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7. Theorems 111" Using the same methods as in [2], section §,
we can easily prove

7.1. Theorem. Let the space X, satisfy the postulate (az) and
let § denote a convergence generated by morm or & Sirony two-norms
convergence in Y. Then theorems YIIT(X,,Yz) and IIIHX,,Y,)
are true.
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On sequences of operations (IV)
by
A. ALEXIEWICZ (Poznan).

In this part!) the terminology and notations introduced in
[2] will be used without any further reference.

We are concerned with linear and polynomial operations from
a A-space to the space S of measurable functions. Because of the
particular structure of this space we can obtain some more special
results than in [2] and [3]. The purpose of this paper is to gene-
ralize the results of SAxs ([7], [8], [9]) to the case of linear and po-
lynomie operations in A-spaces.

1. The space 8. Let T be any measurable set of finite measure.
We will denoteby S the space of the measurable functions defined
in T. Two equivalent functions being' considered as one element
of the space, and addition of elements and multiplication by the
reals being defined as usual, if we define the norm of z=x(f) as

_ [ _l=®)]
el —'Tfmdt’

S becomes an F-space. The convergence generated by norm is iden-
tical with the asymptotic convergence. By = we denote the conver-
gence almost everywhere in S. The space S, is identical with the
Kantoroviteh space corresponding to the following partial ordering:
2, <, means that o,(f) <w,(t) almost everywhere. KANTOROVITCH
([5], p- 155) has shown that the space S, is regular. The convergence
7*2) is identical with the strong convergence in S.

) For the first three parts see [1], [2], and [3].
?) [2], p. 204.
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Let U(z) be any operation from a linear space X to S; the' va-
Ine of U(w) is an element y (1) of S. We will denote this by writing
Ulz) =U(z,1).

9. Generalization of a theorem of Banach.

9.1. Theorem?). Let the space X, satisfy the postulates (ay)
and (a5)%), and let D be o set dense in X,. If for a sequence {U,(x,1)}
of (X,,S)-linear operations

1) Bm U (x,t) <oco almost everywhere for any @,
n—»o0

and if this sequence converges alimost everywhere for any xeD, then
it converges almost everywhere for any .

Proof. By (1)

- mvn(_w’t)=h_r§ Un,(w)t)>_°®7
n—roo e

almost everywhere for any #, i.e. the sequence {| U, («,1) |} is m#-boun-
ded. The operations U,(z,1) are (X,,S,)-linear; hence it suffices
to apply Theorem 7.4.3 of [2].

It Im |U,(z,t)|<co almost everywhere for any #, {U,(x,!)}

500
being a.nsequence of (X,, S)-polynomials of degree at most m, then

using the formulae of MAzUR and OrLICZ ([6], D. 51-56, [1], p. 27)
we can easily prove that the sequence {| U, (#,t}|} is bounded almost
everywhere for any . Thus Theorem 6.3 of [3] yields

2.2. Theorem. Let the space X, sotisfy the postulates (a,) aend
(a,)%), and let D be & set dense in X,. If for a sequence {U,(x,1)}
of (X, S)-polynomials of degree at most m

lim |U,(z,1)] <oo almost everywhere for any &,

n—roo
and if this sequence converges almost everywhere for any x in D, then
it converges almost everywhere for any .

3. Theorems of Saks. In this section X denotes an IF-space.
Saxs ([7], [8]; [9]) has proved the following theorems concerning
the structure of sequences of (X, S)-linear operations:

%) This theorem was proved by Banach [4] for the case when X is a Ba-
nach space.
4 [2], p. 202.
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3.1 Theorem. Let{U,(x,1)} be a sequence of (X, S)-linear ope-
rations; then there exist two residual sets X, X, and decompositions
T=A,+B,=A4,+B, such that

(@) lim |U,(2,t)| <oco almost everywhere in A, for any =z,
n oo

(h) lim | U, (x,1)| =co almost everywhere in B, for any zeX,,
N~y 00

(¢) im U,(,t) ewists almost everywhere in A4, for any z,
n—ro0

(d) lim U, (x,t) does not exist almost everywhere in B, for
n—roeo
any reX,.
This theorem implies that, if for a sequence {Un(m,t)} of (X, S)-

linear operations there exists an @, such that lim | Uple,t) | =00
n—roo

(or the sequence {U,(@,,?)} diverges)in a set 4, then the same holds
almost everywhere in A for every x belonging to a residual set X*.
From this we easily derive the following theorem on the condensa-
tion of singularities :

3.2. Theorem. Let {U,,(2,1)],o1.. e a sequence of (X, S)-linear
operations. If for every maiwral p there exists an element  such that
lim | T, (,,1)|=co (such that the sequence {U,(,,8)},_; . is diver-
o E

ﬂt) in a set T,, then there exists a residual set X* such thai

h'in Upg(,t)=c0 (such that the sequence {U,(2,1)},_,,  diverges)
groo
almost everywhere in T, for any zeX* and any p.

