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On Labil and Stabil Points.
By

K. Borsuk and J. W. Jaworowski (Warszawa).

1. The concept of the (homotopieally) labil point is due to
H. Hopf and BE. Pannwitz?1). Its definition can be formulated
as follows:

Definition 1. A point & of a space M is homotopically labil
whenever for every neighbourhood U of o there exists a continuous
mapping f(,f) which is defined in the Cartesian product M XTI
of M and of the interval I:0<{<{1 and which satisfies the following
conditions:

(1) flrt) e M for every (x,i) e M I,

(2) fle,y=z for every se i,

(3) fry=5 for every (a,1)e{M—-U)xI,
(1) j(o,tye U for every (r,t)e U xI,

(3) fle,1)==a for every xe .

A point @ e I will De called homotopically stabil 2} if it is not
homotopically labil.

Remark. If a is a homotopically labil point of a space
M and b a point of another space N and if there exists a homeo-
morphic mapping h of a neighbourhood U, of @in If onto a neigh-
hourhood ¥, of b in N such that h(a)=b, then b is a homotopically

1) H. Hopf and E. Pannwitz, {tber stetige Deformationen von Kompleren
in sich, Math. Ann. 108 (1933), pp. 433-465. See also P. Alexandroff and
H. Hopf, Topologie I, Berlin 1935, p. 523. In the present paper we slightly modify
the terminology. Namely we shall refer to the pdints called by H. Hopf and
E. Pannwitz labil, as homotopically lubil. The term «Jabil”’ will be used here in
the other sense.

?) H. Hopf and E. Pannwitz use the term “locally stabil point™.
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labil point of N. In fact, let ¥ be a neighbourhood of b in ¥ and

ngUD an open neighbourhood of ¢ in M so small that MO)CT
(#,t) denotes the mapping satisfying the conditions -(3).

then putting e ons (U0,

P =1ia" (y),t) for every (y,t)eh(U)xI,
Flyn=y for every (y,1) ¢ (N—h(U))x1,

we obtain a mapping /' which satisfies, for the space N , forthe point b
and for the neighbourhood V, conditions analogous to (1)-(5). Thus
we see that the property of being a homotopically labil point is
a local one. o

Leb us remark that for metric spaces definition 1 is equivalent
to the following one: '

_ ‘_Definritfion 2. A point @ of a metric space M is homotopically
?a,bzl if for every &> 0 there exists a continuous ‘mapping g of M xT
into M satisfying the following conditions:

{6) g(z,0)=x for every e M, .
(7) ol#,g(z,8))<e for every (x,f)e MxI,
(8) g(z,1)*a for every we M.

It is evident that a point a ¢ I homotopically labil in the
sense of the definition 1 is also homotopically laybii in the sense
of the definition 1’. Now let us suppose that a is homotopically
labil in the sense of definition 1’. If U is a neighbourhood of @ then
for an &> 0 the inequality o(a,z)< 3¢ implies # e U. Let g(w,i) de-
note a continuous mapping satisfying the conditions (6), (7), (8).
Putting T

f(a,t)=glo,1) it olz,a)<e 0,
. .5 olr,a) .

_f(.m,t)*g[.l,,t(B——s’—-—)] it e<Co(n,a)< 2, 01,

flat)=n i oo(r,a)>2%, 0<i<l,

Wwe obfain a continuous mapping f satisfying conditions (1)-(3).

. 2f Besides the concept of homotopically labil points we intro-
uce for metric spaces another concept, namely the co
labil points by the following ’ ' neemt of

icm
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Definition 2. A point a of a metric space M is labil when-

ever for every ¢>0 there exists a continuous mapping f of M into

itself such that

9) o(e,f(x))<e for every e,

(10) floys=a for every e L.

Points which are not labil are said to be stabil points of 3.

Example. Every point of order 13) is labil.

In faet if a is a point of order 1 of a metric space M, then
for every &>0 there exists a neighbourhood U of 4 open in M and
such that the diameter of U is <e and the set T-(M—U) contains
only one point b. Putting f(z)=?> for every xe U and flr)=w for
every #e¢ M—U we obtain a continuous mapping f satisfying con-
ditions (9) and (10).

Let us remark that a point of order 1 can be homotopically

oo
stabil. For instance, putting M=3 W, where M, contains only

n=0
one point e={0,0) of the Euclidean plane and M, denotes, for
n=1,2,..., the circle given by the equation

we easily see that the point a is homotopically stabil in M though

it is of order 1. i

Evidently every point homotopically labil is neeessarily labil,

since if g(w,?) is a mapping satisfying conditions {6), (7) and (8),

then putting f(x)=g(»,1) we obtain a mapping satisfying condi-
o

tions (9) and (10). The continuum just considered M= 2. M, shows

that the inverse is not true. Moreover, there exist spa:z-_:s in which
every point is labil, but no one is homotopically labil. For instance,
the locally connected curve by Sierpirnski¢), universal for plane
curves, has such properties.

