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Boolean algebra. But if we desire to have a non-distributive (though,
of course, modular) example of the kind just mentioned, then it
is sufficient to take the (simplest) five-element modular and non-
distributive lattice instead of the above four-element Boolean
algebra, and to perform further 4 symmetric adjunctions. Un-
like these almost trivial answers to the first two questions of the
problem Nr 75 of (L), an answer to the third guestion seems to be
more difficult. This is closely related to problem Nr 56 of (L) of
ﬁnding a non-Desarguesian plane projective geometry which admits
orthocomplements. I could not find any satisfactory amnswer to
this third question.
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Measures in Almost Independent Fields.
By
Edward Marczewski (Wroclaw).

Introduction. This paper deals with the existence of common
extensions of measures defined in given fields of sets to the smallest
field containing all the given fields. This problem taken in such
a general way might have more than one solution. But we propose
a restrictive condition viz., that the extension in question be multi~
plicative 1), i. e. that all given fields be stochastically independent
with respect to it. Then, as it is easy to prove, if the required extension.
exists, it is unique (Lemma 3).

Section 1 contains all the definitions and a few examples.

Section 2 contains the complete solution of the problem in
the case of the finite additivity of fields and measures: the almost-
independence is a necessary and sufficient condition for the existence.
of the multiplicative extension (Theorem 1) 2). )

In Section 3 the same problem is considered for the denume-
rable additivity. Banach [2] has proved that the o-independence
is here a sufficient condition but it is easy to see that it is not
a necessary condition?). On the other hand Helson [1] has esta-

. blished that, even in the case of two ‘fields, the almost-independence

(which is in this case identical with the almost-o-independence)
is not a sufficient condition. An analogous necessary and sufficient
condition is not known so far. In this paper only a sufficient con-
dition is given (Theorem III and IV), formulated thanks to some
ideas of Kakutani [1]: it is namely the almost-c-independence
under the additional eondition (obviously a very restrictive one)

1) Stochastic extension in the terminology of Helson [4] and Sikorski[10]-

2) I proved this theorem and I presented it to the Polish Mathematical
Society, Warsaw Section, in spring 1939; cf. Marezewski [8], p. 127, Théo-
réme IIT, and Banach [1], pp. 159-160.

3) Marczewski [8], p. 130.
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that each of the given fields — except at most one — contains a finite
number of sets*4).

It s interesting to note that Theorems I-IV eontinue to hold
for Boolean algebras, whereas Banach’s theorem, as recently proved
by Sikorski [11], does not.

Theorem IV can be applied to problems of extensions of Le-
besgue measure. Invariant (or, more exactly, invariant with respect
to the congruence) o-extensions of Lebesgue measure are well-known
(see e.g. Marczewski [6]). The existence of a non-geparable
o-extension of this measure has been proved by Kakutani [5].
In 1935 I proposed the problem of the éxistence of g-extension of
Lebesgue measure which is simultaneously invariant and non-sepa-
rable ([6], p. 558). In 1950, using my Theorem IV and some ideas
of Banach [1], Sierpidski [9] and Kakutani [5] I proved, with
the aid of the continuum hypothesis, that such a o-extension exists 5);
this proof is not given here, because quite recently a stronger result
has been published by Kakutani, Kodaira, and Oxtoby ).

The following related problem of Sierpinski is not yet solved
([6], p- 558): Does there exist for each invariant o-extension of Lie-
besgue measure its proper invariant o-extension?

1. Fields and their independence. Measures and
“their extensions. By field cf subsets of a fixed sot X we under-
stand any class K of subsets cf X which is additive (i. e. such that
it By,B,e XK, then B+, K) and complementative (i. e. such
that if ¥ ¢ K, then X—F ¢ K). Any s-additive field K (i. e. such
that if Eje K forj=1,2,..., then B+ B+ ... K) is called a a-field.
The smallest field and the smallest o-field containing a class Q of
subsets of X will be denoted by @, and Qs, Tespectively. A trivial
but important example of a o-field is each four-element field
K=(X,0,B,X —F)=(E),= (B);, where ECX and 0B+ X,

*) At first I proved Theorem IV, weaker than Theorem III, and 1 pu-
blished it without proof in [8], p. 128. The stronger formulation was suggested
o me by A. Gétz and R. Sikorski, Theorems IIT and IV’ generalize a result
of [7} (II théoréme fondamentale, p. 25).

