. See Sikorski [1], p. 9.

¹⁶) A field **Y** of sets is reduced if for every pair $y_1 \neq y_2$ there is a set $Y \in Y$ such that $y_1 \in Y$ and y_2 non $\in Y$.

The natural isomorphism (U, \mathbf{Z}) is obviously the isomorphism

 $g(Z) = [Z_0] \epsilon \mathbf{Z}/\mathbf{J}$ for $Z \epsilon U \mathbf{Z}$, where $Z_0 \epsilon \mathbf{Z}$, $Z = U Z_0$, and \mathbf{J} is the ideal of all $Z \epsilon \mathbf{Z}$ such that UZ = 0.

The following theorem analogous to 2.3 follows immediately from the definition:

7.1 A mapping \varkappa of \Im into U is a retract mapping (U, \mathbf{Z}) if and only if it induces the natural isomorphism (U, \mathbf{Z}) .

The following theorem is a generalization of 3.1:

7.2 If $\overline{Y} \leqslant \aleph_{\mu}$, there is a set $U \subset \mathfrak{C}_{\mu}$ such that the field Y is totally isomorphic to UC_{μ} .

The following theorem corresponds to 4.1:

- 7.3 The three following conditions are equivalent for any field Y:
 - (i) Y has the property (P);
 - (ii) Y is an absolute retract;

(iii) Y is totally isomorphic to a retract of a field C_{μ} .

It must be remarked that theorems analogous to 7.1-3 hold also for σ -fields. In order to obtain these theorems we must only replace the words: "field", "quotient algebra", "the property (P)" by the words: " σ -field", " σ -quotient algebra", "the property (P_{σ}) ", etc. Instead of $C_{\mu} = K(\mathbb{C}_{\mu})$ we must consider the σ -field $K_{\sigma}(\mathbb{C}_{\mu})$. It follows from a theorem of Sierpiński ¹⁸) that every class $L \subset K_{\sigma}(\mathbb{C}_{\mu})$ of mutually disjoint sets is of potency $\leq 2^{\aleph_0}$. Consequently, if a σ -field Y has the property (P_{σ}) every class $K \subset Y$ of mutually disjoint sets is of potency $\leq 2^{\aleph_0}$ (see the analogous theorem 4.4).

REFERENCES

K. Borsuk [1], Sur les rétractes, Fundamenta Mathematicae 17 (1931), pp. 152-170.

C. Kuratowski [1], Topologic I, Monografie Matematyczne, Warszawa-Wrocław 1948.

E. Marczewski (Szpilrajn) [1], The characteristic function of u sequence of sets and some of its applications, Fundamenta Mathematicae 31 (1938), pp. 207-223.

- [2], On the isomorphism and the equivalence of classes and sequences of sets. Fundamenta Mathematicae 32 (1939), pp. 133-148.

 [3], Séparabilité et multiplication cartésienne des espaces topologiques, Fundamenta Mathematicae 34 (1947), pp. 127-143.

J. von Neumann and M.H. Stone [1], The determination of representative elements in the residual classes of a Boolean algebra, Fundamenta Mathematicae 25 (1935), pp. 353-378.

W. Sierpiński [1], Un théorème sur les familles de fonctions et son application aux espaces topologiques (Solution d'un problème de R. Sikorski), Colloquium Mathematicum 2 (1951), pp. 198-201.

R. Sikorski [1], On the inducing of homomorphisms by mappings, Fundamenta Mathematicae 36 (1949), pp. 7-22.

M. H. Stone [1], Applications of the theory of Boolean rings to general topology, Transactions of the American Mathematical Society 41 (1937), pp. 375-481.

- [2], On characteristic functions of families of sets, Fundamenta Mathematicae 33 (1945), pp. 27-33.

Н. А. III анин [1], О произведении топологических пространств, Труды Математического Института имени В. А. Стеклова 24, Москва-Ленинград 1948.

Państwowy Instytut Matematyczny State Institute of Mathematics

¹⁸⁾ Sierpiński [1], p. 200, Théorème 2.