Remark. Let us observe that the property of being a labil
point is not loeal. In fact, consider in the Euclidean plane the fol-
lowing sets:

3) A point ae Al is said to be of order n if n is the smallest integer such that
for every positive number ¢ there exists an open neighbourhood of ¢ in M of
diameter <¢ whose boundary (with respect to ) contains at most n points.
Ree P. Urysohn, C. R. de I'Ac. Paris 175 (1922), p. 481.

4) W. 8ierpifiski, C. R.de 'Ac. Paris 162 (1916), p. 629. Also C. Kuratow-
ski, Topologie 11, Monogratie Matematyezne XXI, Warszawa-Wroclaw 1950, p. 202.
Fundamenta Mathematicae, T. XXXIX. 11
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M=F 4=l '

o,
_— 1 1\,
Mp=F [w=(1~—g)cosﬂ, y:(l—;l)smﬁ; }ﬁ[gz—;{,; n=1,2,...

(o)
M =2 i, N=MNM Flz>0]
i} =0 i (x.p)
We can easily verify that M and N are compact spaces, loe-

ally homeomorphic in the point (1,0). But (1,0) i il i
Ty o (1,0) (1,0) is stabil in M and

8. Let us show that for ANR (absolute neighbourhood retracts) 5
the concept of labil point is the same ag the coneept of homotopic-
ally labil point. By 2 it suffices to prove that every labil point o
of a space M being an ANR is also homotopically labil.

We can assume that M is a subset of the Hilbert-cube @,.
Le!; 7 be a retraction of a neighbourhood ¥V of M in Qo into M. The
uniform continuity of # yields for every positive ¢ a positive &' such
that y ¢V and o(x,7(y)) <e whenever B,y eQo, e M and o(x,y) <&

Lfeb & be a labil point of M. There exists a continuous’s tra;ns-.
formation f' of M into itself such that el@,f(z) <& and f(x)a
for every »e M. It follows that the segment xf'(w) lies in V. For
every ¢ e M and teI denote by @(z,%) the point dividing the seg-
ment zf’'(z) in the ratio t/(1—t) and put

(@, ty=rg(z,t) for every xzel and tel.
Thus we obtain a continuous mapping i
i g of the Cartesian pro-
duct MX'I into M. Since, for every z e I, ?(%,0)=2 and r(z)=g
the? mapping f satisfies condition (6). For every («,%) e M X1, the
point o(z,?) lies on the segment of'(z). Hence
oe(2,2),%) <o(a,f () <. .
) It .follows 1.3hat the distance between # and (@) =rep(2,t)
18 <&, . e. condition (7) is satisfied. Finally o(#,1)=f(») ¢ M for

every e M, which implies f(x 1)=rp(z,1)=f'(z)3=a. Hence -
dition (8) is also satisfied. ’ ’ o

.5) A subset -l of a space B is called a retract of B if there exists a continuous
mapping r (called a refraction) of B onto 4 such that r(z)=z for every me 4
A' corflpa.ctum A is sa:id to be an absolute neighbourhood retract whenever a topolo:
glfca,l i.u%age A*of 4 In any space X is necessarily a retract of some neighbourhood
of 4% in X, In particular every (finite) polytope is an absolute neighbourhood

Tetract. See K. Borsuk, [ber eine Klasse von lokal i .
Fund. Math. 19 (1932), p. 227. susammenhingenden Riumen,
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4. The concepts of the labil, stabil, homotopically labil and
homotopically stabil point constitute a useful tool in the study of
Cartesian products. We shall say that a topological property o of
a point @ of a space M is invariant under Cartesian multiplication
if for every two spaces 4 and B and for arbitrary points a € 4 and
beB whenever ¢ and b have the property o then the point
(@,b) e 4 X B has also the property w. A topological property » will
be said to be invariant under Cartesian division if for every two spaces
A and B whenever the point (a,b) ¢ 4 X B has the property o, then
also both of the points @ ¢ 4 and b « B have the property o.

The properties invariant under Cartesian division are impor-
tant for the study of decompositions of a space into Cartesian pro-
ducts. In particular all invariants of the retractions are evidently
invariant under Cartesian division. But the invariants of the re-
tractions are not sufficient to determine the topological structure
of all Cartesian factors of a space. Consequently, for the theory
of the decomposition into Cartesian produets it is important to
investigate also topological properties which are not invariant under
retraction, but are invariant under Cartesian division. Let us show
that the stability and also homotopieal stability both belong to
such properties.