®) This result was communicated to the Polish Mathematical Society,
Wroctaw Section, on the 12-th of May, 1950. '

%) K. Kodaira and S. Kakutani, 4 non-separable translation invariant
estension of the Lebesque measure space, Annals of Mathematics 52 (1950),
Pp. 574-579; 8. Kakutani and J. C. Oxtoby, Construction of a mon-separable
-invariont extension of the Lebesgue measure space, ibidem, pp. 580-590.

icm

Measures in Almost Independent Fields 219

Y¥or. each set HCX we put B~ X—F and E'=FE. We denote

by A-B the symmetric difference ¢f 4 and B.

Lemma 1. For each finite sequence By, B,,...,B, of sets be- .
longing to a field XK, there exists a sequence Py, P,,...,Pn of disjoini
sets belonging to K, such that each set By (k=1,2,...,n) 13 the sum
of some sets Pr. ‘ ‘

‘ In fact, all atoms of Ey,H,,..,B. (i.e. the sets of the form

E{IEZ’ZE !r, where i3==0,1) form the required sequence {Pg}.

Lemma 2. If K,,K,,..., K, is a finite sequence of fields of sub-
sets of X, then each set E belonging to K:(KI+K2+...+KH)O has
the form .

(*) E,:f ”Eljy

where Bye K, for i=1,2,...,n.
j=1 =t :

In fact, the class cf all sets of the form (*) is a field con-
taining all the fields K, Ky,..., Kp.

Lemma 2'. We can suppose that the sets gEij in the formula (*)
are disjoint.

To prove this we apply Lemma 1 to each sequence Fy, En, ...7‘E,,,,
{(i=1,2,...,m) in the formula (*) and we transform the obtained
expression so as to give it the usual “polynomial” form.

* A non-negative set function p defined in a field M of sybset.s
of X is called a measure, if u(X)=1 and if it is addmve. {i.e. if
4By By)= u(Ey)+ u(Hy) whenever B E,= 0‘). A measure x Is gaﬂefl
a o-measure if it is def.ned in a o-field and if it is o-additive (i. e..lf
B+ Byt )= By) + p(By)+ - whenever the sets Ej a}'e dl’s—
joint). By an estension [or o-extension] of a measure deﬁned. in
a field M we understand any measure [o-meagure] » defined 0111 a ﬁgld
containing M and such that »(B)=u(B) for B < M.

In the sequel we consider families {Ej, {Mi}, {yt} of sets,
of fields, and of measures. The index ¢ runs over an arbitrary set 7.

The sets belonging to a family {Ej (where E,CX) are gaued
independent [o-independent], if for each finite sequence [finite or
infinite sequence] of different indices f,e T and for each sequence
{in} of numbers 0 and 1 we have

ER-ER-..%0.
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Analogically, the fields M (of subsets of X) are called in-
dependent [o-independent] if for each finite sequence [infinite se-
quence] of different indices #,e¢ 7' and for each sequence of sets
B, ¢ My, such that H,=0, we have

By -By-... 0.

Let u; be a measure in M;. By substituting the condition
Ut,(En)==0 for H,==0 in the above definition we obtain the notions
of almost-independence and almost-o-indeperidence of fields with
respect to the measures us.

Obviously if T'is finite, the independence coincides with the
c-independence and the almost-independence with the almost-
o-independence. o

If p is a measure in the field M and {Qj} is a family of sub-
classes of MM, then @ are called stochastically independent (With
respect to pu), if

By By ... Bn)=u(EBy) (By) ..

for any EjEQlj’ -where t;==1; for i=7.

