228

COMMUNICATIONS

D'après (8.3), & équivaut à

(8.5)
$$\left[\prod_{x,y}(x=y)\right] + Q_1 \dots Q_n \Psi$$

et, d'après (8.4), nous pouvons remplacer dans (8.5) chaque inégalité par une fonction propositionnelle positive, et nous obtenous enfin une proposition positive.

TRAVAUX CITÉS

[1] G. Birkhoff, Lattice Theory, New York 1948.

[2] — On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society 31 (1935), p. 433-454.

[3] - and S. MacLane, A survey of modern Algebra, New York 1946.

[4] N. Bourbaki, Eléments de mathématique, Algèbre, chapitre I, Paris 1942.

[5] L. Byrne, Two brief formulations of Boolean Algebra, Bulletin of the American Mathematical Society 52 (1946), p. 269-272.

[6] A. Horn, On sentences which are true of direct union of algebras, Journal of Symbolic Logic 16 (1951), p. 14-21.

[7] E. V. Huntington, Sets of independent postulates for the Algebra of Logic, Transactions of the American Mathematical Society 5 (1904), p. 288-309.

[8] W. Sierpiński, Algèbre des Ensembles, Warszawa-Wrocław 1951.

Institut Mathématique de l'Université de Wrocław

REMARKS ON BOOLEAN ALGEBRAS

BY

M. KATĚTOV (PRAGUE)

The present note* contains an example of a Boolean algebra without proper automorphisms 1) and a sufficient and necessary condition 2) for a Boolean algebra to be a Hausdorff space in its interval topology 3). The example mentioned above will be derived from the theory of the Čech compactification. If

1° S is a completely regular space (i.e. a Hausdorff space such that, for any closed set $M \subset S$ and any $x \in S - M$, there exists a continuous real-valued function f in S such that f(x) = 1, f(z) = 0 (whenever $z \in M$), R is compact (=bicompact), $R \supset S$, $R = \overline{S}$,

 2^{0} for any bounded continuous function f in S there exists a continuous function F in R which coincides with f in S,

then R is called the Čech compactification 4) of S and is denoted by βS .

Lemma 1. If P is completely regular, β P denotes its Čech compactification, $x \in \beta$ P—P, and there exist open sets $G_n \subseteq \beta$ P such that $x \in G_n$, $P \prod_{n=1}^{\infty} G_n = 0$, then there exists no sequence of different points $x_n \in \beta$ P converging to x.

Proof. Suppose, on the contrary, that $x_n \in \beta P$, $x_n \to x$, $x \in \beta P - P$, $x_m \neq x_n \neq x$ whenever $m \neq n$. Put

$$P_1 = P + \sum_{n=1}^{\infty} (x_n) + (x).$$

^{*} Presented to the Polish Mathematical Society, Wrocław Section, on May

¹⁾ Cf. Birkhoff [1], p. 162, Problem 74. (Numbers in brackets refer to the list at the end of the paper).

²⁾ Cf. Birkhoff [1], p. 62, Problem 23.

³⁾ Birkhoff [1], p. 60.

⁴⁾ Cf. Čech [2].

Obviously, there exist open (in P_1) sets H_n such that

$$\prod_{n=1}^{\infty} H_n = (x).$$

Then there exist continuous functions h_n (n=1,2,...) in P_1 such that $0 \leqslant h_n(z) \leqslant 2^{-n}$ for any $z \in P_1$, $h_n(x) = 0$, $h_n(z) = 2^{-n}$ if $z \in P_1 - H_n$.