Theorem. The stability of a point and also the homotopical
stability are invariant under Cartesian division, but are not invariant
under retraction.

Proof. First let us prove that if the point {(a,b) e AX B is
stabil (respectively homotopically stabil) in 4 x B then the point
a e A is stabil (respectively homotopically stabil) in 4. For were ¢
labil in 4, then there would exist for every >0 a continuous map-
ping f of 4 into itself such that

olz, f(x))<e and f(x)=a for every wzed.
Setting
9(z,y)=(f(z),y) for every (z,)edx B

we would obtain a continuous mapping of 4 X B into itself satis-
fying the conditions:
Q((.n.y).g(m.y})=g(x,y'(m))<a and g(‘ryy)#(w:b)

for every (z.y)e 4 x B.
But this is impossible sinece (a,b) is stabil in A X B.
11*
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Were o homotopically labil in A then there would exist for
every ¢>0 a continuous mapping ¢(a,t) of 4 XTI satisfyving con-
ditions (6), (7) and (8). Putting

f((my? )7t):(g(m7t)1y)

we would obtain a continuous mapping of Ax Bx [ into Ax B
satisfying the conditions:

(&, 9),0) = (z,y),
o((@,¥), f((z,1),1)) = o((®,), (9w, 8),1)) = oz, g(z,1)) <e,
]‘((’v,g/),l) = (g(al’,l),;l/) =+ (Cb,b)

for every (z,¥,t) e 4 xBxI. Hence the point (a,b) would be ho-
motopically labil in 4 x B.

It remains to show that both the stability and homotopical
stablhty of points are not invariant under retraction. It suffices
to observe that a simple arc L lying on the circle § is a retract of S,
and that every point of § is stabil (consequently also homotopically
stabil) in §, but the end points of Z are homotopically labil (con-
sequently also labil) in Z.

for every (2,9)e AXB and i{el,

Problem. Is the stability (respectively homotopical stability)
of points invariant under Cartesian multiplication?

5. Now we shall investigate the properties of labil and stabil
points using the concepts of combinatorial topology. It is sufficient
for our purposes to use only homological notions in the sense mo-
dulo 28),

8) By an m-dimensional g-simplex of the compactum 4 we understand
a set composed by m+ 1 points of 4 with diameter <g. A set of a finite number
of m-dimensional g-simplexes of 4 will be called m-dimensional e-chain modulo 2
of 4. The sum of two m-dimensional g-chains mod 2: %, and %, of 4 is defined
as the e-chain x;+x, composed by all e-simplexes belonging to just one of the
chains %, and #,. The boundary @4 of an m-dimensional simplex 4 is the chain
composed by all (m—1)-dimensional faces of A. In the case for which the simplex
4 is 0-dimensional we understand by 84 the number 1 considered as the rest
modulo 2. Under the boundary of an m-dimensional g-chain = mod 2 we under-
stand the (m-—1)-dimensional e-chain &» defined as the sum of boundaries of
all e-simplexes of #. An g-chain is called an g-cyele if its boundary vanishes. Two
e-cycles p,.y, are said to be e-homologous in A if there exists in 4 an e-chain x such
that 3x =y, +y,. Then we write y, ¥y, in A.

A sequence x={x;} is called an m-dimensional true chain in A (mod 2)
if there exists a sequence of positive numbers {g;} convergent to zero and such

icm
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Definition 3. Let 4, be a closed subset of a compact space 4
and let @ be a point of A—Ao. The point ¢ will be called linked
in A with the set A, in the dimension m provided there exists in 4,
an (m—1)-dimensional true eycle y={y,} homelogous to zero in A
but not homologous to zero in any compact subset of 4 —(a). The
point @ will be called linked in A with the set 4, whenever if is linked
in 4 with 4, in some dimension wm.

Theorem. Let 4, be a closed subset of a compact space A. If
a point @ e A—A, is linked in A with A,, then a is homotopically
stabil in 4.

Proof. Let y={y} be a true cycle in 4, homologous to zero
in 4 but not homologous to zero in any compact subset of 4 —(a).

that #; is an m-dimensional &;-chain mod 2 in 4 for i=1,2,... The m-dimensional
true chains in i constitute an Abelian group with the addition defined as follows

{ah = (o y = o= o4}

The zero of this group is the true chain {x;} with #;=0 for i=1,2,...
If »= {x;}} is an m-dimensional true chain in A then putting

= {5}

we obtain a true (m-—1)-dimensional chain % called the bouudary of . If 9 =0,
then x is called a frue cycle in 4. Two true cycles y={y} and y'={y} are called
homologous in 1 whenever there exists in 4 a true chain = such that Sx =y +y.

