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Corollary 2. Let ¥ be o sequentially continuwous mapping
of S(%) into B. If & is [BXB,D]-reducible (e. g. if & is less than
the first inaccesible aleph), there exmisis an enumerable set PC & such
that W(X)=W(XP) for all XC&E. Consequently ¥ is continuous.
The same result holds if B is metrizable and & is R-reducible.
This follows immediately from Theorem IIL where I'=&,
A; contains only two points: the numbers 0 and 1, =0, and
o)=Y E (f(t)=1)). In fact the transformation

A .
X — the characteristic function of X

is a homeomorphism of the Hausdorff space S(&) onto A.
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The Role of the Axiom of Induction in Elementary
Arithmetic.

By
C. Ryll-Nardzewski (Wroclaw).

In the usual formulations of Peano’s axioms for arithmetic,
the axiom of induction must be formulated as a scheme containing
an infinite number of proper axioms. An axiomatization of arith-
metic by means of a finite number of axioms can be achieved if
one includes among the primitive notions of arithmetic e. g. the
notion of sets or of propositional functions. In the present paper
T shall discuss the question whether it is possible to obtain a finite
axiomatization of arithmetic, using only those primitive notions as
are admitted ordinarily in Peano’s system, that is: =, <<, and an
arbitrary number of arithmetical functions such as #4y, z-y, 2% ete.

I shall show that no finite number of proper axioms, involring
only these primitive ferms, suffices to prove all the particular cases
of the scheme of induction. Thus, Peano’s arithmetic is not finitely
axiomatizable if, only, the traditional primitive notions are allowed
in the axioms.

From the methodological point of view, it may be interesting
to note that the non-classical models of arithmetic (the existence
of which was first proved by Skolem in [1]) are the chief tools
used in my proof.

This paper is self-contained and all auxiliary theorems are
explicitly stated and proved. The author believes that some of
them may also prove useful in further investigations of related
problems.

1. The lower functional calculus. The expressions of
this system (which we shall call briefly the system LF) are built
up from the following symbols:

(1) By Yy By ey By Y1y 85 ores By Yy Py ... (Individual variables),
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(2) @9, %y Pra W1y Y15 o1 Poy W2y Koy - (fUnCtOTs With an arbitrary
non-negative number of arguments),

(3) =, < (the signs of equality and the less-than relation),

(4) propositional connectives and quantifiers.

We shall often use letters =,y,z,... also as names of arbitrary
variables and letters g.y,y,... as names of arbitrary functors. The
uge of the same symbols with two different meanings is evidently
not quite correct but will allow us to simplify our formulae and
is not very dangerous in itself,

© Variables are also called numerical expressions of rank 0. If
I, Ty,..., Iy are numerical expressions of ranks <{n and ¢ is a fune-
tor with % arguments, then (I%,...,I%) is called the numerical ex-
pression of a rank <{n+41. Numerical expressions will always be
denoted by letters I',4,E, ... with or without subscripts. A numerical
expression in which the variables @,y,2,... occur will be denoted by
symbols like I'(,y,2,...).

If I and 4 are numerical expressions, then the expressions
I'=4 and I'<A4 are called matrices of rank 0. If & and ¥ are ma-
trices of ranks <n, then ~D,0V W, -V, 0V, 0¥, [[¢ and Y&

are matrices of rank <n+1. Arbitrary matrices Willxbe deno,;:ed
by Greek capitals @,%,0,...

‘We assume as known the distinction between the free and
bound variables of a matrix. A matrix in which the variables #,v,z,...
are free will usually be denoted by symbols like &(w,y,2,...).

The result of substitution of a numerical expression I' for
a free variable » throughout a matrix @ will be denoted by SF®.
‘We omit the enumeration of conditions which must be satisfied in
order that this operation can be performed. Instead of SFS{S%...
®(z,y,2,...) we shall also write @(I,4,H,...). Similar symbols will
also be used for substitutions throughout the numerical expressions.

Finite strings of variables will be denoted sometimes by a single
German letter e. g. %, p, or 3. If x=(®,...,%,), then % stands for

DI
xq

*n

and J] for [],...,]]. Among all matrices we distinguish in
ES x1 Xm

the well known way the axioms of the propositional ealculus and
the axioms of the functional calculus. We admit further the fol-
lowing axioms:
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Axioms of equality:
p=1y —[®— S5
Axioms of order:
~(@<a), (p<y)Ve=y)V(¥<z)
(p<y)—[(y <2) > (@ <2)]

Matrices obtainable from the axioms by means of the usual
rules of proof are called theorems of the system LF. If © is a theo-
rem of LF, we shall write rr®.