If M, ave subfields of the field N and ue are measures in My,
then a common extension » of x to N is called multiplicative,
if M, are stochastically independent with respect to . ‘

Lemma 2" implies the following

*i(Bn) ' :

Lemma 3. The multiplicative extension u of measures uy de-
fined in the fields My to the smallest field containing M; is unique.
In fact, if E is represented as a disjoint sum (*), then

iB)=2ull1B) =2 [T uy(By).

Examples. 1. Let {Ey be any family of subsets of X. Patting
M;=(By), we obtain a family of four-element fields. Tt is obvious
that the fields M, are independent [o-independent] if and only
if the sets B; are independent [o-independent]. Consequently the
known examples of independent or o-independent sets ) give
directly analogous examples of independence of fields of sets.

2. Let L denote the os-field of all Lebesgue-measurable subsets
of the unit interval T, and N the four-element ficld N (Z)g, where

) Cf. e. g. Marczewski [2], ppv. 16-17 and 21-22.
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the Lebesgue exterior measure of Z and I—Z is 1. Let us define
@ measure ¥ in NV by putting »(Z)=vI—2Z)=%. The o-fields I
and N are obviously not independent but they are almost inde-
pendent with respect to the Lebesgue measure and the measure ».

3. Let I denote the unit interval and X=I? the unit square.
Let M, and M, denote the class of all sets of the form L xI and
IXL, respectively, where L is a Lebesgue-measurable subset of I.
The o-fields M; and M, are independent and.stoehastically inde-

"pentent- with Tespect to the Lebesgue plane measure u. Let us

denote by A and s, the measure u restricted to the fields M, and M.
The set functions p, and u, are o-measures, and g is their multipli-
cative o-extension.

2. Multiplicative extension of measures.

Theorem I, Let {us} be a family of measures defined respecti-
vely in the fields M; of subsets of a set X. There ewists a multipli-
cative extension of the measures py if and only if the fields M, are
almost independent with respect to .

Let us put M=(3; M,),.

t
Lemma 4. If M, are ficlds of subsets of X, then
(M= 5 (My+My+...+My),
t (# ty...tp)
where (ty,ta, .- ta) TUNS 0Ver the set of all finite sequences of elements of T'.

To prove this it is sufficient to show that the right-hand
side R of the formula is a field. Obviously the class B is complemen-
tative. If

A e (My+ Myt +My), and B e(My+M, + ..+ M),
then 4 and B also belong to the field ‘
Q= (My+ ---+Mup+M}u+---+qu)m
and consequently 4 + B e QCR. Thus the class R is additive, q.e.d.

Lemma &. Lel iy, pig - finpt be measures in the fields
MM, .. .M, of subsets of X. If these fields are almost independerft
with respect to the considered measures, and if the measure p 18
& COmMOn etension Of iy, fig, - fin 10 the field M=(M+ Myt .. Mn)os
then M and M4 are almost independent with respect to p and pniys-
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Let BEeM, u(B)>0, Z € Mpry, patr(Z2)>0.
By Lemma 2 -

g : 8 . .
E=ZE1}‘E21'.A.'EHJ where E,-je‘ M[.
=1

Sinee u(E) >0, there exists j, such that u(Hyj, By, -... ) >0,
whence a fortiori

pul By) = By) >0 . for i=1,2,...,m.
It follows from the almost-independence of M, M, ..., M1y thzug*

EZCEUO-E'%-...~Enju'Z=i=6, q. e. d

Lemma 6. Let p and v be two measures defined respectively
in two almost independent (wv,th Mspert to p and v ) jwlds M and N
of subsets of X. Let
(1) Ay Ay, AT AF, AT
(2) N . Bl: B‘U Bl‘: Bl 7B27 -B

be two fimite sequences of sets belonging to M and N respectively.
Then, if the sets ApBy are disjoint (k=1,2,. 'r), 4,]‘ A¥B} are dis-
joint (k=1,2,...,r%), and if