Then we write y~yp" in 4.

A true eyele y={y} in 4 is called convergent if the cycles Y+ 7 i=1,2,..
constitute a true cycle homologous to zero in .

1f j is a mapping of the compactum 4 into another compactum B then
to every m-dimensional chain = of 4 there corresponds the chain x composed
by all m-dimensional simplexes which are by J images of the simplexes consti-
tuting =. It is clear that the operation 7 is permutable with the addition of chains
and also with the operator of the houndary 3. In particular f maps every cycle

in 4 onto a cycle in B.

If the mapping f is continuous then every true cham w={x} in 4 is
carried by f onto a true chain #= ;) in B and also every true cycle in 4 (respec- _
tively every true eycle convergent in 1) y={;} onto a true (respectively conver-
gent) eyele y,={y}in B. Two true cycles y”and y”” homologous in 4 are necessarily
carried by f onto two true eycles y and y; homologous in B.

We can easily see that if y is a true eycle in a closed subset 4 of the Hil-
bert-cube Qo and y is not homologous to zero in 4 then there exists a positive
number ¢ such that for every continuous mapping f of 4 onto a set f(4)c Qe
and satisfying the condition ¢(x,f(x))<e for every xed, the true cycle y, is not
homologous to zero in f(d).
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If a were homotopically labil in A4 then there would exist a con-
tinuous mapping f(z,f) of A x I into A such that

(11) H@,00=2 for every weA,
(12) flz,1)F=a for every me A,
(13) o(@,f(#,1)) <o(a,Ay) for every (w,i)e AXI.

It follows by (13) that f(4,x I) is a compact subset of 4 —(a).
By (11) the mapping f(x,1) is then homotopic to the identical trans-
formation. Hence f(#,1) maps the true cycle y onto a true cycle y'
homologous to y in the set f(.4,Xx I)CA—(a). But the true cycle p*
is homologous to zero in the compact set f(4,1) contained, by (12),
in 4—(a). Hence the true cycle y would be homologous to zero
in the compact set

H(Agx I) +f(4,1)CA—(a),

contrary to the assumption that y is not homologous to zero in any
compact subset of A—(a).

Remark. The statement of the last theorem that ¢ is homo-
topically stabil cannot be replaced by the stronger statement that

a is stabil. In fact, consider in the Euclidean plane the set 2 — 2 M,

where 17, denotes the segment with the end points (0, 0) ana (()1,0)
and M, denotes, for n=1,2,..., the segment with the end points
(0,0) and (1,1/n). Then all interior points of the segment M, are
labil, but every one of them is linked (in the dimension 1) with
the set composed of the two end-points of 1I7,.

A more remarkable example is given by the known indecom-
posable continuum K built up of all half-circles lying in the half-
plane y>0 and having the point (1/2,0) as center with the end-
points belonging to Cantor’s set, and of all half-circles lying in
the half-plane y<C0 and having as centers the points of the form
(5/2-87,0), n=0,1,..., and as end-points (z,0) belonging to Cantor’s
set and satisfying the inequality 2/8"<2<{1/3"™'7). It is easy to
observe that every point a of XK is labil though 4 is linked in K
(in the dimension 1) with every set composed by two points
@y,6, € K—(a) belonging to different composants of K 8).

7) See C Kuratowski, Théorie des continus irréductibles entre deux points I,
Fund. Math. 3 (1921), p. 209.

*) By a composant of an indecomposable continuum ¢ is meant every
maximal proper subset O, of ¢ such that every two points of C, are contained
in a subcontinunm of C,. See Z. Janiszewski and C. Kuratowski, Sur les
continus indécomposables, Fund. Math. 1 (1920), p- 218.
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6. Theorem. Let A be a subcompactum of an n-dimensional
space M and let @ be a point of A linked in A in the dimens.ion n with
a compactum A,CA—(a). Then & is homotopically stabil in M.

Proof. Suppose on the contrary that the point & is homo-
topically labil in M. The set U=M—4, constitutes a neighbourhood
of a. Hence there exists a continuous mapping f(#,t) of M xIin M
satisfying conditions (1)-(3). By hypothesis there exists in A, a true
(n—1)-dimensional cycle y="{y,} homologous to zero in A4, but not
homologous to zero in any eompact subset of A—(a). Hence there
exists in A4 a true n-dimensional schain x={x;} such that dx=y.
The function @(z)=f(»,1) maps the true chain » onto a true chain
/q,—{/ig,‘ lying in the compactum @(4)CHM—(a). By (3) we have
dzp=yg=1y. It follows that the n-dimensional chains

(1=1,2,...)

