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D’aprés (8.3), ¥ équivaut a
(8.3) [H(x=y)l+91...Q” ¥
X,y 1 *n

ct, d’aprés (8.4), nous pouvons remplacer dans (8.5) chaque iné-
galité par une fonction propositionunelle positive, et nous obtenons
enfin une proposition positive.
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REMARKS ON BOOLEAN ALGEBRAS
BY
M. KATETOV (PRAGUE)

The present note* contains an example of a Boolean algebra
without proper automorphisms?) and a sufficient and necessary
condition?) for a Boolean algebra to be a Hausdorlf space in its
interval topology *. The example mentioned above will be derived
from the theory of the Cech compactification. 1

19 8§ is a completely regular space (i.c. a Hausdorff space
such that, for any closed set MC S and any xeS—M, there exists
a continuous real-valued function f in S such that f(x)=1, f(z)==0
(whenever zeM)), R is compact (=hicompact), RDS, R=5,

29 for any bounded continuous function fin S there exisis
a continuous function F in R which coincides with f in S,

then R is called the Cech compactification®) of S and is de-
noted by gS.

Lemma 1. If P is completely regular, 8P denotes its Cech
compactification, xepP—P, and there exist open sets G CpP

such that xeG,, P ni G,=0, then there exists no sequence of dif-
ok

ferent points x, e P converging to x.
Proof. Suppose, on the contrary, that x,68P, x,— x, xeP—P,
x,7% x,% x whenever m##n. Put

P=P-+ 5 (x) -+,

* Presented to the Polish Mathematical Society, Wroclaw Section, on May
19, 1950, .
1) Cf. Birkhoff [1], p. 162, Problem 74, (Numbers in bracketis refer to the
list at the ead of the paper).

?) Cf. Birkhoif [1], p. 62, Problem 23.

% Birkhoif [1], p. 60,

4 Cf. Cech [2).
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Obviously, there exist open (in P) sets H, such that

18~ ()

LES

Then there exist continuous functions h, (n=1,2,...) in P,

sach that 0<(R(z)< 2™ for any zel,, h(x)=0, h (z)==2"" if

zeP,—H,.
Put h=Xh,. Then h is a {function continuous in P,
=i

0Lh@) <L for any zePy, h(x)=0, h(2)5¢0 if z-%x Conse-
quently, h(x,) =0, hix,) 50, Obviously, there exist subsequences
{*®i,}> {%,,), such that we never have h(ka)——:h(x,n). Then {here
exists a bounded function ¢ continuous in (0,1] such that
olh (o, ))=0, (p(h(xln)) =1
Put, for ze P, f(z)=g(h(z)), and let F be the continuous exten-
sion of f over fP. It is easy 1o see that I (ka)-———O, F(x,”)=1;
since X, % ¥ ->x we have F(ka)%F(x), F(x,n) ~>» F(x), and
therefore F(x)=0, F(x)=1. This proves the lemma,
Lemma 2. There exists a denumerable normal space P such that

. (i) there exists no homeomorphism of P onto itself except the
identity mapping;

(mn=1,2,...).

(i) for any xe¢P, there exists a sequence of points x,eD,
x, 7 x, which converges to x.

Proof. Let M denote the space of rational numbers. Consider
the space T=gM x M and put S=Mx M. For any xeT, lot
@ (x) deno'te the set of all points y=g(x), where ¢ is a continu-
ous mapping of $-}-(x) into T such that @(S)==3S.

- Sm'ce' the set of all mappings of S into § has power < ¢, and
§=T, lt_xs clear that every O(x) has power <¢ (¢ denotes the
power of the continuum),

Let {Gn}_denote a countable open base of M. Tt is well-known ")
that every G, (closure in M) has power 2° Therefore it is easy to
prove by induction that there exist points § efM~—M, M—M
(n=1,2,...) such that eh ' e ‘

%) Cf. e. g. Pospigil [4].
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(a) Enean, nne@";

(b) if & &, u, o, are points from M, then, for m,n=1,2,...,
m<<n, (&,1)noned (¢, ,7), £,,7) non ¢ ®(,n,), €,7,) noned(&,n,,),
#.n,) noned(& ,n), and, moreover, (£%,) none®(&,,n), for any
n=1,2,...

Let 4, (n=1,2,...) denote the set of all (£,,7), neM, and let
B, (n=1,2,...) denote the set of all (£ 7,), éeM. Then by (b) we
have, for any n=1,2,...,

(4,+B,) - ®(x)=0, mhenever xed,+B,, m<n;
B, ®(x)=0, mhenever xed,.