(3) ) 2 AyBy=2 A3B3,
. =1 =1
then
(4) - ' i Z‘u( )v(B Z’/z (AT v(BY).
5=1

By Lemma 1 there exists two finite sequences of disjoint:
sets: {G4} belonging to M and {H;} belonging to N, such that .each
set (1) is the sum of some sets G and each set (2) is the sum of some
gets H;: ’

(5) Ap=2G;, By= ZH,, A¥=36G4, Br=) H,.
e Py ieQy. 1ePy 16 Qj
We put

r . .
R=k§'l (Pex @), B*=3 (P}x0Q1).

k=1

'l‘hus, it follows from’(5) that

EAkBk— 2 G.H,, Z’AkB,,_ S @.H,,
: (LDeRr GeR LT

Measures in Almost Independent Fields 223~

whence we obtain, in virtue of (3):
(6) o 2 GH = 3. GHj.
. tjeR (@, J)eR*

Consequently, since the sets GyH; and G, H,; are disjoint when-
ever (4,7)==(k,1), we see that if (4 ,y)eR —R* then G{H;=0. Further,.
since M. and N are almost independent, ,u(Gi)—O or »(H; )*0-
Therefore

) R /awﬁ) Z w(Go)v(Hy).
N L (, j)sR
Smce the terms of ‘(he sums (5) are dlS)Oult we have

(A = S @) By = (i)

TN iePj . ieQy

and .

(8) i - Z,u(Ak =313 3 wG)v(H)]

o = k=1 1Py jeQp - . .

If a pair of indices (%,) recurs in the last sum, i. e. if for some"
%,§,k,0 (where k==1) we have istPl and jeQxQ:, then by (5)

G(HjC.A],Bk and GH CAI.BI
«Since 4B and 4,B; are disjoint, GHj—O whence by the
almost- 1ndependence of M and N, we have u{@;)v(H;)= 8

Consequently, in*the right-hand side of (8) only those products
#(Gy)»(Hy) recur which are equal to zero; therefore we may write

9+ - ZM (dr)v(Be) = > ulG:)»(H))
iLf)eR
and ana}ogieally ’ 0
9% SuANBE) = 3 pG)H))
k=1 Q)R

’Qh_e formulae (7), (9), and (9%), give (4), q. e. d.

Proof of Theorem I. 1° First we shall deduce the existence’
of a multiplicative extension of u, from the almost-independence
in the ca$e of a finite number of fields and measures. By Lemma 5
the proof reduces to the case of two measures: p; and u,, defined.
on two fields: M;:and M,. By Lemma 2’ each set B e M= (M- M,),
is of the form ' .

B3 4,By, where (A,By(A,B)=0 for ij.
k=1
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We put
(E)=k§;.“1(‘4k)‘/v‘z(3k)3

it follows from Lemma 6 that this number does not depend on the
choice of A, and B,.

It follows directly from this definition that g is a multlph-
cative extension of 4 and-u, t0" M.

Now we pass to the case of an 1nf1n1te set T of indices. Let
us put for eath finité sequence” U=(uy,us,.. ,un) of ‘elements of T

My= (M, + My, + ...+~ M, ).

Sinece U is finite, there exists a multiplicative extension u,
of all gy (j=1,2,...,m) to My.

We shall prove that all the measures so defined are compatible,
i.e. that if B eMy My (where U and V are finite sequences of
elements of T'), then

(10) : pAB) = i B).

Indeed, FeMyy, and-it follows from the uniqueness of the
multiplicative extension (Lemma 3) that py coincides with u, in
My and with u, in My, whence the identity (10).

Consequently we may put for each E e My

a1 uB) = py(B).

1t follows from Lemma 4 that the function u is defined in M.
By (11) we have u(0)=0 and u(X)=1.

