834 - M. Katgtov.

Proof. We have only to prove: if XCFP is discmﬁe and is not
@ Q-space, then P cannot be & Q-space. Put §=P—(X~—X). Then
X m a closed subset of §, hence, by the above theorem, § is not

:S ZISMSGF()

Lemma 7 implies that some S is not a @-space; thelefore, by Pro-
position 4, P is not a @-space.

Remark. It is easy to show that a discrete space is a @-space
if and dnly if it does not admit of a non-reducible two-valued
Borel measure, that is if its power has two-valued measure zero.
Therefore, Theorem 3 may-be given the following equivalent form:
A fully normal space P is a Q-space if and only if the power of any
elosed discrete subset of P has two-valued measure zero.

a Q-space. Since P is metrisable, 8¢ Fo(P
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The following theorem ) of H. Hahn is well-known: if g and &
are real-valued functions in a metric space P, g is upper semicon-
tinuous 2), k is lower semicontinuous 2), and g{z)< k(=) for any z ¢ P,
then there exists a continuous funetion j such that glz)<flz)< h(z)
for every x e P. If < is substituted for <, the theorem still holds.
In his paper [4], J. Dieudonné has extended Hahn’s theorem
{with < or <) to paracompact 3) spaces. In the present note, it is
shown that Hahn’s theorem holds (i) with <, in arbitrary normal 4)
spaces (Theorem 1); (ii) with <, in a broad class (specified in Theo-
rem 2) of normal spaces including paracompact, countably com-
pact 5) and perfectly normal®) ones (as a matter of fact, I do not
know whether there exists any normal space not belonging to this
class).

1) See e. g. [5], 36.
of the present note).

2} A real-valued function g defined in a topological space P is called upper
semicontinuous if, for any a € P and any ¢> g(a), there exists a neighbourhood U
of a such that ¢> g(x) whenever xe U. Substituting < instead of >, we obtain
the definition of the lower semicontinuity.

3) A topological space P is called paracompact if, for any open covering
® of P, there exists an open covering § which refines & (i. e. every He9 is
contained in some G e &) and is locally finite (i.e. such that every point has
a neighbourhood intersecting only a finite number of sets H e §). See J. Dien-
donné’s paper [4].

4} A topological space P iz called normal if any two disjoint closed sets
possess disjoint neighbourhoods.

5) A topological space is called countably compact if every countable open
covering contains a finite subcovering. -

§) A normal space it called perfectly normal if every closea met can he
represented as the intersection of countably many open sets.

2. ¢ (numbers in brackets refer to the list at the end
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Theorem 3 of the present note concerns extensions of uni-
formly continuous functions defined in subsets of uniform spaces 7).
This theorem seems to be essentially known without having been
explicitly stated as yet.

The proof of both Theorems 1 and 3 rests on a simple lemma
concerning binary relations. Since Theorem 1 implies the classical
Tietze-Urysohn Extension Theorem, we get, in this way, a direct
proof of the Extension Theorem avoiding Urysohn’s Lemma.

Notation. If A, B are propositions, then 4—B stands for
o2 implies B”. ,,Function” always means a real-valued function.

Definitions. Let R, T be sets, and let g, T be n-ary relations
defined in R and, respectively, in 7. Then RT denotes the set

of all transformations or the set 7' into R, and o* denotes then-

n-ary relation in RT defined as follows: ¢*(fy,...,fn) if and only if
Tty ey tn) ”"@(fi(tl)y '“;fn(tn))A

We shall say that a binary relation g in R possesses the Inter-
polation Property (cf. Birkhoff [1], p. 52) if, given finite sets ACR,
BCR such that®) apb whenever a e 4, beB, there always exists
¢ ¢ R such that age, cob whenever ae A, b e B.

Lemma. Let a binary relation o in B possess the In?erpolation
Property. Let T be countable and let T be a transitive irreflexive (i. e.
such that tvt never holds) relation in T. Then, for any g e BT and
h e RT such that hotg, there exists fe RT such that ho*f, fo*f, fo'y-

7) Let P be a set and let U he a family of sets UCP XP such that
(1) every set U € U contains all (w,x), ze P; (2)if Ue U, UCVCPXP, then Ve U;
(8)if Uye U, Use U, then U,U,eU; (4) for any U e U, there exists Ve U such
that (z,%)e U whenever (z,y)eV, (y,2)e V. Then we shall say that U is a wni-
formity in P; the set P together with the uniformity U, will be called a uniform
space (see e.g. Bourbaki [2]). Example: a metric space P with U consisting
of all UCPxP containing, for some g> 0, all (z,y) with p(z,y)<e.