Yi=2T g
are cycles. Moreover we infer, by the homotopy of the mapping
¢(m)=-: f(#,1) with the identical mapping f(,0), that the nm-dimen-
sional true eycle y*={y?} is homologous to zero in M.

We assert that the true cycle y* is not homologous to zero
in the set A4-¢(4). In fact, let us choose a positive number

a-<to(a,p(4)-
We can admit that the diameter of every simplex belonging
10 %;. 74, #p OF to yF is <a. Putting

(4} =p§l[9(p,a)<aj; U, =p‘];;{2(p,a)<2a]7

let us denote by x; the chain composed by all simplexes of »; con-
taining at least one vertex belonging to U,. Putting

" f

(14) wp =y 2
we have
VF =+ i
It follows that dx;-F 2wy + dxye=10, 1. €
i =80 + ).
Hence 34 is a eyele lying in Uy, — U, and homologous to zero
in 4.0, as well in g(4) (4 —T;). Moreover, we infer by (14) that
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Hence the true cycle {9x;} is homologous in A—T; to the
true cycle {y}. It follows that the true cycle {9x7} is not homo-
logous to zero in any compact subset of A —(a). In particular {93}
is not homeologous to zero in the set

A’(ﬁz_ U)=4- Uz[‘P(A)+ (4—-Tp1

We infer by the known Phragmen-Brouwers theorem 9
that the n-dimensional true cyecle

Oy = {2}

is not homologous to zero in the set A+ T,+p(A)4 (4 —T,) =A+p(4).
But {y7} is homologous to zero in M. It follows 1) that dim M >n
and this contradicts our hypothesis.

Corollary 1. If M is an n-dimensional space and Q@ an n-di-
mensional cube CAM, then every point a of the interior of @ is homo-
topically stabil in M.

In particular if M is a locally-connected curve then for every
point a e M of order >1 there exists in M a simple arc I contain-
ing L in its interior ). Hence we can formnlate the following .

Corollary 2. If I is a locally-connected curve, then every point
we M of order >1 is homotopically stabil in I.

It has already been observed (example of 2) that every point
of order 1 is labil in M, but not necessarily homotopically labil,
even if M is a locally-connected curve. But the following corol-
lary holds:

Corollary 3. In a local contractible curve the labil points are
the same as the points of order 1.

Since every local contractible curve is an ANR, we infer by 3
and by corollary 2 that every point a of a local contractible curve I
of order >1 is stabil in M. On the other hand, as has already been
shown, every point of order 1 is labil in I,

*) See P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geomeirie
der abgeschlossenen engen, Math. Ann. 108 (1932), p. 178. Also K. Borsuk,
Uber sphiroidale und H-sphdéroidale Riume, Recueil Math. Moscon 1 (43), (1936),
p. 643.

1) See P. Alexandroff, I c., p. 194.195.

) For instance see C. Kuratowski, Topologie 11, Warszawa-Wroctaw-
1850, p. 242,
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7. The problem of the invariance of the stability and of the
homotopical stability (posed in 4) under Cartesian multiplication
remains unsolved in the general case. But in some cases the homo-
topical stability of a point of a Cartesian product can be proved
by the homological means based upon the folowing

Theorem, Let A, be a closed subset of a compactum A and
let By be a closed subset of @ compacium B. If a point a ei—Ao
is linked in A with 4, in the ‘dimension & and a point be B—B,
is linked in B with B, in the dimension 1, then the point
(a,0) e A x B—(4, X B+4 X By) 18 linked in 4 X B with 4,xB+4 X B,
tn the dimension k1.

First we prove the two following lemmas:

Lemma 1. In the m-dimensional Cartesian space Ry are given:
@ k-dimensional chain » and a cycle o’ of dimension m—% such that
the geometrical realization |a'| of a' is disjoint to the geomeirical reali-
zation |a| of the eycle a=3x. In the n-dimensional Cartesian space R
are given: an l-dimensional chain A and a cycle ' of dimension n—17
such that the geometrical reslization |3'| of p' is disjoint to the geo-
metrical realization || of the cycle f=31. Then the (k-+-1—1)-dimen-
sional cycle

y=uXA)=xxXf+axl12),

and the [(m~+n)—(k+1)}-dimensional cycle
o=a' X p’

lying in the (m-+n)-dimensional Cariesian space Rn., have disjoint
realizations |y| and |6|, and their linking coefficient 13) is given by
the formula :

By, 0)=1(a,a’) ’D(ﬁwﬂl)'

12) %4 A denotes the Cartesian product of the chains x and 4. 3ee P. Ale-
xandroff and H. Hopf, Topologie I, Berlin 1933, p. 302, and 3. Lefschetz,
-Algebraic Topology, New York 1942, p. 138. Also K. Borsuk, On the Decompo-
sition of Manifolds into Products of Curves and Surjaces, Fund. Math. 33 (1945),
p- 280.