Put $h = \sum_{n=1}^{\infty} h_n$. Then h is a function continuous in P_1 , $0 \le h(z) \le 1$ for any $z \in P_1$, h(x) = 0, $h(z) \ne 0$ if $z \ne x$. Consequently, $h(x_n) \to 0$, $h(x_n) \ne 0$. Obviously, there exist subsequences $\{x_{k_n}\}$, $\{x_{l_n}\}$, such that we never have $h(x_{k_m}) = h(x_{l_n})$. Then there exists a bounded function φ continuous in (0,1] such that

$$\varphi(h(x_{k_m})) = 0, \qquad \varphi(h(x_{l_n})) = 1 \qquad (m, n = 1, 2, \ldots).$$

Put, for $z \in P$, $f(z) = \varphi(h(z))$, and let F be the continuous extension of f over βP . It is easy to see that $F(x_{k_m}) = 0$, $F(x_{l_n}) = 1$; since $x_{k_m} \to x$, $x_{l_n} \to x$ we have $F(x_{k_m}) \to F(x)$, $F(x_{l_n}) \to F(x)$, and therefore F(x) = 0, F(x) = 1. This proves the lemma.

Lemma 2. There exists a denumerable normal space P such that

- (i) there exists no homeomorphism of P onto itself except the identity mapping;
- (ii) for any $x \in P$, there exists a sequence of points $x_n \in P$, $x_n \neq x$, which converges to x.

Proof. Let M denote the space of rational numbers. Consider the space $T = \beta M \times \beta M$ and put $S = M \times M$. For any $x \in T$, let $\Phi(x)$ denote the set of all points $y = \varphi(x)$, where φ is a continuous mapping of S + (x) into T such that $\varphi(S) = S$.

Since the set of all mappings of S into S has power $\leq c$, and $\overline{S} = T$, it is clear that every $\Phi(x)$ has power $\leq c$ (c denotes the power of the continuum).

Let $\{G_n\}$ denote a countable open base of M. It is well-knownⁿ) that every \overline{G}_n (closure in βM) has power 2°. Therefore it is easy to prove by induction that there exist points $\xi_n \epsilon \beta M - M$, $\eta_n \epsilon \beta M - M$ (n=1,2,...) such that

(a) $\xi_n \epsilon \overline{G}_n$, $\eta_n \epsilon \overline{G}_n$;

(b) if ξ , ξ' , η , η' , are points from M, then, for $m, n = 1, 2, \ldots$, m < n, $(\xi_n, \eta') \operatorname{non} \epsilon \Phi(\xi_m, \eta)$, $(\xi_n, \eta') \operatorname{non} \epsilon \Phi(\xi, \eta_m)$, $(\xi', \eta_n) \operatorname{non} \epsilon \Phi(\xi, \eta_m)$, $(\xi', \eta_n) \operatorname{non} \epsilon \Phi(\xi_m, \eta)$, and, moreover, $(\xi, \eta_n) \operatorname{non} \epsilon \Phi(\xi_n, \eta)$, for any $n = 1, 2, \ldots$

Let A_n (n=1,2,...) denote the set of all (ξ_n,η) , $\eta \in M$, and let B_n (n=1,2,...) denote the set of all (ξ,η_n) , $\xi \in M$. Then by (b) we have, for any n=1,2,...,

$$(*) \hspace{1cm} \begin{array}{c} (A_n + B_n) \cdot \varPhi(x) = 0, \quad \text{ whenever } \quad x \in A_m + B_m, \ m < n; \\ B_n \varPhi(x) = 0, \quad \text{ whenever } \quad x \in A_n. \end{array}$$

Put $Q = \sum_{n=1}^{\infty} A_n + \sum_{n=1}^{\infty} B_n$, P = S + Q. It is well-known (and follows e. g. from Lemma 1) that no $\xi \epsilon \beta M - M$ satisfies in βM the first denumerability axiom 6). It is well-known, too, that if X is a regular space, $x \epsilon Y \subset X$, $\overline{Y} = X$, then x satisfies the first denumerability axiom in Y if and only if it satisfies this axiom in X. (The first half ("if") of this assertion being trivial, let x satisfy the axiom in Y; let U_n be open in Y, $x \epsilon U_n$, and suppose that every open (in Y) set V such that $x \epsilon V$ contains some U_n . Put $H_n = X - X - \overline{U}_n$; every H_n is open in X and contains x. Let G be open in X, $x \epsilon G$. Since X is regular, there exists an open set $G_1 \subset X$ such that $x \epsilon G_1 \subset \overline{G}_1 \subset G$. Choose U_n such that $U_n \subset G_1 Y$. Then $x \epsilon H_n \subset \overline{U}_n \subset G_1 Y = \overline{G}_1 \subset G$. This proves the assertion.)

