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The purpose of this note is to transfer a theorem of DUNFORD?)
concerning the analyticity of vector-valued functions to the case
of vector-valued funetions of a real variable. The theorem of Dun-
ford states that if for a vector-valued function »({) defined in a sim-
ply connected domain and for any functional &v belonging to a de-
termining manifold, the complex-valued funetion £x(¢) is analytie,
then the function z(£) itself is analytic. The proof in the case con-
sidered in this paper is different from that in the case of the com-
plex variable.

‘We will denote by «(f) a function from a real interval (a,b)
to a Banach space X. The function @ (f) is said to have the derivat-
we z'(ty) at ¢, if

|2l th)—ally)

tends to 0 as k— 0. Similarly the derivatives of higher order a” (t,),...
are defined.

The funection z(t) is said to be analytic in (@,b) if the derivatives
#™)(t) exist in, this interval for any n, and if

. 1 N Dul}ford, Uniformity in linear spaces, Transactions of the Ame-
rican Mathematical Society 44 (1938), p. 305-356, Theorem 76.
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the series being convergent almost uniformly for #,e(a,b) and
{§—t,|< min (b—t,,t,—a) (i.e. being uniformly in any eclosed sub-
interval).

A set of linear functionals I" will be said to be fundamenial?®)
if there exist two constants >0 and K >0 such that for every xeX
1) sup  |éz|>alz.

I AT 4

A fundamental set I' will be said to be strictly fundamental if
it satisfies the following condition: if for a sequence (z,) of ele-
ments lim|[£x,|<<oco for every &I, then Tim Jj 2, ]| < oo

n

n
Every closed linear fundamental set I' is strictly fundamental.
Tn fact, suppose that {2,} is a sequence such that lim|&z,|<eo for
n

any &eI’. Considering I' as a Banach space and &z, as linear fune-
tional ¥, £ over I, we see that lim|x,&|<co in I'; hence by a theo-
”n
rem of BANACH2) Lim|%,| < oo. The conclusion follows now by the
" .
inequality |u,| <K [%,}/a, Which is & consequence of (1).
Won-trivial examples of strietly fundamental sets are: in the

space M of bounded measurable functions the set of the functio-
nals of the form

b
fr={@(t)h(t)dt

with integrable R(f), or, in the same space, the set of the functionals
of the form
1
Ew:i——fm(t)dt
B
E denoting any measurable set in (a,b), of positive measure.
In the sequel I" will denote a fixed strictly fundamental set.
Theorem 1. Suppose that for every &el” there exists the deri-
vative d2(Ex(4))/di?, bounded in any closed subinterval of (a,b). Then
the derivative x'(t) exists in (a,b).

¢) N. Dunford, ibidem, p. 354, calls any fundamental set which is, more-
over, closed and linear, a determining manifold.

3) 8. Banach, Théorie des opérations lindaires, Monografie Matematyczne,
Warszawa, 1932, p. 80.
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Proof. Let <a’,b’> Dbe any subinterval of (a,b),
subinterval of (a’,b’). Write for A,—>0
z(t+2h,)— 22+ h,)+2(t)

I/n( = hg )
n

<(l” b/r> any

since &y,(t) is equal to the difference quotient of the second order
of &x(t), a well known formula yields

dZ
Ey,(t)= T Ex(t+29h,),

with 0<¢<1. The derivative d*(£z(d)}/d* being bounded in (a',d’)
for any £el, |h,|<min(a"”—a',b'—0") implies

sup [§y,()] < sup

te(a”,b") te(a’,b’)

From this inequality we infer that [|y,(¢)]|<B in (a”,d”) for

n>n,. For in the contreury case there would exist sequences {f,)},

{%,} such that 195, (t) =0, t.6(a”,b"), k,—>oo; this is, however,

impossible since |.£~‘y,c ) | S sup Jfr/k (t)| <oo for any é&el. Now,
te(a’,b” 2

£y, <BIl¢]l in (¢”,0"), and since &y,(t)—> g —Ew(t) we geb

*d—z*é'm( )'

d 2
l 3 124 r
1dt2 in (a”,b").
The mean-value theorem gives now
I a d
iﬁffv(ﬁ)—"ﬂf-’”(tz) <BENt—1,].

Letb 5, ty+h, ty+ke(a”, "), then
) 5(m(t0—{— By —alty) @+ k) —2(ty) )|
h - l

k

i d
= | G £ (o O0h) — = £alto= 0,7) < (10,0 + 19571 €1B,
with 0<¢;, <1, 0<9,<1, hence by (1)

|t +h)—o(t,)
l

2ty k)~ (i) | <XE

i . Z2 1w,
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This shows that »'(¢) exists in (a" b""). Since any subinterval
of a,b) can be chosen, as (a’’,d’’), 2'(f) exists in the whole of (a,d).

Theorem 2. Suppose that for every Zel the fumction Ex(t) is
analytic in (a,b). Then x(f) itself is analytic in (a,b).

Proof. By Theorem 1 2'(t) exists in (a,b), and a trivial induc-
tion shows that a™(f) exists in (a,b) for any n. Obviously
@ (&a (2))/di"= E2™(t). Since every function £x(f) is analytic in (a,b),
geI' and |t—1,]|<min (b—1y,t—a)=17 imply

> £ pn) 3
s = Yy
n=0

It follows, I' being strictly fundamental, that

(n)
L& (to)
U 6’“
N np n!

if d<n,
and by the classical method one can prove now the convergence
for [t—t,]<n of the series

(¢
U (e
=

The conclusion follows now by the formula

1™ (1) L N1 -
5_45_; — (t—ty) =/§ O olty) t—tgy'= Ea(t)

valid for any &el
The following example shows that if we suppose in Theorem 2
that I' is a fundamental set and not a strictly fundamental one,
Theorem 2 does not hold any more. Let X be the space ¢ of the
convergent sequences z=/{y,}, and I" the set of the functionals
E =y, E8=17,,... This set is fundamental. Now let y,(¢) be any
sequence of polynomials convergent in (0,1) to a discontinuous
function. Consider the sequence {y,(t)} as a function () from (0,1)
to ¢. For any £,, the function &, (f)=y,(t) is analytic in (0,1), the
funetion w(f) itself is, however, non-analytic, since for the linear
functional £,z=1imy, the function £,z (t) is non-analytic.
n

(Regu par la Rédaction le 20. 3. 1950).
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