Put Q:S‘ An—|—§Bn, P=§-+Q. Tt is well-known (and follows
n=it n=i

e. g. from Lemma 1) that no £efM—M satisfies in gM the first
denumerability axiom 8. It is well-known, too, that if X is a re-
gular space, xe¥Y X, Y=2X, then x satisfies the first denumera-
bility axiom in ¥ if and ounly if it satisfies this axiom in X. (The
first half ("if”) of this assertion being trivial, let x satisfy the
axiom in ¥; let U, be open in ¥, xeU_, and suppose that every open
(in ¥) set ¥ such that xeV contains some U,. Put Hn=X——X—ﬁn;
every H, is open in X and countains x. Let G be open in X, x¢G.
Since X is regular, there exists an open set G, X such that
xeG,CG,CG. Choose U, such that U, G,Y. Then xeH,C U
CGY=0,G. This proves the assertion.)

Therefore, S being dense in P, it is easy to see that
(%) point xeP satis/ies the first denumerability axiom if and only

if xeS.

Now let f be a homeomorphism of P onto P. Then, by (%),
f(§)=_8 and therefore f(x)ed(x), xe(li(f(x)), for any xeP. This
implies, by (), that f(4)=4,, f(B)==B,, n=1,2,... Suppose that
for some ze¢S, f(z)# 2z Then we have, if z=(&n), f(& n)=(" ",
nyEn or E£EE.

Suppose e. g. that #57’. Obviously there exists a neighbour-
hood U of % {in M) such that g'noneT. Let B denote the sum

%) A point x of a Hausdorff space R is said to salisfy the first denumera~
bility axiom if there exist open sets U, (n=1,2,...) containing x and such that,
for any open ¥ containing x we have, for some n, U, V.
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of all B, such that 5el. We have (&) eB, for the set of all #, is
dense in fM and therefore every neighbourhood of {(&7) contains
points (£,9,), n“eU. Since f is continuous, we have J(En)ef (B);
hence (&,1")eB, for f(B)==B. This is a contradiction, for n'nonel/,
Therefore, f(z)=2 for any zeS and hence for any zelP, as § is
dense in P. Thus P has property (i). As for property (i), il is evi-
dent, for if e. g x=(£,7¢eQ, then there exist nee M. >, and
we have (&7)€P, I]I—{T:n (&) =%,

Theorem 1. There exists a Boolean space (i e. a O-dimensio-
nal compact space) mhich admits of no homeomorphism onto itself
except identity.

Proof. Let P have properties given in Lemuna 2. Pul®) R=gl.
[t is easy to see that R is O-dimensional. Let f be a homeomor-
phism of R onto K. Lemma 1 and property (ii) of P imply that
£(8)=S$. Property (i) of P implics that f is the identity mapping.

Theorem 2. There exists an (infinite) Boolean algebra ad-
mitting of no proper (i.e. non-identical) automorphism.

Proof. Let % denote the Boolean algebra of open-and-closed
subsets of the space R given above. If p is an automorphism of
A, then, for any xef, the intersection of all A& such thal
xep(d) coniains exactly one point which will be denoted by f(x).
It is easy to see that f is a homeomorphism of R onto R. There-
fore f, and hence ¢, is the identical mapping.

Remarks. 1. T do not know whether there coxists an (infi-
nite) Boolean algebra % having no proper homeomorphism onlo
itself.

2. The -algebra A defined above is not o-complete. [ do not
know whether there exists a complete (or o-complete al leasi)
Boolean algebra without (proper) automorphisms,

We shall now consider the interval lopology of Boolean alge-
bras®). The interval topology of a parlially oedered set & iy de-
fined by taking sets of the form “all xeS contained in a (i.e.
such that x<a)”, “all xeS containing a (i.e, such that x-a)", ay
well as the whole set S of course, as a subbase of closed sels (i, e.
taking finite intersections of their complements as an open base),
“U—’I‘lnis—is possible, for P exists for any completely regular P; see
Cech [2].

%) See Birkhoff [1], p. 60,

C OMMUNITCATTI ONS 233

Lemma 3. Let L be a distributive lattice with 0, and let
ACL, BCL, be finite sets of elements #0. Then either there
exists xeL meeting all aed (i.e. xN a0 if acd) and containing
no beB (i.e.x>>b for no beB) or some aN\ b, acd, beB, contains
an atom?).

Proof. Suppose that no such x exists. Let MCCL consist of
all meets, different from 0, of some elements zed-B and let N
be the set of all minimal ueM (i.e. of ueM, such that u=>v
for no peM). Obviously, any two different elements u,,u,, from N
are disjoint (i.e. u;{u,=0). Let 4* (or B* respectively) denote
the set of all ueN which are contained in some ae4 (or in some
beB respectively). If there existed, for each ¢ belonging both
to 4* and B*, an element d<Ce¢, d50, then denoting by s the
join of all such elements d (one for each ¢) and of all ped* not
belonging to B* we should have

i) sNrs£0 if med*,

(ii) s for no reB*.