4. Theorems of Saks in A-spaces. In [2], section 8, it is shown
that the fulfilment of the postulate (as)%) in the space X, enables
us to transfer the problem of the condensation of singularities to
the case of operations defined in a Banach space. Using the same
method we can now easily establish

4.1. Theorem. Let the space X, satisfy the postulate (a;), and
let {U (2,00} 415, D a sequence of (X, S)-linear operations. If for

any p there exists an element x, such that ﬁn]Um(;vp,t){=oo
g-ree

(such that the sequence {qu(mp,t)}qgl’:_,w is divergent) in a set T,

then there erists an element xz, such that M]Uﬂq(mo,m:oo (such
groe

5) [2], p. 203.
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that the sequence {Um(m.,,t)}q:l,zw_ is divergent) almost everywhere
in T, for p=1,2,...

Tn the sequel we shall need the following

49. Lemma. Lel & be a class of measurable subsets of T,
containing the empty set. There ewists o sequence (B,} of mutually
disjoint sets of € such that no set of positive measure contained in
T~§En belongs to €.

=1

n

Proof. Tfevery set in  is null, it suffices to put By=H,=...=0.

In the contrary case denote by o, the least upper bound of measu-
res of the sets belonging to € and choose T, ¢€ so that | By | > m,/2.
Suppose we have defined the sets E,,B,,...,B,; then by o, we
denote the least upper bound of measures of the sets of € which lie
in Q,=7—(E+...+E,). If w,.,=0, we pub B, =H, ,=...=0;
if ©,4,>0, we choose B, @, 50 that [B,.;[>w,./2. No set B

of € of positive measure lies in 7— ' ,. For in the contrary case
: n=1
we should have |E|<w, for n=1,2,... This i3, however, impossible
since, the sets T, being disjoint, |H,| -0 and 2|H,[>0,.
43. Theorem. Let the space X, sabisfy the postulate (as). If
{U,(2,1)} is a sequence of (X,,S)-linear operations then there ewists
an element @, and a decomposition T=A;+B, such thai

(a) Iim | U, (2,t)|<co almost everywhere in A, for any a,

n-yoo
() Tm | U, (#,t)|=o00 4n Bi.
n—roe - .
Proof. If lim |U,(x,t)| <oco almost everywhere for any =, it

n-yoo

suffices to set 4,=T,B;=0. In the contrary case there must

exist elements « such that Hm | U,(z,t)|=occ in & set T, of positive
oo

measure. Denote by & the class of all measurable sets @ for which

there exists an # such that QCT,. Let {@,} be the sequence the exi-
stence of which is assured by Lemma 4.2. Then Q;CCT_,%; hence

fim | U, (2,,t)|=cc in Q,. Write B,=)§,, A,=T—B;; then (a)
n->oe n=1

holds by 4.2. To prove (b) put

[Uq(m,t) for teQ,,

U, 2,t)= .
»al 1) 0 for tel'—@Q,.

icm
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These operations are (X,,S)-linear and lim | Upg(@y,t) =00 for
gy

every t€Q,. By Theorem 4.1 there exists an element &, such that
Hm | U, (#1,1)|==0c0 almost everywhere in @, for p=1,2,...
gree

In a similar manner we can prove the following

4.4. Theorem. Lel the space X, salisfy the postulate (a;) ‘and
let {U,(z,0)} be a sequence of (X,,S)-linear operations. Then there
exists an element x, and a decomposition T'=A,+B, such that

(e) lm U,(w,t) exists almost everywhere in A, for any x,
n—yoe

(d) hjn U,(zs,1)  does not exist in B,.

n-boo

5. Theorems of Saks for polynomials in F-spaces ®). In this
section X denotes a F-space. Let 9t be the space composed of the
measurable subsets of 7. The distance of the two sets B, H,et
being defined as o(E,,E,)=|E,—E,|+|H,—F,|, N is a complete
and separable metric space?).