The following abbreviations will often be used in the sequel:

sy for (a<y)V(z=y),
@y for ~(z=y),
Yo for D VDV .V Py
=1

[1®; for &-Dy-...-Pp.
=1

Let x=(@;,...,%n) and = (¥y,.-.,¥a) e two strings of variables.
We put for n=1,2,...

n m—1
An(i,l))zmé’i[($m<ym) Ig (=91

The matrix An(x,1) can be read as: x preceeds 1 in the lexico-
graphieal ordering of all n-tuples.
For any matrix &(x,u) we shall write

Is(w) for gd’(x,u)-yH[Q(Iyu)-ff’(n,u)—ﬂx:n)]-
)

The matrix Is(u) can be rvead as: O(x,u) satisfies the condi-
tion of existence and uniqueness with respect to the first » arguments.
The following theorem is easily derivable from the axioms
of LF:
) Fzrla(u)- Blgy (1), ...ipalit),u) -

=g <> 3 . 5 3 oo 3 Bty ey att)],
t1 ti—1 ti41 tn

;1 D
1=1,2,..., .

In the rest of the paper we shall consider various systems
which can be described as follows:
Fundamenta Mathematicae, T. XXXIX. 18
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Let ¢y,@p...,¢x be % arbitrary functors and D,,P,,...,d; arbi-
trary matrices involving only the funectors gy,...,¢x. An expression
is called meaningful in the system S=8(@y,...,q¢r, Py,..., D)) if it con-
tains no functor other than gy,...,¢s. A meaningful matrix @ is said
to be provable in § (in symbols: }-g®) if it can be obtained from the
axioms of LF and matrices @y,...,D; by repeated use of the rules of
proof. It is evident from these definitions that the system S is
wholly determined by its functors ¢y,...,¢z and specific axioms
Dy,...,0,.. When speaking of systems, we shall always have in
mind cnly systems § whose structure has been deseribed ahove.

2. Models. Let § be a system and let ¢y,...,¢x be its functors.
Every k- 2-tuple )

M= [Iﬁ.<7fl5 v fa]

consisting of a set, a binary relation and % functions will be called
a pseudo-model of 8 if the following conditions are satisfied: (i) the
set I is ordered by <3; (ii) the number of arguments of f; is equal
to the number of arguments of ¢; and the argaments of f; as well
as its values run over the set I (j=1,2,...,k).

A pscudo-model is called well ordered if I is well ordered by
the relation <. Note that the relation < is irreflexive in every
pseudo-model M.

Sometimes, it is convenient to allow a larger number of func-
tions in. A than there are functors in §. In this case M contains k
funections f,...,fx which correspond to the functors of § and an
arbitrary number of wholly arbitrary funetions.

Let M Dbe a pseudo-model of 8, I'(w,a,...,45) & numerical
expression of S, and a4, qy,...,a, elements of I. We shall define by
i7zduction on the rank of I' the element Iylag,ay,...,az), called the
value of I'in M for the arguments a;,ay,...,an.

If I" has the rank 0, then I' is a variable, ¢. g. 2;, and we pub
Iylad=a. If I' is the expression ¢;(4®,..,4®) and the values
A%}’(ai,a,, -y @n)=bp are already defined for p=1,2,...,s, then we put

J’M(ai,aj, ...,C(h)=fj(b1,...,b3).

) }j*ow leb D(@y,2;5,...,25) be a matrix of §. We shall define by
md.uctwin on the rank of @ the following relation: elements w,a;, ..., &n
satisfy in 3 the matrix @ (in symhols Eud(a,...,az)
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If the rank of @ is 0, i.e. if @ has the form I'(x...,2n)=
=My, ie, Tn) OF T4y ., p) <A, ..., %2), then we define Fu®(a,...,qn)
as equivalent to I'y{a;, ...,on)=Au(ay,...,0n) or I'y(az,...,an)3A4u(ay, ...,an).
If the rank of @ is n-+1, and @ has one of the forms: (i) ~¥, (i) ¥-0,
(iii) PV O, (iv) ¥—0, (v) P<>0, then we define kyP(as,...,as) as
follows: in case (i) we define ky®(ay,...,an) as equivalent with
non Ex¥(ai,...,az). It ®hasthe form ¥- 0, then we define kD(a;, ey @)
as equivalent with the conjunction Ey'¥lar,...,an) and EyO(ay, ..., ap), a0d
we adopt similar definitions if @ has the forms Yy@, ¥—0, and
YerH. Finally, if @ has the form W&, by, ..., &) oF [IV(®,21,...,2n),
then we define ky&(aq,...,as) as equivalent with the following:

there is an ael such that ku¥(e,a;,...,a5)
ar
for every ael, Ey¥(a,aq,...,an).

A matrix @(ay,...,&5) is called true in M if Ey®D{ay,...,an) for
arbitrary ag,....ax in I.

A pseude-model I is called a real model (or simply a model)
of § if all axioms of S are true in 3.

The basic properties of the notions defined above are taken
for granted. In particular, we shall use the following two well-known
results:

Theorem 1. If M is a model of S and & is not true in M, then
non b-g@.

Theorem 2. If @ model of S ewists, then S is self consistent.

Let M=[I,<,f,-..,Js] be a pseudo-model of § and let J be
asubset of I such that fj(ay,...,,) eJ Whenever ay, ..., ts €J (§==1,2, ., ).
Let <3 be the relation <2 restricted to J and fi,..., fx functions fy,..., f
vestricted to J. If these conditions are satisfied, we shall ecall the
k- 2-tuple M'=[J,=2",/1,---,74] & (pseudo) sub-model of M. The fol-
lowing theorem can be proved without difficulty:

Theorem 3. If ay,...,aned, then Tar(a, ..., an)=Ts(ds, ..., az) for
every numerical expression I'; if @ contains no quantifiers, then the
conditions Eu®(ai,y...,an) and EyD(aq,...,an) are equivalent.

In the next section we shall still need the following rather special
result: Let S=8(g1,....0%, Puyrory @) 204 8'=8"(@, @150, Py -+, Pim)
and let M=[I, <, f,....fel, M'=[I,<,F},...,Jx] be two pseudo-

models of § and 8’ (note that M’ results from M by adjunction
16*
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of but one function and that the sets I and relations < are ident-
ical in the two pseudo-models). Let ¥(x,x) be a matrix of § and
denote by ¥'(x) the matrix Y(p(x),x). We have then

Theorem 4. The conditions EuP(f(ay,...,0), ay,...,a¢5) and
W' (Gy,..., ts) are equivalent.

In other words the theorem states that elements f(ay,...,a,),
g, ..., 0, satisfy in M the matrix ¥ if and only if the elements ay,...,q,
satisfy in M’ the matrix ¥". Note that although f is' not a fune-
tion of M, the element f(ay,...,a,) i a perfectly defined element of M.

Theorem &. If the funclor ¢ does not oceur in O(x), then the
conditions Ey®(ay,...,a5) and ExrO(ay,...,a5) are equivalent.

Both theorems can easily be proved by induction on the ranks
of ¥ and ©. We omit the details of these proofs.

3. Extensions of systems. A system 8'=8(p1,...,¢2,91, ..., -

is called an extension of & system S=S8(py,...,Qm, Py,...,Py) if (i) every
@y (§=1,2,...,m) is identical with one of the functors ¢y (s=1,2,...,k);
(i) every @; (j=1,2,..,n) is provable in §'. ’

An extension §° is called non-essential if to every matrix @’
of §' corresponds a matrix @ of § with the same free variables
such that g®@'«>®.

Theorem 6. In order that an extension 8' of 8 be non-essential

it s necessary and sufficient that for every gs which is not a functor
of 8, there emists « matrizc ¥y of S such that

(6) @ =g5(x) <> ¥s(,%).
Pr.m_)f. Necessity follows at once from the definitions. To show
the sufficiency, we first prove the following

szmma. For every nwmerical expression I'(x) of S' there exists
a matriz Op(z,x) of S such that

(n " ee=I(z) <> 6Or(a,3).