This would imply that s meeis each aed and contains no
beB, which contradicts the assumption. Therefore there exists
an atom c¢ belonging to A*B*, and hence contained in some
ab, aed, beB.

Theorem 3. If A is a Boolean algebra, xed, yed, then x
and y have disjoint neighbourhood in the interpal topology of A
if and only if (xNy)U (&' Ny) contains an atom.

Proof I. If e<ClxNy)UE'Ny) is an atom, suppose that
e.g. e<xNy'; let G denote the set of zeA not containing ¢, and
let H denote the set of zed not contained in ¢’. Then GH is
empty and it is easy to sce that G is a neighbourhood of y, H
is a neighbourhood of x.

1L Let x,y, have disjoint neighbourhoods. Then there exist
finite subsets (of 4) U, V,, U,. V,, such that, denoting by G,
(t=x,y) the sct of zed containing no uel, and contained in no
veV,, we have xeG,, yeG,, G,G,~0. Lel M denote the set con-
sisting of all meeting points u\ ', ueU,, and u\y', ue Uy; let N
denote the set of all meeting points o', veV,, and v’ Ny,

9 An element ¢ of a lattice L with 0 is called an afom if ¢z%0 and there
exists no d<le, d=£0. .
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veV,. It is easy to see that, since (.G, =0, there exisls no zed
meeting all neN and containing no meM. Henece, by Lemma 3,
some m{\n, meM, neN, contains an atom ¢. Obviously, we Lave
either e<Cx' Ny or ey

Corollary 1. A Boolean algebra is a Hausdorff space in its
interval topology if and only if it is atomic.

Corollary 2. A Boolean algebra is a compact Hausdorff
space in ifs interpal topology if and only if it is isomorphic mwith
the algebra 2" of all subsets of some aggregate.

Prool Sufficiency: 2" is compact by Frink’s |3] theorem,
and a Hausdorff space by the above corollary.

Necessity: a lattice compact in its interval topology being
complete ™), we apply Corollary 1 observing that a complete
atomic Boolean algebra is isomorphic with 2"

Remarks. 1. Birkhoffs book contains the following pro-
position, stated without proof: any partly ordered set is a Haus-
dorff space in its order topology '1). By Corollary 2, this assertions
implies {since a complete lattice is compact in ils interval topo-
logy) the following proposition: if the order topology and the
interval topology of a complete Boolean algebra coincide, then it
is isomorphic rith 2™ 12),

2. It is easy to show that the interval and the order topology
of 2" coincide. For, let % be the Boolean algebra of subsets of a
given set §. Since any set closed in the interval topology, is
closed in the order topology too'), we have only to prove: if

Ae¥, MY,
and

(* every neighbourhood of 4 in the interval topology of A
intersects M,

then there exists a directed set (X}, X, eM, which conver-
ges to A%,

Assumption (¥ implies: if MC 4, Neo8—4 are finite sels,
then there exists X=X£M,N)e§m, MCX, NooS—X. Let the set

) Birkhoff (1), p. 61, Exercise 4b,

1) Birkhoff [1], p. 60.

) Birkhoff {1), p. 166, Problem 76.

) In the sense of Birkhoff [1], p. 59-60.
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of all pairs (M, N), where M~ 4, NC.S— 4, are finite, be (partially)
ordered as follows: (M,,N,) precedes (M,,N,) if and only if M, =M,
N,CN,. It it easy to see that the directed (in the above sense)
set {X(M,N)} converges to 4.

3. There exist complete Boolean algebras which are not com-
pact in the order topology.

. Example: let % be the Boolean algebra of all measurable
subsets of the interval I=(0,1) modulo sets of measure zero, 1t
is well-known ) that % is complete. It is easy to see that there
exist sets 4, ,C1 (n=1,2,...; i=0,1) such that 4, ,=I—4,, and

& ‘I—II(AL.,”M has measure 277, where i(k)=0 or 1, K is a set
:]

of p different natural numbers (we may put 4,, equal to the
sum of intervals (k-27", (k4-1)-27"), k pair, 0 <k<<2").
Let a,, be the element of % corresponding to the set 4, ,.

Then the assertion (¥) implies al once that LﬁN a;, =0, LUN a ~=1,
v 6 v @

N being an arbitrary infinite set of natural numbers. Therefore
no direcied set of clements a,, can converge (except in trivial
cases). Hence U is not compact.

4. I do not know whether there exists a complete non-atomic
Boolean algebra which is compact in its order topology.

) See e. g. Wecken [5].
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