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On Continuous Mappings on Cartesian Products.
By

S. Mazur (Warszawa).

In every Hausdorff space we can distinguish two different
topologies: the original neighbourhood topology and the sequential
topology. The sequential topology is determined by the conecept
of a convergent sequence defined in the neighbourhood topology ?).
These two topologies are not, in general, equivalent (under sequen-
tial topology the space is only a Fréchet .L*-space). The equivalence -
holds if the space satisfies the first axiom of countability 2).

Let 4 and B be two Hausdorff spaces. By a continuous
mapping of 4 into B we shall always understand a mapping @ con-
tinuous in the neighbourhood topology, that is: for every neigh-
hourhood V of @&(a) there is a neighbourhood U of aed with
@(TU)CV. We shall say that a mapping @ of 4 into B is sequentially
continuous if it is continuous in the sequential topology of 4 and B,
i. e. if a=1lim a, in 4 implies @(e)=lm P(a,) in B.

The two above notions of continuity, corresponding to the
classical definitions of Cauchy and Heine respectively, are not,
in general, equivalent. Continuity always implies sequential con-
tinuity; the converse is true only under certain additional hypo-
theses, e. g. if A4 satisfies the first axiom of countability, in pax-
ticular it 4 satisfies the second axiom of countability ?) or if 4 is
metrizable.

In this paper it will be shown that the equivalence of neigh-
bourhood and sequential continuity holds also if the space B has
the property

1) We write a=lim an if every neighbourhood of a contains all elements «an
except a finite number.

2) That is, for each point @ there is a sequence of its neighbourhoods {T'n}
such that if U is any neighbourhood of a, then UncU for an integer n.

3y That is, the space possesses an enumerable open basis.
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(D) the diagonal D of BxPB iy a Gyset in the sequential

t ) D=3 \
opology (i.e. BXB D~"=21 Fy, where the sets F, are Sequentially
closed);

and if A=l£:1, is the Cartesian product of spaces 4, satisfying

the second axiom of= countability, under a very general hypothesi
about the_ cardinal 7. An analogous statement will also be provei
??or mappings defined on some subspaces of 4. For imtancef
1f. A; are separable metric spaces and T is less than the first iﬁacees’
sible aleph4), then every sequentially continuous mapping 0%

A:tg'A, into any metric space B is continuous.

The above equivalence follows from the fact that, under the
hypotheses, a sequentially continuous mapping @ on t’he Cartesi -
produeb 4 depends only on an enumerable set of coordinates thmi
i P=0@yz, where @, is a continuous mapping on 4, = PA,witaJh
Tog%,l and = is'the projection of 4 onto A, i

) e proof of this result is based on a theor ich. i
ralization of Ulam’s %) theorem on measur;lseci);ezlb::];;zlg :i‘ra; o

L A generalization of Ulam’s results.

. sT;e class of all subsets of an abstract set & will be denoted
y S(&). The class S(¥) may be considered as a Hausdorff (bi-
compact) space 8) where the sets

E(meXC&‘) and I]{i‘(mnoneXCéi') (re)

form the open sublzfnsis 7). Note that X=1lim X, in this topology
if and only if X= rwim=l] 3 X i e. i
v né:mgxl"+m_nl=]1 ”12=1‘X,,+,,,, i-e. it {X1} converges

%) An aleph &, is said to be inaccessi i
) , ssible provided that A is imi
ordinal, and that < r S I
: 2L Me <Ny Whenever SN, and me<<R,. See A. Tarski, Uper
unerrez‘chl:aren Kardinalzahlen, Fund. Math. 30 (1938), pp. 68-89
- ) 8. Ulam, Zur Masstheorie in der allgemeinen Mengenlehr .F 1 j
(1980), op. 140-150. e, Fund. Math. 16
) The geueralized discontinuous s
end of this paper.
?) An open subbasis of a to
that each open set is a union of

pace of Cantor. See the remarks at the

p?l?gicgl space is a class K of open sets such
finite intersections of sets in K.
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to X in the sense defined in the General Theory of Sets. In this
section we shall consider only the sequential topology of S(&).

