On sequences of operations (I1I)
by

A. ALEXIEWICZ (Poznan).

1. Introduction. This part is closely related to Part IT [2];
the terminology and notation introduced there will be used in this
part without any further reference.

The purpose of this part is to transfer the results obtained in
Part IT to polynomie operations. Let X,,¥, be two A-spaces. An
operation U(z) from X, to ¥, of degree m ([3], p. 51) will be said
to be an (X, ¥ z)-polynomial of degree m if it is (X4, Y 5)-continuous.
Similarly, an operation Ul(zy,...,3,) which is (X, Y g)-linear with
respect to each variable separately will be said to be (X, Y p)-k-linear.

We shall deal with the problem of the conditions under which
the following theorems are true:

I™. The limit of a B-convergent sequence of (X,,Y g)-polynomials
of degree at most m is an (X2, Y p)-polynomial (of degree at most m).

II™. Let {U, ()} be a sequence 0of (X.; ¥ g)-polynomials of degree
at most m, B-bounded everywhere, and B-convergent in a set D dense
in X,. Then this sequence B-comverges everywhere.

TIP (TXX). Let {U,y(@)l,ey s, . be a sequence of (X, X 4)-poly-
nomials of degree at most My, B-divergent (or f-unbounded respectively)
for x=x,. Then there. exists an element 2y af which the sequences
{Um(mﬂ)}q=1,2m. are f-divergent (or B-umbounded respectively) for
]J=1,2,...

In order to point out to which spaces X, and ¥, tfle theorems
I™-ITIF are related we shall sometimes denote them by I™(X,, ¥Y,)-
TIT* (X, ¥ 5) respectively.
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‘We shall prove that the conditions we have shown in [2] to be
sufficient for the truthfulness of the theorems I’ II%, IIT}, and IIT}
hold still in this more general case.

2. Some properties of k-linear operations, In this section we
establish some lemmas needed in the sequel.

2.1. Suppose the condition (Q,) ) to be satisfied and let denote by
{U, (@1 , @)} @ sequence of (X o, Y p)-k-linear operations [-conver-
gent at every point (@y,...,2,)e X% If (a) linm &, =, for £=1,2,...,k,
then

(1) (ﬂ)]i;n[Un(wlnﬂ'"7mkn)~Un(mli"'rr}c)]zo'

Proof ?). We shall prove this lemma by induection. It is true
for k=1 in virtue of (@,). Suppose now 2.1 to be true for a k; we
prove it to hold for k+1. Let {U,(zy,-..,%;, Zp.1)} be a sequence
of (X,,¥,)-k-+1-linear operations, f-convergent everywhere, and
suppose thab

(a)lima;,=mx; for i=1,2,...,k+1.

Let @ be fixed; then the operations
Wo(@yse ey ) =Uy(yy 000y T, 2)
are (X,,Y,)-k-linear and §-converge in X*; hence by inductive hy-
pothesis
(2) (BYEM [T, (%15 - - - s Ty &) — U (15 4+ 835 2) ] = 0.
n

The operations V,(#)=U,(@,;...,Tp,, %) are (Xa,Y,,)—Unefnr
and since the operations U, (wq,...,2;,4) are pf-convergent in
X% x X, (2) implies .the p-convergence of the sequence {V,(z)}.
The condition (¢,) implies the B-convergence to 0 of the sequence
{Vl#prn) = Valzge ), e

(BYUM [ U, (@15« T s Tpeier n) = U By o o3 B T 1) ] =0
n
Applying now (2) with x=x,,; we get
(/j)]jnl [ Un. (mln yee e Wyl 17.)_ Un(‘rl EAR 'Eki‘rkéi)]:o'
n

1 (2], p. 223. ‘ ) )
2) The idea of this proof is due to Mazur and Orliez, [38], p. 65.
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Similarly as 2.1 we can prove

2.2. Suppose the condition (Q,)?®) to be satisfied and denote by
(U, (@1,...,2,)} a sequence of (X, Y ;)-k-lincar operations B-bounded
in X* If the sequences @y}, q . are a-bounded for i=1,2,...k,
then the sequence {U, (1., .-, Ty,)} 18 B-bounded.

2.3. Suppose the condition (@;)*%) to be satisfied and demote by
(U, (@),...,3,)) o sequence of (X,,Y )-k-linear operations B-bounded
in X* If (o)limaz,=a; for i=1,2,...k, then (1) holds.