A uniform space P is always given the topology defined as follows: x e JI
if and only if every U e U, where U denotes the uniformity of P, contains some
(y), ye M.

A real-valued function f defined in a uniform space P (with the unifor-
mity U) is called wniformly continuous if, for any £> 0, there exists I7 e U such
that [f(x)—f(y)]<e whenever (x,y)e U. This is, evidently a generalisation of
the notior of uniform continuity in metric spaces.

*) If g is a binary relation, then agh means, of course, that g is in the re-
lation ¢ to B,
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Remark. Evidently, fo*f if and only if f is a ,,homomorphism”
with respect to 7, g, i. e. if vt implies f(t;)of(ts). )

Proof. Let all teZ be arranged in a sequence {,}, tm==1, for
m==n, and let T, (n=1,2,...) denote the set of t;, k<<n. Suppose
(which we evidently may for n=1) that

(Cp) if t2t', te Tny U' e Ty, then h(t)of(t'), f(E)ef(¥'), FT)oy(t)-

Let M denote the set of all h(¢) and f(z) where te T, t1tnps,
and let &N denote the set of all f(1) and g(t) where te Ty, f,317t. Since
T is transitive, we have xpy whenever o ¢ M, y € N. Therefore, by
the Interpolation Property, there exists ze R such that e M— w0z,
y € N—zpy. Putting f(f,41)=2 we see at once that (C,44) holds true.
The proof is now completed by an obvious induection.

Theorem 1. If P is a normal space, g and h are functions
in P, g is upper semicontinuous, h is lower semicontinuous, and
g(@)<hlx) for any &£ e P, then there erists a continuous function f
in P such thai, for any xe P, gla)<f(@)<hiz).

Proof. Let R denote the collection of all XCP; if X e R,
Y e R, put XoY if and only if XCIntY. Let 7 be the relation of
(natoral) order in the set T of rational numbers (that is, iz’ 2 i<?’).
For any rational £, let H(t) denote the set of xe P such that h(z)<t,
and let G{(f) denote the set of z ¢ P such that g{x)<i. It is easy to
see that every H(i) is closed, every G(t) is open, and ¢, < t,—H{t; ) CG(1,).
Thus we have G e RT, H ¢ RT, Hp*G. Since p has the Interpolation
Property (this follows at once from the normality of P) there exists,
by the above lemma, F e RT such that He*F, Fo°F, Fo*@, hence
H{t,)C IntF(t,), F(t;)C Int F(t,), F(3) CInt G(t,) whenever t;eT, <t,.
For any zeP, let f(x) be equal to the g.1.b. of numbers {eT such
that « ¢ F(f). Then j is a real-valued function in P; for 3 H(t)=P,
[1 G{t)=0, hence every zeP lies in some F(t) and in some P—@?),
t

and therefore the values f()=--oco cannot occur. If xe F (i), then zeG{t’)
whenever ¢’ >, and therefore g(x)<t; if wnon e F(t), then x non ¢ H(t')
whenever ¢'<t and therefore h(x)>>1{. Hence g(x)< f(x) < h(zx) for
every xeP. If ty<f(w)<ty, f;eT, then it is easy to see that
@ e Int F(t,)—F(t), and y e Int Pt —F(t) -, <f(y)<l,. Thus f is
eontinuous.
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From Theorem 1, it is easy to deduce °) the Tietze-Urysohn
Extension Theorem: If P is a mormal space, QCP 1ds closed, | is
"continuous mapping of P into an interval %) J° of reals, then there
exists a continuous mapping F of P into J coinciding with f in Q.

Remark. If P is a non-normal completely regular ') space,
then it may happen that, for some closed set QCP, every bounded
continuous function in @ has an extension 2) over P whereas no
unbounded continuous function in ¢ has such an extension.