Given any sequence {U,(z,f)} of operations from X to S we
shall denote by @, and 2, respectively the sets of the points ¢ at
which this sequence is bounded or convergent respectively.

5.1. Theorem. Let {U,(z,t)} be a sequence of (X,S)-polyno-
mials of degree at most m, H — any measurable set X,, — a set of
the second category, and let ¢ be positive. If |H —0,|<e for every
xeX,, then

| H—0, |<(m+1)e for every .
Proof. Put
o<
rr=B{sup | U,(,5)|<n}, X,=E{|E-I?|<e}, T*=3 X,
¢ i=12,... z n=1
It is easily seen that xeX* implies |H—0,|<e. The sets X, are
closed. For, let z,6X,, =z, —>m;; since I}u:a U (z,) =U;(z,) for
>

i=1,2,... there exists a subsequence {z, } such that lim Ui, ,t)=
k-yoo

d
U,(zy,t) for i=1,2,... except at a null set N. If Poz—_ﬁf;}rk

k-yoo v
then |H—T|=|lim (H—I7, )|<s. If teIo—N, then | Uy(a,,,1)|<n

e

Y

§) We use here the methods due to Saks [9].
7) See [1], section 8.

Studia Mathematica. T. XII. 7
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for every 4 and infinitely many k; this implies | U,(wo,t)|<n for
i=1,2,...; hence z,¢X,.

The formula X, X* implies the existence of an n, such that
the set X, contains a sphere K(x,,7). We can suppose that z,=0
(for in the contrary case it is sufficient to consider the operations
W, (2)="TU,(x+m)). Leb »

(2) Un(x):Uno (m)+Un1(m)++Unm(m)

Dbe the eanonical representation ([6], p. B1) of the polynomial U, (x).
The formulae ([6], p. 51)

(3) Uy () =00 U, (0-2) 0,y U(L-2)+ ..+ 0, U (1)

imply the existence of a constant A such that |U,,(z,t)|<4 in
the sphere K (0,7/m) forevery el po- ree.. e, =4,. Now, 4,6,

and [H—@m[<[H—Am|<_, |H—Ipo|<(m+1)e. The y-homoge-
=0
neity of U, (x) yields 4,,=4,; hence | H—0, |<(m—+1)e for every x.

5.2. Theorem. Let X be a F-space. If {U,(x,t)} is a sequence
of (X ,S) -polynomials of degree at most m, then there exists a residual
set X,CX and a decomposition T=A,+B, such that

(a) Hm | U (x,t)|<co almost everywhere in A, for any ux,
n-roo

(b) Tm | U, (,t)| =oco _almost everywhere in By for any weX,.
n-yoo

Proof. Let {H,;} be a sequence dense in . Writing P7=§{1@x[>7}

let y, be the least upper bound of the numbers y for which the set
P, is of the second category. If y,=0, it suffices to pub A,=0. If

yo>>0, choose &,>0 so that 3 e, <co and pub
B=1

&
quzg{ |H,~ @“K?{ii and |H,|>ye— ¢y}

Since P, _ C Y X, for each p, there must exist a g, such thab
p g=1
the sef X, is of the second category. By 5.1 |qu—~@m1<ep for

every . Put Al—hqu , By=T—A,. Then |A1i>fxﬁlﬂqpl>yo,
p—

pros
and for every s and
[A—6,1<1 3 (H, —0,)1< 3 &3
p=s p=8

icm
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hence |4,—@,{=0. Thus (a) is satisfied. Since |4,|>7y,, the sta-
tement (b) must hold too.

3.3. Theorem. Let {U,(z,1)} be a sequence of (X,S)-polyno-
mials of degree at most m, H — a measurable set, X, — a set of the
second category, and let & be positive. If xeX, implies |H—Q,|<e,
then there erists a residual set X, such that |[H—Q, |<(m-+1)e for
every xeX,.