In virtue of the formulae of MAzUR and ORLICZ ([3], p. 51-5G,
[1], p. 26-27) lemmas 2.1-2.3 imply }

2.4. Suppose the condition (Q,) to be satisfied and let {U, (z))
be a sequence of (X, Y ,)-polynomials of degree at most m. B-conver-
gent everywhere. If @, > x,, then
3) [T (@) = U, ()1 5.0

2.5. Suppose the condition (Q,) to be salisfied amd let {U, (w)}
be a sequence of (X, , Y s)-polynomials of degree at most m, f-bounded
everywhere. If the sequence {w,} is a-bounded, then the sequence {U,, (z,)}
is f-bounded.

2.6. Suppose the condition (Q,) to be satisfied and let {U,(x)}
be a sequence of (X, Y s)-polynomials of degree ot most m, f-bounded
everywhere; then x,>my implies (3).

3. Some sufficient conditions for I and II™.

3.1. Let the condition (Q,) be satisfied and let X, fulfil the postu-
late (b;). Then I™X,,Y ;) holds.

Proof. Let {U,(x)} be a sequence of (X, Y p)-polynomials of
degree at most m, f-convergent everywhere to U(x). It is sufficient
to prove that U(z) is (X,, ¥,)-continuous. Let #,5w,; then

(BYEm [T, (@) = Ug (@) 1= U () — U'(ay)
for p=1,2,...; hence by 2.4 g, oo implies
[qu(wp)"'Uq (mo)]io

57

%) [2], p. 223.
9 [2], p. 223.
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By postulate (b,) we infer that
[U(z,)— Ulz)] 5 0.

3.2. Let the space X, satisfy the postulate (a;) and let ¥, satisfy
(by), (bs) and suppose the condition (Q,) satisfied. Then I™(X,,Y,)
holds.

Proof. Let {U,()} be a sequence of (X,, ¥,)-polynomials of
degree at most m, f-convergent everywhere to U(x) and let @, > z,.
It is to be proved that U(mn)ﬂ U(x,). We may suppose that z,=0
(for in the contrary case it suffices to deal with the sequence of po-
lynomials W, (z)=U,(x+x,)). Let

m m
U @)=3U,(x) and  Uw)=30, ()
»=0 =0
be the canonical representations ([3], p. 51, [1], p. 26) of U,(x) and
U (). The formulae of MAzZUR and ORLICZ ([3], p. 51-54) show that

(AHm U, (2)=U,(x) for »=0,1,2,...,m.
n

It is sufficient to show that LT,($n)f>0 for »=1,2,...,m. Sup-
pose it is not the case for a ». By (b,) we can suppose that no sub-
sequence of {U,(x,)} p-converges to 0. The postulate (a,) implies
the existence of the sequences ({4} and {nm,} such that 2,0,
ny,—> o0, Tp=Ahx, 0. The sequence {U,, (#7)—U,, (0)} is f-bounded
by 2.5 if ¢;— oo; hence by (b,) the sequence {0, (x¥)} is p-bounded
too. In particular

U, ) =U,07")=U, (2,)

i

5o,
and this leads to contradiction.

Arguing quite similarly as in proof of Theorem 4.3 of [2], we
can prove

3.3. Let the space Yp satisfy the postulates (by), (bs), and (bs)
and let the condition (Q;) be satisfied. Then theorem 1I™(X,,Y ;) holds.

This proposition yields

3.4. If the space X, satisfies the postulate (a;), ¥, — the postu-
lates (by), (by), (bs), and the condition (Q,) s satisfied, then
I (X,,Y,) holds.
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4. General sufficient conditions for 1™ and II". The result
of section 3, and those of section 5 of [2] imply '

4.1. Theorem. If the space X, satisfies the postulates (2;), (ay),
and the space Y g satisfies the postulates (b;), (by) and (b,), then theo-
rem I™ 4s true.

4.2, Theorem. If the space X, satisfics the postulates (a,),
(@), and Y 5 satisfies the postulates (by), (bg), (bs), (ba)y (bs), then theo-
rem II™ is true.

It follows that theorems I™ and II™ hold in all the cases men-
tioned in [2], p. 210.

5. Special sufficient conditions for I"™ and II™ Arguing iden-
tically asin [2], section 7, we can easily transfer the results obtained
there to the case of polynomials.