Therefore, S being dense in P, it is easy to see that

(*) point $x \in P$ satisfies the first denumerability axiom if and only if $x \in S$.

Now let f be a homeomorphism of P onto P. Then, by $(\stackrel{*}{*})$, f(S) = S and therefore $f(x) \in \Phi(x)$, $x \in \Phi(f(x))$, for any $x \in P$. This implies, by (*), that $f(A_n) = A_n$, $f(B_n) = B_n$, n = 1, 2, ... Suppose that for some $z \in S$, $f(z) \neq z$. Then we have, if $z = (\xi, \eta)$, $f(\xi, \eta) = (\xi', \eta')$, $\eta \neq \eta'$ or $\xi \neq \xi'$.

Suppose e. g. that $\eta \neq \eta'$. Obviously there exists a neighbourhood U of η' (in βM) such that η' non $\varepsilon \overline{U}$. Let B denote the sum

⁵⁾ Cf. e. g. Pospišil [4].

^{°)} A point x of a Hausdorff space R is said to satisfy the first denumerability axiom if there exist open sets U_n $(n=1,2,\ldots)$ containing x and such that, for any open V containing x we have, for some n, $U_n \subset V$.

233

of all B_n such that $\eta \in \overline{U}$. We have $(\xi, \eta) \in \overline{B}$, for the set of all η_n is dense in βM and therefore every neighbourhood of (ξ, η) contains points (ξ, η_n) , $\eta_n \in \overline{U}$. Since f is continuous, we have $f(\xi, \eta) \in \overline{f(B)}$; hence $(\xi', \eta') \in \overline{B}$, for f(B) = B. This is a contradiction, for $\eta' \operatorname{non} \epsilon U$. Therefore, f(z) = z for any $z \in S$ and hence for any $z \in P$, as S is dense in P. Thus P has property (i). As for property (ii), it is evident, for if e.g. $x = (\xi_n, \eta) \in Q$, then there exist $\eta_k \in M$, $\eta_k \to \eta$, and we have $(\xi, \eta_k) \in P$, $\lim_{k \to \infty} (\xi_n, \eta_k) = x$.

Theorem 1. There exists a Boolean space (i.e. a 0-dimensional compact space) which admits of no homeomorphism onto itself except identity.

Proof. Let P have properties given in Lemma 2. Put 7) $R = \beta P$. It is easy to see that R is 0-dimensional. Let f be a homeomorphism of R onto R. Lemma 1 and property (ii) of P imply that f(S) = S. Property (i) of P implies that f is the identity mapping.

Theorem 2. There exists an (infinite) Boolean algebra admitting of no proper (i.e. non-identical) automorphism.

Proof. Let A denote the Boolean algebra of open-and-closed subsets of the space R given above. If φ is an automorphism of \mathfrak{A} , then, for any $x \in R$, the intersection of all $A \in \mathfrak{A}$ such that $x \in \varphi(A)$ contains exactly one point which will be denoted by f(x). It is easy to see that f is a homeomorphism of R onto R. Therefore f, and hence φ , is the identical mapping.

Remarks. 1. I do not know whether there exists an (infinite) Boolean algebra A having no proper homeomorphism onto itself.

2. The algebra A defined above is not σ-complete. I do not know whether there exists a complete (or σ -complete at least) Boolean algebra without (proper) automorphisms.