Example. Let # be the space of real numbers and let QCE
be the set of all integers. Let SE denote the Cech (bi)compactifi-
cation3) of B and put P=pE—(@—Q), where § denotes, of course,
the closure of @ in K. Since ¥ is normal, every bounded eontinuous
function in @ admits of an extension over K, hence over P. Now
let f be an unbounded continuous function in @ and suppose that
there exists a continuous function F in P such that # e Q—F(2)=f(x).
It is easy to sce that there exists a closed (in E) set ACE—Q such
that F(A) is not bounded. Since @ and 4 (closures in AE) are dis-
joint, the closure of 4 in P is equal to A, hence compact. Thus
F(4) is bounded and we have a contradiction.

Theorem 2, If P is normal, then the following conditions
are equivalent:

(a) if g, h are functions in P, g is upper semicontinuous, h is
lower semicontinuous and g(x)<h(z) for every z e P, then there cwists
o continuous function f in P such that, for any x ¢ P, g@)<flz)< hiz);

(b) every countable open covering of P has a locally finite
refinement;

9) In a well-known way: if I = [e, 4] is closed, put g(z)=(x)= f(z) if €@
and glx)=q, Px)=4 if xe P—Q. Then px)<y(z), @ is upper semicontinuous,
¥ is lower semicontinuous. Hence there exists a continuous function F in P with
@(2) <F(z) <(x), for any z ¢ P. Clearly, 2 € Q—+F(x)=f(x). For the case of a non-
closed interval I see e. g. Bourbaki [3], p. 65.

%) Any interval, closed or not, bounded or unbounded.

1y A topological space P is called completely regular, if, for any closed
MCP and any we P—M, there exists a continuous function fin P such that
Hx)=1 and y e M-f(y)=0.

**) This means: there exists a continuous function F in P such that
x € @ —+F(x)=f(x).

%) If § is a completely regular space, then there exists an essentially unique
compact (=hicompact) space, denoted by £S and called the Cech compactifi-
cation of 8, such that SCgS, §=48 and every bounded continuous function
in & has an extension over gS.
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{c¢) every countable open covering of P has a poini-finite 14)
refinement;
(d) every countable open covering is shrinkable 13);

(e) if Fo,CP are closed, F,CFnyy (n=1,2,...), xin.F,,-—--f), then
there exist open sets G,DOF, such that an: G, =0. B
Proof. I. If (a) holds, let G, be open, HZZG,,:P. Put
Un=G1+~--+Gn

if xely,
L if relU—Un

(n==1,2,...)
and put
h{z)= /1 (n=2,3,...).
1 n ™
Sinee h is clearly a lower semicontinucus function, there exists
(for we can put g(x)=0, for any #, and make use of the property (a))
a positive continnous function 7 in P such that xe Up—f2)<1,

relUp—Upa—flo)<n? (n=2,8,...).
Let I (k=1,2,...) denote the open interval with endpoints
(k-+2)7", k' and put Hy=F"YI). Clearly, HxCUpy (k=1,2,..),

2 H,=P, and every xeP has a neighbourhood intersecting two
k=1

sets Hy at most. It is easy to show that the collection of all non-
void sets HpGq, I<k-+1, is a locally finite open covering of P
which refines {G,}. Thus (a) implies (b).

I1. Evidently, (b) implies (c¢).

IT1. 1f (c¢) holds, let {G.} (n=1,2,...) be an open covering
of P. Let {H,}, » running over an arbitrary given set of indices,
be a point-finite refinement of {@,}. For any », choose m=m(»)
such that H,C@n. Let U, (n=1,2,...) denote the sum of all H,
such that m(y)=n. Then U,CG, (r=1,2,...), {Un} is point-finite.
Now apply the following well-known (see e. g. Lefschetz [5], p. 26)
theorem: every point-finite covering of a normal space is shrinkable.

1) A covering A of a space P is called poini-finite if every x ¢ P belongs
to a finite number of sets 4 e 2.