5.1. The case of strong two-norms convergence.

5.1.1. Let the space X, satisfy the postulate (a,) and let B be
a strong two-norms convergence in Y. Then the truthfulness of
I"™X,,Y,), p Deing the strong comvergemce in X* ), implies the
same for I™(X,, X,).

The space M, does not satisfy the postulate (a,); hence Theo-
rem 4.1 cannot be applied to it. However OrLioz ([4], p. 78) has
shown that if X,=M,,and Y is a F-space, then the condition (Q,)
is satisfied ¢). Thus 3.1 gives

5.1.2. Theorem I™(M.,,Y) is true if ¥ is a F-space.

Applying now 5.1.1 we get

5.1.3. Theorem I"™(M,,¥ g} is true if B denvtes a strong two-norms
convergence in Y. :

5.2. The case of polynomic functionals. We have shown in [21,
p. 230 that the condition (Q,) is satisfied if X, satisfies the postu-
late (a;) and Y ,=R, the space of reals. Thus 3.1 implies

5.2.1. Theorem I™(X,,R) holds if the space X, satisfies the po-
stulate (ay).

Similarly as in [2], p. 231, we can prove

5.2.2 If theorem I™(X,,R) holds and the convergence 8 satisfies
the condition of Pichtenholz, then I™(X, , X 4) holds too.

5) See [2], p. 206.
¢) This is also proved implicitly in [2], p. 229.
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5.2.3. If theorem II™(X,,R) holds and the convergence B salis-
fies the condition of Fichtenholz and the postulate (bs), then II™(X,,Y ;)
holds too.

6. Theorem II™ in Kantorovitch spaces. Let ¥, be a regular
Kantorovitch space. An operation U=U(zy,...,2,) from X* to Y,
will be said to be k-quasi-additive or simply to be k-qa if it is sym-
metrical in all the variables and quasi-additive ([2], p. 232) in each
variable separately, ie. if it fulfils the following conditions:

| U(@1grey @07, .0y 3) |
SRR SN AT AR/ CONRE AN A T
| O @15y Ay oy @) [=[A] [ U (150003850000 B0 |-
Every k-qa and (X,,Y,.)-continuous operation will be said
to be (X,,Y,.)-k-quasilinear or simply to be (X.,Y..)-k-ql
We suppose in this section that the space X, satisfies the po-
stulates (a,) and (a,).
6.1. Let {U,(xy,...,z)} be a sequence of (X,,Y,)-k-ql opera-
tions w-bounded in X*. If x-limw,=wa; for i=1,2,...,k, then
n
(e Um| U@ T | =] U2 [} =0.

Proof. We prove this by induction. For k=1 this follows in
virtue of (a;) from [2], Theorem 7.4.1. Suppose now 6.1 to be true
for (X,,Y,.)-k-ql operations and let {U,(#y,...,%.)} be & sequence
of (X,,Y,.)-k-+1-ql operations, x-bounded in X**! and let (a)lim ;=

n
=, for i=1,2,...,k+1. Since, & being fixed, the operations
Wo@yyeen,2) =U, (01,...,%,2)
are (X,,Y,.)-k-ql, and since this sequence iz x-bounded, the in-
ductive hypothesis yields

(4) ()Y HM | U (@ 105- « -5 Tpny &) | — | U@y oy g5 2) [} =0.
"

The operations
Vn(‘r) = Un(‘l"ln’ R :ZPk",‘J/')
are (X,,Y,.)-1-ql, and (4) implies »-boundedness of the sequence
{V,(®)}; hence by [2], Theorem 7.4.1 and (a,)

(8) (%*)U-;n 1Vl 10) =1 Vi) [} =0
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Formula (4) with o replaced by ®,,, gives by (5)
(%*)hm{l Uu(‘vl'n? R ’x/.7~l~1n) i —[ Un(ml" . lmk+1) ”:0
n
6.2. Let {U,(2y,...,2,)} e a sequence of (X,,Y.)-k-ql opera
tions x-convergent in the set X* to U(xy,...,w;). Then the operation
VU @1y 052y) | 18 (X, Y 0)-continuous.

Proof. Let (a)lima,==x; for ¢=1,2,...,k Then for every in-
teger n we geb "

(%*)h;ll“ Uq(mn, e 3mkn) i _"l qu(mh" . 7m]z) |}

=|U(Bpyyeeey i) | —| Uy, o)

By 6.1 g, - oo implies

(mﬁin{ (U@ Ba) | =1 Uy (@15, ) |} =0,

Since the convergence »* satisfies the postulate (by) we get
("*)Hyim{ PO (@153 %) [ =1 U@y .0y | ] =0,

which completes the proof.