We shall now consider the interval topology of Boolean algebras 8). The interval topology of a partially ordered set S is defined by taking sets of the form "all xeS contained in a (i.e. such that $x \le a$, "all $x \in S$ containing a (i.e. such that $x \ge a$)", as well as the whole set S of course, as a subbase of closed sets (i.e. taking finite intersections of their complements as an open base).

Lemma 3. Let L be a distributive lattice with 0, and let $A \subset L$, $B \subset L$, be finite sets of elements $\neq 0$. Then either there exists $x \in L$ meeting all $a \in A$ (i.e. $x \cap a \neq 0$ if $a \in A$) and containing no $b \in B$ (i. e. $x \gg b$ for no $b \in B$) or some $a \cap b$, $a \in A$, $b \in B$, contains an atom 1).

Proof. Suppose that no such x exists. Let $M \subset L$ consist of all meets, different from 0, of some elements $z \in A + B$ and let N be the set of all minimal $u \in M$ (i.e. of $u \in M$, such that u > vfor no $v \in M$). Obviously, any two different elements u_1, u_2 , from N are disjoint (i.e. $u_1 \cap u_2 = 0$). Let A^* (or B^* respectively) denote the set of all $u \in N$ which are contained in some $a \in A$ (or in some $b \in B$ respectively). If there existed, for each c belonging both to A* and B*, an element d < c, $d \ne 0$, then denoting by s the join of all such elements d (one for each c) and of all $v \in A^*$ not belonging to B^* we should have

- (i) $s \cap m \neq 0$ if $m \in A^*$,
- (ii) $s \gg m$ for no $m \in B^*$.

This would imply that s meets each $a \in A$ and contains no $b \in B$, which contradicts the assumption. Therefore there exists an atom c belonging to A^*B^* , and hence contained in some $a \cap b$, $a \in A$, $b \in B$.

Theorem 3. If A is a Boolean algebra, $x \in A$, $y \in A$, then xand y have disjoint neighbourhood in the interval topology of A if and only if $(x \cap y') \cup (x' \cap y)$ contains an atom.

Proof. I. If $c \leq (x \cap y') \cup (x' \cap y)$ is an atom, suppose that e.g. $c \leq x \cap y'$; let G denote the set of $z \in A$ not containing c, and let H denote the set of $z \in A$ not contained in c'. Then GH is empty and it is easy to see that G is a neighbourhood of u, H is a neighbourhood of x.

II. Let x, y, have disjoint neighbourhoods. Then there exist finite subsets (of A) U_x , V_x , U_y , V_y , such that, denoting by G_y (t=x,y) the set of $z \in A$ containing no $u \in U_t$ and contained in no $v \in V_t$, we have $x \in G_x$, $y \in G_y$, $G_x = 0$. Let M denote the set consisting of all meeting points $u \cap x'$, $u \in U_x$, and $u \cap y'$, $u \in U_y$; let N denote the set of all meeting points $v' \cap x$, $v \in V_x$, and $v' \cap y$,

⁷⁾ This is possible, for 8P exists for any completely regular P: see Čech [2].

⁸⁾ See Birkhoff [1], p. 60.

⁹⁾ An element c of a lattice L with 0 is called an atom if $c\neq 0$ and there exists no d < c, $d \neq 0$.

 $v \in V_y$. It is easy to see that, since $G_x G_y = 0$, there exists no $z \in A$ meeting all $n \in N$ and containing no $m \in M$. Hence, by Lemma 3, some $m \cap n$, $m \in M$, $n \in N$, contains an atom c. Obviously, we have either $c \ll x' \cap y'$ or $c \ll x \cap y'$.

Corollary 1. A Boolean algebra is a Hausdorff space in its interval topology if and only if it is atomic.

Corollary 2. A Boolean algebra is a compact Hausdorff space in its interval topology if and only if it is isomorphic with the algebra 2^m of all subsets of some aggregate.

Proof. Sufficiency: 2^m is compact by Frink's [3] theorem, and a Hausdorff space by the above corollary.