Proof. Put
O =E{sup | U,(x,1)— U x,1)|<1/n},
i pa=k
w=BIE-0f"<el,  X*=[] Y7,
n=1 k=1

Then zeX* implies |H— .|<e. For, let 2eX*; then, given any n,
there exists a &, such that mEX, s 18 [ H— @frn" |<e. Write

Y= lim Qknm s

R-roe

it is obvious that ¥, _Q,; hence
| H—2,|<|H—-V,|<lim | H— 0 <e.

n—oo

We can prove similarly as in proof of 3.1 that the sets X, are
closed. It is easy to prove the formula

O] 3 Xpp=X%
n=1 k=1

this enables us to replace the set X, by the set X*. The set X* being
measurable (B), it is residual in a sphere K(x,,r). We can suppose
without loss of generality that x,=0. Given any number a denote
by oV the set of the elements ax with zeV. Since the sets
V=K (0,7/m)—X* are of the first category for m=1,2,..., the
same holds for the set T*=0V-+1V4...+mV. The formula (2)
implies the convergence of the sequences {C @, 1)} 0, fOr every
2€X,=KE(0,7/m)X* and ted,=0Q,,9,,...Q,,. Thus |H—Q,|<
<|H—4,1<(m+1)e for every xeX, and in virtue of the »-homo-
geneity of U, (r), we get |H—Q,|<(m-1)e for every x belonging
to the set X, of the elements tr with xeX,; this set is obviously
residual.

7*
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5.4. Theorem. Let X be a F-space. Given amy sequence
{Un(w,t)} of (X, S)-polynomials of degree at most m there emists a resi-
dual set X, and a decomposition T=A,-}B, such that

() im U,(z,t) emists almost everywhere in A, for every w,
n-yoo
(d) Lim U,(x,t) does mot ewist for almost every 1 in By for
n-yoo
every weX,.
Proof. By Theorem 5.2 we can suppose that for each the x
inequality 1im|U,(#,t)|<co holds almost everywhere in T. Put
n—yee

Ry=F{|Q,|>6}. I, given any 6>>0, the set B, is of the first cate-

gory zit suffices to write 4,=0. In the contrary case denote by &,
the least upper bound of the numbers § for which the set R, is of

the second category. Choose g>0 so thab e, <oo and pub
k=1

&
Xo=Bl =< oy o | [>0—s,).

Since > X, DR,
=1

the segcond category. By 5.3 there exists a residual set X, such that

|H,,—2,|<e, for every weX,. Write Z=”1X;, A2=1]}EQH%,

P

B,=T-—A,. The set Z is vesidual, |[A4,[>=d,, and xeZ implies

|A,—8Q,]=0, i.e. lim U,(z,t) exists almost everywhere in A, for
n-rea

" there exists a g, such that the seb me is of

e,

any weZ. Applying now Theorem 2.2 we get (¢); |4;|>=3, yields
|4;]=26, in virtue of the definition of &,; hence (d) holds too.

6. Theorems of Saks for polynomials in A-spaces. Using the
metbod of [2], section 8, we can easily prove that Theorem 4.1
remains true if we suppose that the operations U, (z,?) are (X, S)-
polynomials of degree at most m. From this we deduce as in sec-
tion 3 the following

6.1. Theorem. Let the space X, satisfy the postulate (a;) and
let {U,(x,t)} be a sequnce of (X,, S)-polynomials of degree at most m.
Then there exist clements x,, x, and decompositions T=A,+B,=
=A,+B, such that

(a) Tm | T, (z,t)|<oco almost everywhere in A, for any =,
N—ro .

icm
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(b) lim | U,(2y,1)|=oc0 in By,

n—+oo

(¢) lim U,(z,t) exists almost everywhere in A, for any x,
Nn-—¥oo

() Lm U, (x,,t) does not exist in B,.
n—¥oe

The following example shows that Theorem 6.2 may be false
if we replace the hypothesis “X, satisfies the postulate (a,)’ by
“X, satisfies the postulates (a,) and (a,)”. Let X, be the space S,
([31), p- 220), let T=[0,1] and let {I,} be a sequence of non-over-

lapping intervals such that [0,1)=3'I,; {={:] being any ele-
ment of &,, put =1
ni¥ for tel,, p=1,2,...
ren=|" v
0  elsewhere.

The operations U,(S,t) are (S,, S)-linear, however neither (a) nor

(b) holds for the sequence {T,(Z,)}. In fact, suppose that such

a decomposition exists; then evidently |4|=0. There does not

exist any element { for which (b) would hold with B,=T7, since
% =

=18F,..,5,0,0,...} implies T, (L,8)=0 for tel, +T . 0+...
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