Now, let {U,(z)} be a sequence of (X,,¥,.)-polynomials of de-
gree abt most m, x-bounded everywhere and x-convergent in a set
denge in X,. Let

n
Un(w)=20 Un(®)

be the canonical representation ([3], p. 51, [1], p. 26) of {U,(x)}

and let U, (#,,...,5,) be the primitive operations for U,,(x). Put

an(mlﬁ"wmv): Sup IUju(mli"'7wu)|
F=1e,n

W(w) = E‘n:; Uﬂl(m) _]_ji!l Un(w) ‘

The operations V,,(2,...,2,) are (X4, Y 0)-v-ql and the se-
quence {V,w(:vl,...,mv)},L:mm_’ being non-decreasing and zx-boun-
ded, must converge everywhere to an operation V@y,...,2,). By
6.2 the operation |V,(z,...,s)| is (X,,Y,.)-continuous. Let x
and z, denote arbitrary elements of X, The formulae !
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|Hﬁy:z_ﬁznl<ﬁ!yn_zn!’ E]i! nz_%(——yn)
n n n n n

imply
[W(.I'p) —W(ID) |= !ﬁUn(‘l’.p) —lim Un(‘TU) + 1_]11;1 Un(‘rﬂ) —h_mUn(mﬂ) |

<h J U,L(Jb'p) — Un(‘ru)[ + hn——m l - Un(‘ru)—" U11<w1))§

<2 Hriﬁ [U(,) - [ZMEMIR

By the formulae of MAZUR and OrLIcz ([3], p. 51-56; [1], . 26)

we geb
U,(y)— U,lg)= Z [U;w(l'p)”‘ Um(xu)]

»=0

v
v %
E(l) Unv(‘tus“'7rui'l'71_‘r01' ",xz)~m0)7
= —_—

]

[} S
<

v
and since

Hm| Uy (1see ey 2,) 1<V o200 B) [=V (@10, 8),

n

we get

m v
.
g‘lz (.)1w(Jro,...,:vo,xp—a:o,;..,xp—;co) N
i b

for i>=1. Now, @,5, implies

("*)HmVv(‘z'nr--:wu?'rp_xo:---:37@—’”0):0?
» b

hence W(w,)5> W(r,). The operation W(z) is then (X,,¥,)-conti-
nuous. Since W(x)=0 in a set dense in X,, W(z)=0 everywhere.
Thus we have shown

6.3. Theorem. Let the space X, satisfy the postulates (a,), ()
and let Y, he a reqular Kantorovitch space. If {U,(z)} is a sequence
of (Xg,X,)-polynomials of degree at most m, x-bounded everywhere
and xz-convergent in a set dense in X,, then this sequence x-converges
everywhere.
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7. Theorems 111" Using the same methods as in [2], section §,
we can easily prove

7.1. Theorem. Let the space X, satisfy the postulate (az) and
let § denote a convergence generated by morm or & Sirony two-norms
convergence in Y. Then theorems YIIT(X,,Yz) and IIIHX,,Y,)
are true.
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by
A. ALEXIEWICZ (Poznan).

In this part!) the terminology and notations introduced in
[2] will be used without any further reference.

We are concerned with linear and polynomial operations from
a A-space to the space S of measurable functions. Because of the
particular structure of this space we can obtain some more special
results than in [2] and [3]. The purpose of this paper is to gene-
ralize the results of SAxs ([7], [8], [9]) to the case of linear and po-
lynomie operations in A-spaces.

1. The space 8. Let T be any measurable set of finite measure.
We will denoteby S the space of the measurable functions defined
in T. Two equivalent functions being' considered as one element
of the space, and addition of elements and multiplication by the
reals being defined as usual, if we define the norm of z=x(f) as

_ [ _l=®)]
el —'Tfmdt’

S becomes an F-space. The convergence generated by norm is iden-
tical with the asymptotic convergence. By = we denote the conver-
gence almost everywhere in S. The space S, is identical with the
Kantoroviteh space corresponding to the following partial ordering:
2, <, means that o,(f) <w,(t) almost everywhere. KANTOROVITCH
([5], p- 155) has shown that the space S, is regular. The convergence
7*2) is identical with the strong convergence in S.

) For the first three parts see [1], [2], and [3].
?) [2], p. 204.
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