Tet X be a class of sets and let &, be the sum of all XeX.
T X is closed in the sequential topology of S(&,) (i.e.if XneX
implies lim X,eX whenever this limit exists), the class X will
be called an F-class. Analogously X will be called a Gs-class if it

is a @5-set in the sequential topology of 8(&,), . e. if S(%,)—X=) X,
n=1

where X, are {-classes. Note that if X is an §-class or a ®s-class,
it is also a sequentially closed set or a sequential Gs-set in every
space S(¥) where ¥,C&.

"If XCS(¥) and if ¢ is a mapping of & into another set Y,
then X, will denote the class of all YCZ/ such that g Y(T¥)e X,
For every set & the symbol X|Z will denote the class of all sets
X X contained in Z. It is easy to verify that if X is an §-class
(®s-class), then X, and X|% are also §-classes (®s-classes).

Let P be a property of classes of sets which satisfies the fol-
lowing conditions:

(a) Every class X with the property P is simultaneously an
F-class and a G;-class.

(b) If X has the property P, then X, and X|Z also have
this property.

A class with the property P$ will be called, for brevity,
a P-class. A set & is said to be P-reducible if every P-class XCS(&)
containing all finite subsets of & also contains the set &.

(i) If & is P-reducible and %,CE, then ¥, is also P-reducible.

Tet XCS(&,) be a P-class containing all finite subsets of &,,
and let g(z)=n for zeF, Then X, is the class of all XC& such
that X%,<X. The class X, contains all finite subsets of & and
is a P-class by (b). Hence KXy, i. e FieX.

(i) If & is P-reducible, and if X is a P-class, containing all
finite subsets of &, then X=8(&).

Let ¥,C%. Since &, is P-reducible by (i), we infer from (b)
that &, < X|%,, that is F,eX, Q. B.D.

(iii) Let X be a P-class of subseis of the set ¥ = Z,S'Xs. If the
set § is P-reducible and if every set X contained in a finite sum
Xgl+...+X,u belongs to X, then e X, . .
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Let {Y,}ses be a class of disjoint sets such that Y,CX, and
¥ = Z; Ts. We have Yy 4.4 7T, <X for every finite sequence

S€
sie8. Put p(z)=s for we¥,. The P-class X,CS(S) containg all
finite subsets of §. Consequently § ¢ X, that is ¥ e X.

(iv) If Y is B-reducible and 527:?, then & is also P-reducible.

Let ¢ be a one-one transformation of & onto %Y and let
XCS8(&) be a P-class containing all finite subsets of %. Then
X,C8(Y) is a P-class (see (b)) containing all finite subsets of Y.
Consequently 2/ e X, hencc & e X.

On account of (iv) it is convenient to introduce the following
definition: a cardinal m is P-reducible, if a sct F with F=m is
PB-reducible.

(v) 8y s P-reducible.

This follows from (a) and the fact that every enumerable
set is the limit of a sequence of finite sets.

' Theorem‘I 8). If & cardinal m isziB—weducine and 11<m, then n
s alco P-reducible. If m=2;m8, if 8 is P-reducidle and if every
. . R SE€E
cardinal 1w is P-reducidle, then m is also P-reducible. If s, is
P-reducible, then Supq is also P-reducible.
Consequently every cardinal m less tham the first inaccessible
aleph %) is P-reducible.
The first remark follows fromw_(i) and (iv). The second —

from (iii) and (iv), since X,F ... X, = max (Xyye..,Xp) for in-
finite sets.

Suppose 8, is P-reducible. Lot F— Seq1 and let {Hag} (where
«<op, f<wu) be Ulam’ss) decomposition of &, i.e.

(e) Ecz,pEu,,g/::O for g==p"and ¥F— <Z' Ea,ﬁgs‘u for each B< wpt -
aw
fad

Let {Dag} (<o, f<wur1) be a family of empty or one-
element sets such that for every f<wuyy

E= Y FEus+ Y Dug and (3 Beg)( X Dog)=0.
mf‘ a«:w‘“ a{m” ’

asoy, a

®) The proof of Theorem I and the preceding lemm
?f Ulam’s proof of analogous theorems on measure. See Ulam’s paper cited
in fo?tnote 5) and 8. Banach et (. Kuratowski, Sur une généralisation du
pral{lgme de la mesure, Fund. Math. 14 (1929), pp. 127-181; 8. Banach, ber
edditive Massjunktionen in abstralien, Mengen, Fund. Math. 1’5 (].930), pp. 9,7-101»

as is a modification
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Let XCS(&) be any ‘B-class containing all finite subsets
of &F. The two following cases should be considered: either there
is an ordinal f< w4y such that every subset of any finite sum

Et¢1,5+ et Ean,ﬁ+D;41,ﬁ+ —i—D;vm‘g

belongs to X or such an ordinal does not exist.