#) Concerning the concepts of the linking coefficient » and of the inter-
section index X see for instance L. Pontrjagin, The General Topological Theorem
of Dualily jor Closed Sels, Annals of Math. 35 (1934), p. 907. In our case only
vhainsg modulo 2 are uzed. Hence the values of X and p are rests modulo 2.
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Proof. Evidently, the geometrical realization of the Cartesian
product of two chains (modulo 2) is equal to the Cartesian product
of their geometrical realizations. It follows that

¥]-16]= (lz] x 18] - (lo'] < 18D 4 (] x [A]) - (o] < [B) =
= (Il -le’) < (1B1-18'D) + (el Jaf) ¢ ([2] x §8]) = 0.

By computing the linking coefficient of the cycles y and 8
we can replace » and A by chains obtained from them by a suffi-
ciently small displacement of their vertices not belonging to ||
respectively to |g]. This enables us to assume that » and o’ are in
general position in R,4) and also that A and A’ are in a general
position in R,. Then xx 2 and a«'Xp’ are in a general position
in Rmpyn. Let

%‘—-Z_'Ci%i; 2 =Z iRy, o =Y oud, B'=20.p.
Then l ’ " ’
{y, 6)=9(d(x X 4),a’ X ') =1)(3(§ ¢ dy 7 X ;-i)v[%: g by i X ) =
= 3 @Qubperdy X(aX A, 0pXfo)=3 @uby-crds X(s0,ap) - X(2,8,)=

P A NTRY P4 ATRY
=03 v e X1, @)1 13 g bo Xy, )] =
e Ll

=1)(927 a’) '9(32: 8 =y(a,a’)-9(8,7)-

Lemma 2., Let By be a closed subset of a compactum E lying
in the m-dimensional Cariesian space Rp and let =={sw;} be a true
L-dimensional chain of E such that a={u;}=20x is a convergent
{k—1)-dimensional cycle of By not homologous to zero in E,. Moreover
let Fo be a closed subset of a compactum F lying in the n-dimensional
Cartesian space R, and let A=={3;} be a true l-dimensional chain
of F such that B={fi}=92 is a convergent (1—1)-dimensional cycle
of Fy not homologous to zero in E,. Then the (k41—1)-dimensional
true cycle

y=3(zX A)=xXf4+axi
lying in the set
H=E,xF+EXF,

s not homologous to zero in H.
) 1. e. if |@ya,...ax| i & simplex of = and |byd,...bp| is & simplex of ¢, then

either |aya;...ax] and [boh,...bp| are disjoint or every system composed of m +1
of points aya,...axbeb,...bp is linearly independent.
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Proof. By the known theorem of Pontrjagin %) there exists
in Rp—E, an (m—Fk)-dimensional eyecle o’ such that
yle,a’)=1.
Similarly there exists in Rn—F, an (n—I)-dimensional cycle §”
such that
n(p;p')=1.
It follows that there exists an 4, sueh that for every ¢>i,
it is
yla, @) =y(f1, p')=1.
Applying lemma 1 we infer that for every 4> i, it is
WO M)y @ X ) ={os ') y(be. f)=1.
But the [(m~-n)—(k+1)]-dimensional eycle o’ x §* lies in the set
B X By—Ey X F—E X Fy=Ruy X R,—H.

Hence the true cycle y==23(x X 4) is not homologous to zero in H.
Proof of the theorem. We may assume that 4 and B are
subsets of the Hilbert-cube Q,. Then

AXBCQuX Q.

Let a={a;} be a (k—1)-dimensional true cycle in 44 homolo-
gous to zero in A but not homologous to zero in any set of the
form 4 —U, where U is a neighbourhood of a in 4. Similarly let
B={g} be an (I—1)-dimensional true cycle in B, homologous to
zero in B but not homologous to zero in any set of the form BV,
where'V is a neighbourhood of b in B. Let #={x;} be a true chain
in 4 such that dz=u« and let i={%} be a true chain in B such
that di=p3. To prove our theorem we have only to show that the
true cycle (X 2) is not homologous to zero in any set of the form
A xB—W, where W is a neighbourhood of (a,b) in A xB.