Proof of the_ lemma. If I' is a variable, e. g. @;, we take
as @p(a;,m,) tl];e matrix #=um,. Hence, the lerama is true for expres-
sions of rank 0. Assume that the lemma holds f 31
s o and thet or expressions of

Pz!P;(Al)"'yAr);
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where Aj,...,dr are numerical expressions of ranks <n. According
to the inductive assumption, there exist matrices @j(w;,3;) such that

Faraty=24;(37) <> 0523, 31)

(3; is the string of all free variables of 4;). Now, we take Op equal to

r
-‘:xl"‘ :x,- [Pe(@,2y, <oy r) ‘jl—]l @i(‘rh 3]

" defined as follows: if ¢4 is a functor of §, then ¥, is the matrix

D=y, ..., %r); Otherwise, ¥ is the matrix, the existence of which
has been assumed in (6).

Now it can easily be shown that this choice of @p satisfies
the condition (7). The Lemma is thus proved.

Proof of theorem 6. We have to show that for every ma-
trix @' of § there exists a matrix @ of § such that g <>D.

Yf &' has one of the forms I'(zx)<d(y) or I'(x)=4(y), We de-
fine @ as 3 3[Or(s,x)-Or(y,n) o< yloras _53%‘[91"(«70,%) -Or(y,y)-r=yl

x ¥ x
It @ has one of the forms ~@j, 1V &3, P1- &4, P4y, P1<>Ta,
3@, IT.4] and @, correspond to @} (i=1,2), we define & as ~®y,
O,V Dy, Dy By, DDy, P> Py, 220y, IT.0,. 1t can be proved by
a straightforward induction that this choice of & satisfies our re-
quirements. Theorem 6 is thus proved. .

Theorem 7. Let @, have the form T, ¥ (). Then the system
8(gay s iy P(®)y Pyy-.y @) B8 66 non-essential extension of S{pg...sFk;
@1,...,@1).

The proof is obvious.

Theorem 8. Let @, have the form £, P(x,%) and let @ be a func-
tor different from all the functors ¢, ..,¢x- Further, let O and O, be
matrices

W(L?(“’-)L W(Iym)"’@(x)g-'”-
Under these assumptions the system 8 =8, @1, 5Tk 1,02, Doy - P3)
is a non-essential extension of S=8(@y..-;¢r; Py, P1)-

Proof. S is an extension of § since p-rr@—>P; and FuP;y.
In order to show that the extension is non-essential it is sufficient
to remark that

bsa=q(x) <> Plz,2) TL[PEy) >y<al;

and to apply theorem 6.
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Theorem 9. For cvery system S=58(py,...,qn, Pyy..., D)) there

ewists o non-essential emtension S'=8(py, ... pm, Py, V) such thet -

no quantifiers ocour in the awioms Wy,..., Wy of 8.

Proof. We can evidently assume that @i,..,®; has been
brought to the prenex normal form. Let # be the number of
quantifiers occurring in @; and rearrange the axioms so that
bh=t=. . =k> 2l > 20 The pair (#;,s) will be ecalled the
characteristic pair of S. We say that (#',s') is_lower than (¢,5) if t'<t
or t'=t% and s'<<s. Note that the characteristic pairs of systems
constructed in theorems 7 and 8 are lower than the characteristic
pair of the system S.

If the characteristic pair of § is (0,7), it is sutficient to take

=48. Hence, it will be sutficient to show that for every system §
with a characteristic pair (#,,s) where #, >0, there exists a mon-
essential extension 8’ with a lower characteristic pair.

If &, begins with a general quantifier, we obtain the required
extengion using theorem 7; and if @; beging with an existential
quantifier, we obtain it by theorem 8.

Theorem 9 is thus proved.

We shall still investigate the problem whether the extension
obtained in theorem 9 is self-consistent.

Theorem 10. If 8 has a well ordered model M=[1,<2,f1,...,fx],
then so do the systems 8’ constructed in theorems T and 8; well ordered
models of these systems can be obtained by adjunction of at most one
funetion to M.