In order to prove that 8,41 is P-reducible it is sufficient to
show that the second case is impossible. In fact, in the first case
we have & <X on account of (iii).

Suppose the second case holds, i. e. for every f< w1 there
is a set Apnon e X such that d3=E;4Dg where

EeCEq@at - +Beyme and DsCDypst . +Dpyme-

Since a;(B), 77(B)<wu, there exist a non-enumerable set I’
of ordinals < wuy1, two finite sequences ay,..,ap; fy,...,f; of
ordinals <w,, and an integer n, such that for every gel

Ag=Eg+Dp, BsCBuypt-+Eaps, DpCDyst ... t-Dys

and dgeX, where {X,} i3 a sequence cf F-classes such that
S(F)—X= ) X, (see (a)). Since Ds<(q, there is a sequence ?)
n=1

Pnel" (Bi By for i==§) such that {Dg,} converges to a finite set De X.
The condition (e) implies lim Eg,=0. Consequently lim 4 =D« X.
On the other hand, lim dg ¢X,, since X, is an §-class. This con-
tradiets XX, =0.

Examples of properties satisfying conditions (a) and (b).

1. A class X is said fo have the property I if there is
a o-measure » on S{ Y X) such that X=F (»(X)=0).
X

Conditions (a) Xzigd (b) are clearly satisfied. In this case,
Theorem I gives the well known result of Ulam 3).

More generally:

2. Let C be a Hausdorff space and let a set HC( be simultan-
eously closed and a G4 in the sequential topology of (. A class X
is said to have the property [C,H] if there is a sequentially
continuous mapping ¥ of the space S(ZX) into ¢ sueh that
X = [ (W(X)eH). xeX

X

#) In fact, let {g5} be any sequence of different ordinals in 47, and let P be
the sum of all sets Dgi. Subsets of P may be interpreted as points of the Cantor
discontinuous zet. Consequently {Dg3} contains a convergent subsequence {Dga}.
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X is then an F-class since H iz closed. Let C—H=} H,

where H, is sequentially closed, and let X, be the class of all ;e=tls X
with Y(X) e H,. Clearly X, is an §-class and X;+X,+ ... is the
complement of X. Consequently X is a ®s-class.

Let & be any set, and let ¥, be the mapping ¥ re%trieted to
subsets of the sum of a,ll sets XeXJ.‘Z Then X|%= E X)eH),
that is, X|% also has property [C,H].

If XCS(&') and if ¢ is a mappmg of & into ¥, let ¥'(¥)=
=Ye~(X)) for YC¥Y. Then X, E (Y) e H), that is, X, also
has property [C,H].

As we have proved, property [C,H] satisfies conditions (a)
and (b). A set & is [C,H]-reducible if every sequentially continuous
mapping of S(&) inte O transforming all finite sets in points of H,
transforms all sets XC& in points of H. By Theorem I, & is’
[C,H]-reducible whenever & is less than the first inaccessible aleph.

3. Let R be the set of all real numbers. The property [R,(0)]
(where 0= the number zero) will be denoted for brevity by R. Thus
a set & is R-reducible, if every real sequentially continuous
function on §(&) vanishing for all finite sets vanishes identically.
If & is less than the first inaccessible aleph, then & is R-reducible.
) ‘If ¢ ‘is metrizable, and H=HCC, then the property [(,H]
implies the property ®. In fact, if X = (F¥(X)e If), then

X

szE’(T(X):O) where W,(X) is the distance between ¥(X)e(

and H. Consequently, if & is R-reducible, & is also [C, H]-reducible
for every metrizable space C and every set H=HCC.

II. Theorems on continuity.

) In this section the letter B always denotes a Hausdorff space
with th.e properby (D). The diagonal of BxB is denoted by D.
{A-,},,T i3 a fixed family of Hausdorff spaces satisfying the second
:swxmAm of countability. For every teT, «: denotes a fixed point
m A;

The Cartesian producttl’ A; will be denoted by A. Elements
of A are functions f on 7, such that f(t)e4;. The class of sets
g(j(to)er) where i,e¢T and U, is open in A4y, is an open sub-

basis ?) of 4. Obviously

lim fp={ in A if and only if Hm fa(t)=j(t) in 4, for every tel.

icm

Continuous Mappings 235

Tet SCT and feA. The symbol fs will denote an element
in A defined by the equalities:

fe(t)=f() for teS and ‘fs(t)zar, for tel—S.