Otherwise there exists a neighbourhood U of ¢ in 4 and a neigh-
bourhood V of b in B such that 9(xx %) is homologous to zero in
AXB—UXV. Since « is not homologous to zero in A—U there
exist an z>0 and a subsequence {a;} of {e;} such that a;, is not
e-homologous to zero in 4 for every »==1,2,... Hence we can assume
that already the sequence {;} satisfies the condition

(13) a;=3%; i3 not e-homologous to zero in A—T.

Bj L. Pontrjagin, L c., p. 912.
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Similarly we can assume that there exists an # >0 such that
(16) fi=24; is not #-homologous to zero in B—V.

By a theorem of Alexandroff!®) a convergent cycle may
be chosen from every true cycle modulo 2 of a compactum. It
follows that if we replace the true chains {x;} and {4} by suitably
chosen subsequences we can assume that the true cycles dx=aq,
M=f and =X A)=xX fi+ax A are convergent. Moreover, by (15)
the true cycle e is not homologous to zero in A—U, and by (16)
the true eycle f is not homologous to zero in B-—V.

Let v be a natural number. Putting

Fo() = 7o (B, Tay ey Toy Tugy o) = (By, Wy o0y @, 0, .)

for every point &= (i#;,&y,...,%,%t1,...) eQo We obtain a contin-
uous mapping ry of Q. onto the y-dimensional Buclidean cube
@y =1.,(Qu). Evidently, for every g >0, there exists an index »,,
such that

A7 e(re(@),m)<e, for every xeQ, and every r>v,.

But the convergent cycles « and g are not homologous to zero
in A—U, and B—V, respectively. By (17) there exists a natural »
such that r=r, maps e onto a convergent cycle a,={a;} not homolo-
gous to zero in r(4—U) and # onto a convergent cycle fr={fa}
not homologous to zero in »(B—7V). Moreover r maps the true chain
x={w;} onto a true chain »,={x;} lying in 7(4) and the true chain
Z={J;} onto a true chain 2,={1,} lying in #(B).

Furthermore we have

oa,=208, and pB,=2A,
and consequently
xr X Ay =ar X Art#r X Br.

By lemma 2 the convergent cycle d(x,x /;) is not homologous
to zero in the set

HA—T) X 1(B) +7(4) X 1(B—V).
Putting

s(,y)=(r(w),r(y)) for every (2,y)€QuxQu

%) P. Alexandroff, Dimensionstheorie. Ein Beitrag =ur Geometrie der
abgeschlossenen Mengen, Math. Ann. 106 (1932), p. 180.
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we obtain a continuous transformation s mapping the convergent
cycle dxx 7) onto the convergent cycle

[8(2 X 4)]s==2(s¢r X 41) = ar X A+ 5, % Pr
not homologous to zero in the set
$(A X B—U XV)=r(A—U)x r{B)+rd)x r(B—T).

But this contradicts the hypothesis that the convergent cycle
9(x % 1) is homologous to zero in the set A x B—U x V. This completes
the proof of the theorem.

8. A compact set 450 will be called n-eyclic if there exists
in 4 a true n-dimensional eycle y not homologous in 4 to any true
cycle Iying in a closed proper subset of A.

Ewxample, The n-dimensional sphere &, is n-cyclie. More
generally, every compact subset of the Euclidean (n-1)-dimensional
space Epy, which is an irreducible cutting of E.4; is n-cyclie.

Lemma. Let y be « true n-dimensional cycle lying in a compact
subsets A of an n-dimensional space M and not homologous to zero
in 4 and let f(x,1) be a continuous mapping of AXI into I such
that flx,0)=2x for every xe A. Then A-f(4,1)==0.

Proof. Let f(x,1) map the true cyele y={y} on the true
cycle y*={371. Evidently y is homologous to »* in M. Hence the
true n-dimensional cycle y4-4* is homologous to zero in M.

Suppose that 4 -f(4,1)= 0. We assert that y+ »* is not homolo=
gous to zero in A--f(4,1). For otherwise there would exist in
A+7(4,1) a true chain z={#;} such that dx=y-y»*. Cancelling
a finite number of elements in the sequence {»;} we can assume that
all vertices of every simplex of x; belong to only one of the sets 4
and f(d4.3). Thus x; is decomposed into the sum of two disjoint
chains: #; lying in A and »/ lying in j(4,1). But dx=y,+ 5,
where p, lies in 4 and »7 — in f(4,1). Hence p,=3z; for almost
all 7, i. e. y~0 in A, contrary to the hypothesis.

Thus the supposition that A-f(4,1)=0 implies that the
s-dimensional true cycle y-+9* is mot homologous to zero in
A4 f(4), but homologous to zero in M. But this is impossible 1),
since dim M=n.
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Theorem. If 4 is an n-cyclic subset of en n-dimensional
space M and f(»,1) is a continuous mapping of AXI into M such
that f(w,0)=ux, for every we A, then ACHA4,1).