Proof. The Theorem is trivial in case of an extension de-
scribed in theorem 7. In the other case we remark that if gy .eey p
are arbitrary elements of I, then ku®(ay,...,as), 4. e. there exists
in I ab least one element a such that ky¥(ay,...,an,a). Let flay,...,a5)
be the first such element a. Thus we have

(8) i"‘MlP(a].;--':“h:f("‘la"-:ah));
(9) if b=3f(ay,..,an), then mnon ky'¥(ay,...,anb).
Adjoining f to the model M, we obtain a well ordered pseudo-

model M'=[I,< f,f,...,fx]. Formulae (8) and (9) prove, according
to theorem 4 and the definition of matrices 6, and 0, (see theo-
rem 8), that kwOy(ay,...,an) and |0, (@g,...,ap,b) for arbitrary

%g5---3@n,b e I. Thus @, and O, are true in M’. The remaining axioms
of 8’ are true in M’ since the functor ¢ does not ocenr in them (cf.
theorem 5). Hence, M’ is a real model of §’.
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We observe that the extension constructed in theorem 9 has
been obtained from § by successive extensions of the types described
in theorems 7 and 8, and we obtain from theorem 10 the following
corollary:

Theorem 11. I S has « well ordered smodel I, then the ex-
tension 8’ of S described in theorem 9 also has a well ordered model M’
which arises from M by adjundtion of & finite number of new functions.

4. Majorizing functors. In this section we shall assume
that § is an arbitrary system of the form S{gy,...,ps, Py;...,Pr} such
that for at least one gy,

bsps(@)=5

Every such ¢; is called an z'dent[ty junctor. We denote by I
the number of arguments of ¢; (i=1,2,...,k). -

Definition. ¢n is a majorizing functor of 8 if

Fs(:vlgw)..‘(mhi\<\w)»qﬂi(ml....,:r,«,i)<¢,,,(:n) (i=1,2,..,k),
(h;=number of arguments of ¢;).

Theorem 12. For every system S containing an identity junclor
there epists a4 non essential extension 8 containing a majorizing funcior.
If the amioms of S8 do not contain quantifiers, then the awioms of 8§’
enjoy the same property.

Proof. Let S=8(¢y--;¢x; Pr,...,P1). Let ¢ be a functor with
one argument different from gq,...,qx and let 9, ..., ,(;3 (1=1,2,...,k)
be functors with 2 arguments différent from each other and
different from qy,...,¢z. We adjoin to S the fumctors ¢ and

p¥ (i=1,2,..,k;n=12,.. Jhy) and axioms (i=1,2,..,k):

(10) (mléw)...(m,,l.{m)—>¢i(wj,...,mhi)<rp(m),

(11) y<g(@)—>pP(y,2) <@ (n=1,2,....hs),
k

(12) y<g(@) =3 1 < g (pP(Y, @), -0y, )),
i==1

y< 9”(1“[") Ap (5(11) z(k)3w(l)(1/:w)7 aey 1(,,2(7/){6)) hd

(13)
'_:__“Hl {‘Fi(‘?go: 7"7;1?) <yl
(14) N(y<¢(iv))—>w§”(ya$)=¢(m) (n=1,2,....hs),

where h=ly+hot ... T,
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The intuitive content of these axioms is the following: p(z) is
the first element which is greater than the clements rp,(wl,...,m,,i)
for =1,2,...,k and #,<®,...,25,<2. If ~(y<e@(®)), then wO(y,2) is
equal to g(«); if y<g(z), then the elements p{)(y,a),..., Py, z)
form the first (with respect to the lexicographical ordering) hl:tuple
(u, ..., uff)) such that g(u,...,ud)<y for at least ome i.

We shall show that the following equivalence is provable in (87)

248 C. Ryll-Nardzewski:

k
I—S/ﬁ-:q?(w) <—-—>-II]1{U !][(m1<x)(m;,1<'ﬂ)—+ l]'i(-’l)l,...,(l’:’;,i)<z]}
=1 Yy

h
'!’]{y<z —>E! 2 L < a).. (0, < 0) - Y< ga (B, ..., 08) ]}

=1xy  xp

(15)

Indeed, the implieation — results immediately from axioms
(10), (11) and (12). To prove the converse implication, we denote
by H,(2) and H,(z) the two matrices on the right side of (15). From
(11) we obtain

s (5 (o) Fil2) > [T Tpute{09,), .. pf2y,0) <)

Combining this with axiom (12), we get by the propositional
calculus

(16) b Hy(2) > ~ (2< ().
Writing H,(2) in the form [] Hj(z,y) and using b rrHy(2)—>
, . y
Hj(2,p(x)), we obtain after some transformations
k
-5 Hy(z) UL - (5 <o) (28,<5) -
1= .1‘1 .Th[
=~ (@) < qul@y, 0, 28) ] ~ (@) < 2)},
-whence (by (10) and the axioms of order)
ks Hy(2) ~ ~ (p(a)< ).