The symbol f|§ will denote the mapping f restricted to
arguments teS. Clearly 7S eP As.

The transformation ns of A onto ns(A)_ P As defined by

the equality
asif)=118

is called the projection of A onto ms(A4). If 4,CA, then ws{do)
the set of all f|§ where feA, The projection =g is obwously
continuous.

A set 4,CA is said to be invariant under projection provided
the conditions fe A, SCT imply fsed,.

A®™ will denote the set of all fed such that E (f(t )= ay) <.

We shall use the word ,enumerable” in the <ense of ,finite
or countable”.

(vi) Let {Ts}ses, where S >8y, be a family of enumerable sub-
sets of T such that E(tel'3)<xo for every teT. Then there is a

33
non-enumerable subset 8,C8 such that Ts-Tw=0 for s¥=s', 5,88y

Let U, be the set of all s’e § such that thereis a finite sequence
§=8, Syy--eySn=28" With T, -Te+0 (1<i<n). Every set U,CS
is enumerable and for s==s’ either Us-Ug=0 or Us=Uy. The
set §, containing exactly one element from every get U, is the
required.

(vii) Let {Telses be a family of subsets of T sucl that T,<k (k<®,)
and 8 >%,. Then there are a finite set Z and & non- -enumerable set
8,C8 such that Ts-Te=1Z for s,5'e Sy, s

Let I be the greatest integer such that there are an l-element

set Z and a non-enumerable set §’CS with ZCZT, for seS’'. For
every teT, the formula e Ts—Z holds only for an enumerable set
of elements s e §’. Since the family {Ts— Z}ses satisfies the assump-
tions of (vi), there is a non-enumerable set S,CS’ such that
(Ts—Z)(Ts—2Z)=0 for s s'eSo (s==s’), i.e. Ts-Ty=Z, Q. E.D.

(viii) Let {fg}ﬂs, where 8>8,, be a family of elements in A®,
Then there is a sequence speS (W=1,2,...,8n7 8w for na=n")
(fs)z where ZCT and sy e S.

E<R,.
such that im f, = f° ewists. Moreover, o=
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Let To=F (fs(t)% ).

hypothesis of (vu), there -exist a non-enumerable set S;C8 and
a finite set ZCT such that

(d) Ty Ty=Z for

Since the family {7,};cs satisfies the

s',se8y, s’

The space ::Z(A):I;A, fulfills the second axiom of count-
te

ability. Thus there is a sequence 8g,8,8,,... € 8, such that

lim fsan—; fsolZ in mz(A4),
that is
lim fo () =fo,(t) for teZ.

The condition (d) implies lim f, (t)=a; for te T'—Z. Hence
the sequence {s,} and the element f'=(f,)z satisfy the thesis
of (viil).

Theorem IT. Let o set A,CAR be invariant under projedion,
and let @ be o sequentially continuous mapping of AO into B. Then
there is an enumerable set PCT such that D(f)=>D(fp) for fed,,
i. e. flP=F|P implies O(f)=D(f').

Consequently @(f)=0,7p(f) where Dy is a continuous mapping
of wp(Ay) into B. Therefore @ is continuous.

Let dz=4,-4® (0<k<s,) and let S be the clags of all se T
such that there is an fee Az With (1) ®(f), (i. e. (D(f,), (L))
non e D), where, for brevity, f¥=/(f)sr.

We shall prove tha.t Sk is enumerable. Suppose the contrary.
Then, since BX B—D= Z' Fn, where F, is sequentially closed, there

would exist an integer n; and a non-enumerable set 8CSy such that
(e) (@(js)7®(f:)) EFIIO for sed.