Proof. Let y={y} be a true n-dimensional cycle in 4 not

homologous in A4 to any true cycle lying in a closed proper subset
of 4. Suppose that there exists a point aeAd—f(4,1). Then there
exists a positive number ¢ such that p(a,f(4,1))>2¢e Let us put

Ua:pE[peA; o(p,@) <él,
Usa=F[p e 4; o(p,a) < 2e].
P

We can assume that all simplexes of y, have diameter <.
Let w; denote the chain composed by all simplexes of ¥, containing
at least one vertex belonging to U, and let 2=y, ;. Then s={x}
is a true chain lying in Uy, and A={4;} is a true chain lying in A—T,.
Let us show that the true cycle dx=2a1 lying in Ts—U. is not
homologous to zero in Us—U.. For, otherwise, there would exist
in Up—U, a true chain {u} such that 9{u,}=23{x}. The function
f(=,1) maps the true n-dimensional cycle {x#;+ 4} lying in U,, onto
a true cycle lying in the set f(4,1) disjoint to U,.. We infer by
Lemma 1 that {#/+ u;}~0 in TpCA. Hence

Wy ~lyitmtpy={4m} i A

But {;+y,} lies in the compactum 4 —U,. This contradicts
the hypothesis that y is not homologous in 4 to any true eyele
lying in a closed proper subset of A.

Thus it is shown that the true eycle 9x—=221 is not homologous
to zero.in U,—U.. Let y* denote the true cycle being the image
under f(v,1) ff the true cycle y. Then dx=3(1-+4*) is homologous
to zero in Uy and also homologous to zero in A--f(4,1)—U,.
It follows, by the known Phragmen-Brouwer theorem?), that
tlJe true ecycle %42+ y*=yp-+9* is not homologous to zero in
Upe- (A —Uo)+ {4, 1)=A+f(4,1).

But this is impossible, because y-+»* is homologous to zero
in M and dim M=n.

Corollary 1. Let o be o point of an n-dimensional space M such
that for every £>0 there ewists in M an n-cyclic subset A,CM such
that o(a,d.)<e. Then for every continuous mapping fle,t) of M I
into M such that f(x,0)=1, jor every x e A, the point a belongs to the
closure f(M,1) of the set f(3M,1).
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Proof., For suppose that eej(M,1j. Then the number
e=og{a,f(M,1)) is positive and the set A4, satisfies the condition

Ae—f(4:,1)D4,—f(,1)==0,
which contradiets the theorem.

Corollary 2. Suppose that the n-dimensional space M is locally
compact in the point a e M and that it satisfies the hypothesis of the
corollary 1. Then the point a is homotopically stabil in Al

Proof. Let U be a neighbourhood of a in M such that T is
compact. If @ is homotopically labil, then there exists a mapping
F(=,t) satisfying the conditions (1)-(5). Then f(1,1)= f{ U,1)+(M—T)
and consequently @ ef(U,1)=fU,1)Cf{(I,1), contrary to condi-
tion (3).

Corollary 3. In an n-dimensional space 1 every poini be-
longing to an n-cyclic subset of 3 is homotopically stabil in M.

Corollary 4. Let a be a homotopically stabil point of « locally-
connected curve A and let b be an inner point of an n-dimensional
cube Q. Then the point (a,b) is homotopically stabil in 4 X Q.

If there exists a dendrite which is a neighbourhood of ¢ in 4
then by the remark of 1, by 3 and Corollary 3 of 6 a is of order >1.
Hence there exists a simple arc ZCA containing ¢ in its interior.
Then (a,b) lies in the interior of the (n-+1)-dimensional cube L X Q.
By Corollary 1 of 6 the point (a,b) is homotopically stabil in the
(n-+1)-dimensional space 4 X Q.

1f, however, there exists no dendrite which is a neighbourhood
of a in 4, then for every £>0 there exists a simple closed curve
4,04 such that s(a,d.)<e Since — Dby a remark in 1 — homo-
topieal stability constitutes a local property, we may replace @ by
an n-dimensional sphere S and prove that the point (e,b) is homo-
topically stabil in 4 x 8. But 4,% § is an (n--1)-dimensional mani-
fold, hence also an (n+41)-eychic subset of the (n41)-dimensional
space 4 x 8. Since p((a,b),4.% 8)<s, we infer by Corollary 3 that
the point (a,b) is homotopically stabil in 4 x S, hence also homo-
topieally stabil in 4 x Q.
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