18) If {6}, » running over an arbitrary given set of indices, is an open
covering of a space P, then we shall say that {G,)} is shrinkable if there exist closed
sets F,CG, such that 3 F,=P. (f. Lefschetz [5], p. 26.
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IV. 1f (d) bolds, let F» he closed, FrDFpuy, HIF,.=O. Put
=
H,=P—F,. Then Y H,=P and therefore there exist closed sets
n=1

oo oo

A,CH, such that 3 4,=P. Put G,=P—4,. Then G,DF,, [] I1 Gn=0.
n=1 . n==

V. If (e) holds, let ¢ and h be functions in Pj; suppose that

¢ is upper semicontinuous, i is lower semicontinuous, g(z)< h(x)

for all i ¢ P. Let ¥, (n=1,2,...) denote the set of xe P such that

h(z)—g(@) <3+, Clearly, FpDFni1, [[Fn=0. Therefore, there
oo n=1
exist open sets G,DF, such that H G,=0. Since P is normal, there
n=1

exist continuous functions ¢, in P (n=1,2,...) such that we always
have 0o (2)<1, @ (2)=0if zeF,, Pp(@)=1if £ e P—@,. For any

oo

x e P, put ¢(w)=23_"tpn(w). Then ¢ is a continuous funection in P.
n=1

Clearly we have 0<g(#)<}, for any zeP, and wlo) <E3™ for
zeFy. Since every zeP lies either in P—F, or in some Fp,—Fp.,
we get at once 2¢(2)<< h(z)—g(x), for any weP. Putting ¢,=g-¢,
hy=h—¢ and applying Theorem 1 to g and hy, Wwe see that (e)
implies (2). This completes the proof.

Remarks. 1° I do not know whether there exists any normal
space which does not possess properties (a)—(e). ‘

20 It is clear that every paracompact or countably compact
space has property (b) and every perfectly normal space has pro-
perty (e). Hence the class of normal spaces possessing properties
(a)—(e) includes paracompact, countably compact and perfectly
normal ones.

We shall now consider uniformily continuous functions in
uniform spaces.

Theorem 3. Let P be a uniform space and let f be a bounded
wuniformly continuous function in a subspace QCP. Then there emists
a bounded uniformly comtinuous function F in P which coincides
with f in Q.

Proof. Let R denote the.collection of all X¥CP. If XekR,
YeR, put Xo¥ if and only if there exists Ue 1l (where U denotes,
of course, the uniformity of the space P) such that ze X,
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(z,y)e U>y e Y. It is easy to see (c¢f. footnote 7, property (4)) that
the relation o has the Interpolation Property. Let T denote the set
of rational numbers; if ¢ e T, t, ¢ T put t,74, 2% <1,. Let ¢ and g denote
respectively the g. 1. b. and the 1. u. b. of numbers f(z), v Q. If
te T, a<i<p, let A(t) denote the set of points 2 e @ such that j(x)<t
and put B(t)=A{)+(P—Q). If te T, t<u, put 4(f)=B(t)=0; if
te T, t>p, put A(t)=B(#)=P. It is easy to see that, for {;eT, {,e T,
t,<t, implies A(f)pB(l,). Thus we have 4p°B and therefore, by the
lemma on binary relations, there exists ('eR7 such that 4g7C,
Co°C, (g*B, that is A(f)0C(,), C()o (L), C(4)eB(t,) whenever
tieT, ty <ty :

For uny reP, let F(r) be equal to the g.l. b. of numbers
teT such that xe((t). If xe@, t,<flr)<i,, where ;e T, then
clearly re A(f;)—B(%) and therefore x ¢ ('(t3)—C(#1) whenever t;e T,
1<t t,<i3; hence t; <F(x)<t,. Therefore, reQ—F(z)=f(x). Clearly,
e Pora{Fx)<p.

It remains to prove that F is uniformly continuous. Given >0,
choose numberr fre T (k=0,1,...,n-+1) such that 0<tpp—ix<ie,
Iy, f<<tnyr. Since C(tz) o C(fp4a), there exist sets UpeW (2=0,1,...,2)

n
such that ye ((tzyq) whenever ze C{ty), (x,y)e Up Put Uz-kgOU,,.

-Theu U <l (cf. footnote 7, property (3)). Clearly we have F(y) <ilxqs
whenever F(r)<t, (z,y)e U; therefore, F(a)—F(y)/<e whenever
(z,y) e U. This completes the proof.
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