By (viii) there is a sequence sg,s;,$,,..
for nea’ and Hm f, == (fs)z.
under projection, we infer f0e.d,.
would also bave lim f§ =7°. Hence

Lim (D(fs,), DIfE,)) = (D(°), D(f))  D.
On the other hand, the condition (e) implies that

0 (D(fs,), B(f3,)) € o,

.eS such that s,==$,
The class 4, being invariant
Since $p=ksy for nan', we

which is impossible.
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Thus the set P = > S, is enumerable. then
k=1

@(f)=P(jp) since

If fedp

where (t,...,1:) = F ({({t)==a.).

fr={ ((fr—pr—ien) - Jr—ti
teT—P

In fact, if tnon e Sy, then &(f)=@(fr—p) for every fe.d,.
If fed, then f=1im f,, where f,e d;,. Consequently

fp=lim (fo)p and B(fp)=lim&((fa)p)=Lim &(f,) = D(f),

which proves the first part of Theorem II.

The second part follows immediately from the first. In fact,
the definition of @, is obvious. @, is sequentially continuous. Since
ap(4,) satisties the second axiom of countability, @, is continuous.
@ is continuous since it is a superposition of two continuous
mappings.

Theorem IIL Let @ be o sequentially continuous mapping
of A* into B where A*CA is invariant under projection. If T is
[B % B, D]-reducible (in particular, if L' is less than the first inaccessible
aleph ), then there is an enumerable set PCT such that D(f)=(fp)
for every fed*, i.e. f[P f|P implies D(f)=D(f').

Conscquently @(f)=P,mp(f) where Dy is & continuous mapping
of ap(A*) into B. Therefore @ is also continuous.

If B is metrizable, the same result holds whenever T is R-re-
ducible 19).

Let A, be the class of all elements fz where fe A* and Z<n,,
ZCT. The set A, being invariant under projection, on account of
Theorem IT there is an enumerable set PCT such that fz|P= jz| P
implies @(fz)=®(jz) for f,f e A* The set P satisfies the condition
of Theorem I1L. In fact, let 7,f" e 4*, flP={'|P. Consider the mapping

Y(Z)=(D{fz), P(jz)) for ZCT.

¥ maps S(T) into Bx B and ¥(Z) e D if Z<K,.
Y(Z)eD for every ZCT, which proves &(f)=d(f").

Consequently,

Corollary 1. If m is -less than the first inaccessible aleph,
every sequentially continuous mapping of the Cartesian product of m
separable metric spaces info any metric space is coninuous.

10) See remarks at the end of the first part (p. 234).


GUEST


238 8. Mazur. .
Corollary 2. Let ¥ be o sequentially continuwous mapping
of S(%) into B. If & is [BXB,D]-reducible (e. g. if & is less than
the first inaccesible aleph), there exmisis an enumerable set PC & such
that W(X)=W(XP) for all XC&E. Consequently ¥ is continuous.
The same result holds if B is metrizable and & is R-reducible.
This follows immediately from Theorem IIL where I'=&,
A; contains only two points: the numbers 0 and 1, =0, and
o)=Y E (f(t)=1)). In fact the transformation

A .
X — the characteristic function of X

is a homeomorphism of the Hausdorff space S(&) onto A.
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The Role of the Axiom of Induction in Elementary
Arithmetic.

By
C. Ryll-Nardzewski (Wroclaw).

In the usual formulations of Peano’s axioms for arithmetic,
the axiom of induction must be formulated as a scheme containing
an infinite number of proper axioms. An axiomatization of arith-
metic by means of a finite number of axioms can be achieved if
one includes among the primitive notions of arithmetic e. g. the
notion of sets or of propositional functions. In the present paper
T shall discuss the question whether it is possible to obtain a finite
axiomatization of arithmetic, using only those primitive notions as
are admitted ordinarily in Peano’s system, that is: =, <<, and an
arbitrary number of arithmetical functions such as #4y, z-y, 2% ete.

I shall show that no finite number of proper axioms, involring
only these primitive ferms, suffices to prove all the particular cases
of the scheme of induction. Thus, Peano’s arithmetic is not finitely
axiomatizable if, only, the traditional primitive notions are allowed
in the axioms.

From the methodological point of view, it may be interesting
to note that the non-classical models of arithmetic (the existence
of which was first proved by Skolem in [1]) are the chief tools
used in my proof.

This paper is self-contained and all auxiliary theorems are
explicitly stated and proved. The author believes that some of
them may also prove useful in further investigations of related
problems.

1. The lower functional calculus. The expressions of
this system (which we shall call briefly the system LF) are built
up from the following symbols:

(1) By Yy By ey By Y1y 85 ores By Yy Py ... (Individual variables),
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