In order to prove the additivity of u, let us remark that for
each A4,B ¢ M there exists by Lemma 4 two finite sequences U
and V of elements of 7, such that 4 ¢« My and B ¢ My, and con-
sequently A e Mpy and BeMyy. Since u(d)=p,(d)=py,(4)
and ﬂ(B)=/‘V(B)=P‘U,V(B): we have

(4 -+ B) =!"va(A+B) =Mu.v(A)+ .‘LU.V(B) =

‘whenever A and B are disjoint.

It follows easily from the definition (11) that x is a common
extension p of u, (1eT) and that the fields M; are stochastically
independent with respect to u.

u(A)+ u(B)
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" where Bygy...1, € My, and where 1= (iy,%g,...
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20 We shall prove that the existence of a multiplieative
extension p of u, implies the almost-independence of M. In fact,

if Bye My, prg(B))>0, and ity for i (i, =1,2,..,m), then

By Bye .. Boy=p(Ey) - p( By) #(En) =gty (By) ity (Bn) -
Theorem I is thus proved.

Theorem II. Let {My} denote a family of fields of subsets of
o set X. Then the following statements are equivalent:

(a) The fields M; are independent.

(b) There emists a multiplicative extension of each family of
measures u, defined respectively in M.

(¢) There exists a common extension of each family of measures
1 defined respectively in M;.

Proof. Theorem I implies the implication (a)—-(b). The
implication (b)-»(c).is trivial. Finally, in order to prove (c)—-(a),
let us consider a finite sequence of non void sets EjeMtj (1=1,2,...,m),
where #; is a sequence of different indices. Let {p;} pe a family of
points of X such that ptjeEj for j=1,2,...,n. We. define in each
feld M, a measure u, by putting u (E)=1 or 0 according as p,
belongs to E or not. Obviously ,u,(E,) =1 and consequently u(E;)=1,
..yn), Whence By -Ey-...-Hp=0, q. €. d.

3. Multlpllcative a-extensions of c-measures. We
prove now

Theorem IT1. Let u, (where t runs over a set T containing
an element t,) be a family of o-measures defined respectively on
o-fields M, of subsets of X. Let us suppose all M; except M, are
finite. If M are almost-o-independent with respect 10 y,, then there
exists a multiplicative o-ewtension v of all p,.

We denote by AP where i=1,2,...,K,, the sequence of all
non void atoms of the fleld M; (fy=4teT).

Let us pub M_(ZM;)D and N—(Z,'M})p, we have then N==Mp.

RIReNE S

Lemma 6. If B <M, then

E=Z Ag‘) 'Agz) et Aﬁ:"lezg ey

yin) TURS OVEr a,ll -8equences
consisting of n numbers i such tha 1,,<K,l 8).

8) Cf. Kakutani [5], p. 117. : ]
Fundamenta Math maticae. T. XXXVIIL 1%
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This is an easy consequence of Lemmas 4: and 2.
Using an analogous notation we have

Lemma 7. If EIDE e M omd '

. 1
" ZA(zl) A(z) .A;:)Bgl’,z..,i,,,:

Yhen B, may be represented in the form

E2=;'A$§1>-A£;2’-...-A‘ ) B)

iyly.dp,

where my<Kny and, lerz 1‘338)1
By Lemma 6

S

- G, qUD. . 4Un
E?—;'A,,li AP APBy, g By e M.
Now we form a sequence iy,t,,...,tn, (Where n;<< n,) containing
all terms of the sequence w,,%s,...,4,. Consequently there is for
.each k=1,2,..,n an Iy such that 1< << n, and fp=1wu,. Putting

* —_—
Bll,iz,...,i,'lz = Bill,ilz,.,.,it"
we obtain easily
— ), 40, 4G
Ez'—;‘fltl’ A122 A,::;e)_B}'i_iz,m,,"?.
Since
G i
' Agll). Agzz) _A("‘z) B, i CE,

and since the set Ag")-Ag”-...