Necessity: a lattice compact in its interval topology being complete ¹⁰), we apply Corollary 1 observing that a complete atomic Boolean algebra is isomorphic with 2^m.

Remarks. 1. Birkhoff's book contains the following proposition, stated without proof: any partly ordered set is a Hausdorff space in its order topology ¹¹). By Corollary 2, this assertions implies (since a complete lattice is compact in its interval topology) the following proposition: if the order topology and the interval topology of a complete Boolean algebra coincide, then it is isomorphic roith 2^m ¹²).

2. It is easy to show that the interval and the order topology of 2^m coincide. For, let $\mathfrak A$ be the Boolean algebra of subsets of a given set S. Since any set closed in the interval topology, is closed in the order topology too 11), we have only to prove: if

 $A \in \mathfrak{A}, \mathfrak{M} \subset \mathfrak{A},$

and

(*) every neighbourhood of $\mathcal A$ in the interval topology of $\mathfrak A$ intersects $\mathfrak M,$

then there exists a directed set $\{X_{\alpha}\}$, $X_{\alpha} \in \mathfrak{M}$, which converges to A^{18}).

Assumption (*) implies: if $M \subset A$, $N \subset S - A$ are finite sets, then there exists $X = X(M,N) \in \mathfrak{M}$, $M \subset X$, $N \subset S - X$. Let the set

of all pairs (M, N), where $M \subset A$, $N \subset S - A$, are finite, be (partially) ordered as follows: (M_1, N_1) precedes (M_2, N_2) if and only if $M_1 \subset M_2$, $N_1 \subset N_2$. It it easy to see that the directed (in the above sense) set $\{X(M, N)\}$ converges to A.

3. There exist complete Boolean algebras which are not compact in the order topology.

Example: let $\mathfrak A$ be the Boolean algebra of all measurable subsets of the interval I=(0,1) modulo sets of measure zero. It is well-known 14) that $\mathfrak A$ is complete. It is easy to see that there exist sets $A_{n,i} \subset I$ $(n=1,2,...;\ i=0,1)$ such that $A_{n,i} = I - A_{n,0}$ and

(*) $\prod_{k \in K} A_{k,i(k)}$ has measure 2^{-p} , where i(k) = 0 or 1, K is a set of p different natural numbers (we may put $A_{n,0}$ equal to the sum of intervals $(k \cdot 2^{-n}, (k+1) \cdot 2^{-n})$, k pair, $0 \le k < 2^n$).

Let $a_{n,t}$ be the element of $\mathfrak A$ corresponding to the set $A_{n,t}$. Then the assertion (*) implies at once that $\bigcap_{k\in N}a_{k,0}=0,\bigcup_{k\in N}a_{k,0}=1$, N being an arbitrary infinite set of natural numbers. Therefore no directed set of elements $a_{k,0}$ can converge (except in trivial cases). Hence $\mathfrak A$ is not compact.

4. I do not know whether there exists a complete non-atomic Boolean algebra which is compact in its order topology.

REFERENCES

¹⁰⁾ Birkhoff [1], p. 61, Exercise 4b.

¹¹⁾ Birkhoff [1], p. 60.

¹²⁾ Birkhoff [1], p. 166, Problem 76.

¹⁸⁾ In the sense of Birkhoff [1], p. 59-60.

¹⁴⁾ See e. g. Wecken [5].

^[1] G. Birkhoff, Lattice Theory, revised edition, 1948.

^[2] E. Čech, On Bicompact Spaces, Annals of Mathematics 38 (1937), p. 823-844.

^[3] O. Frink, Topology in Lattices, Transactions of the American Mathematical Society 51 (1942), p. 569-582.

^[4] B. Pospíšil, A Remark on Bicompact Spaces, Annals of Mathematics 38 (1937), p. 845.

^[5] F. Wecken, Abstrakte Integrale und fastperiodische Funktionen, Mathematische Zeitschrift 45 (1939), p. 377-404.