-Afn) is disjoint with A§0-4$P...
whenever (i),%,,...

ying) = (J1y Jas -1 9mg); We have

A

(4 (i . .
Agll).AtZQ.,..~A§L';)B;;iz.__inec A AP Aa,,,) BY, .

Thus, putting
.BW

{2) *
Bijty ..., = Bl 141 i

) g i,
» we. obtain
L P C DR A P
A4y Ag,,"")Bs'l)lz.“i,,z=Agl)'Agz)'...

LAl p*
At,,';’ iyly v dpyy

which implies the required formula (*).
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Proof of Theorem III. In view of Theorem I there is a multi-
plicative extension p of u; to M.

On account of the well-known theorem on the os-extension
of a measure, in order to prove Theorem IIT it is sufficient to prove
that for each sequence {E,} such that

EDE,D...

Eye M, uwEp)=06>0

we have
{1) E\E,...s0.

It follows from Lemma 7 that

- o
(2) = ;’ A4 -Ag;’;k) 3512-2,“,-“,

where .
By iy Miyy ma<mas, By, IBEEY:, -
Since the terms in the sum (2) are disjoint and since the
fields M, are stochastically independent with respect to u, we have

iy iy '"i"}:

HE)=3 p(Af- AP Al (B, )=

3) ;
= Z/A(A”i)) WAL p( A (B )
Obviously ) ) ‘
pNIE Y AR Al =1,
13
and consequently we may apply the following arithmetical pro-
position which is easy to prove:
(A) If

n .
0=2¢ljb], dj}(),
F=i

n
b;=0, Xaj=1,
=1
then there is j, such that ¢<Cby, and az=+0.

Since p(E) >4, it follows from (3) and (A) that for each
natural k there exists & sequence (iy,fg,...,%n,) Of numbers e
satisfying the following condition:

(4) w4 >0,

pAP) >0 o, w(Af) >0, w(BRR L )>0

i {2"'1"11

Obviously if (dy,%.-« satisfies (4), then (iy, %, .- Zng)

satisfies (4) too.

1:"12-{-[)

15%
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Consequently it is easy to define by induction an infinite
sequence iy,4,... such that (4,,%s..:%n,) satisties (4) for k=1,2,...
Let us put )
(1) 2)
B=By welp 'Billz...ing
Since uy is & o-measure in the o-field My, we have B e M,
and u(B)>>98. Consequently, the almost-independence of M, implies

By -B,..DB-Al: A} 0.

The relation (1) is thus proved.

Theorem IV, Let u be a o-measure in « o-field M of subsets
of X, and @ a real set function defined on a family F of subsets of X,
such that always 0<gp(B)<1. If for each sequence of sets A, e F,
each set B e M such that u(B)>0, and each sequence {in} of num-
bers 0 and 1 we have )
: ‘ B-A"-AYL .40,

then there i8 a o-measure v in N~(M—|—1¢")g which s an extension
of u and @, such that

Ay Ay An-B)=pu(4,y)  pu(4,)- ...
for each A;c F and each B e M.

In order to prove this theorem it is sufficient to consider for
each set belonging to the family F'={4, the four-element field
(X,0,4:X—A4,) and the measure u,:

we(X)=1, p0)=0, pr(d)=0p(4y),
and to apply Theorem III.

- 4) p(B)

#(X—4y) =1—p(4,)

‘We do not know a necessary and sufficient condition for the
existence of multiplicative o-extensions, analogous to that contained
in Theorem I (cf. Introduction). Instead we may complete the
theorem of Banach to the following one, analogous to Theorem II:

Let {M;} denote a family of o-fields of subsets of X. Then the
following statements are equivalent: ‘

(a) The fields M; are o-independent.

(B) There exists a multiplicative o-estension of each family u,
of o-measures defined respectively in M.

(y) There exists a common o-exstension of each family u; of o-mea~
sures defined respectively in M.
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