Using (16) and the axioms of order, we finally obtain formula (15).
It can be shown in essentially the same way that

(20D = (D) A0 Eo
Fs(e? =y{(,9)) .. (P =@y, 1)) <> ~ <o) 11 [] &0 =g(a))
. il
an  vy<e). (2D .. 20y 1.4
<o) Zv<qul, ) T PO, 8,0, of)
)
&

= I, .8 <y,

E=1
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The formal derivation of this formula is a matter of routine
and can be omitted here.
Denoting by P(:{’,...,2f,y,x) the matrix on the right side
of (17), we get
kR
I—S,P(:(f),...,:gz,y,m)-P(E?’,...,Eﬁfﬁ,y,w)»ﬂi nI_]j(Zf?ﬂf?),

i
}"S’E ZP(,‘:?),---,Z%E,Z/,%),
OB
1 Fhg
i. e. bgIp(y,®) (cf. §1, p. 241). By using formula (3) of § 1, we
obtain from (17)
(18) }—s,sf,0=1pg7(y,;p)++2...2 DI P(zgl),...,:ﬁ?l,y,w).
A 0 0 B
"1 “n~1“nfl “hy
Now, according to theorem 6, formulae (15) and (18) prove
that S’ is a non-essential extension of S.
It remains to prove that ¢ is a majorizing functor of §’. Since
one of the ¢/s is an identity functor, we obtain Fgax<<p(s) and
hence by axioms (11) and (14)

(19) Fsey®(y,2) <glx)  (i=1,2,..,k; n=1,2,..}).
It is easy to prove that

(20) sy <y — g (2) Sop(a);

thus formula (19) yields

(21) Fo(y<a) - (2<<a) =D (y,2,) <g(@) (i=1,..,k; n=1,..., k).

Formulae (20), (21) and (10) prove that ¢ is a majorizing
funetor of §‘. Theorem 12 is thus proved.

The problem of consistency of the extension S’ constructed
in theorem 12 can be settled in the same way as an analogous pro-
blem dealt with in section 3:

Theorem 13. If S has a well ordered model M, then so does
the system S obtained from S by the method described in theorem 12.
The model of 8" ecan be obtained by adjunction of h-+1 functions to M.

The method of proof is the same as in theorem 11.
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5. Elementary arithmetie 4,. In the rest of this paper
we shall be concerned with a formal system of arithmetic 4, and
with its various extensions. In this section we describe the system 4,
itself; the mnext one is devoted to extensions of 4,.

There are 8 functors in the system Ag:
P15 Poy P3y Pas Vs Tor TP Ps
The numbers of their argnments are respectively
0,2,2,2,1,1,2

The intuitive interpretation of the functors is as follows:
¢y (denotes the constant one; ¢,, ¢; and ¢, denote the arithmetical
functions: sum, product and power; ¢, denotes the function p,=n-th
prime and ¢, a function whose value for the argument « is equal
to the greatest index n such that p, still divides a. ¢, denotes the
funection A(n,a) such that p, occurs in ¢ with the exponent A(n,a)—1.
Finally @4 is the identity functor.

‘When writing down the axioms and theorems of 4, we shall
use ordinary mathematical symbols for the functors of 4,: 1 instead
of py, @4y instead of gy(w,y), ®-y or oy instead of gy(z,y), a¥ in-
stead of g (#,y), p. or p(w) instead of py(@). Further we shall write
p(@) instead of gy(w), A(w,y) instead of p,(z,y), and & instead of pg(x).
Of course every formula can be translated back to the “official”
language of 4, without any difficulty, but the resulting expression
is usually extlemel) unintelligible. 'We shall also use the customary
ftbbrevmtmn @y ].nstemrl of 2o (wz=1) and write P(x) instead of
(w==1)-J] {elz —>[(e=1) Vv %)1%

AXlOmS of 4, will be divided into 9 groups:

I. Axioms ‘of addition: III. Axioms of multiplication.
1 ot+y=y+a, 8. sy =ym,

2. sty +e)=(s+y)+s, 9. #(yz)=(ay)z,

3. 1F=a+y, 10. #l=uw,

4, pty=zt+y—>w=2. 11, a(y+2)=wy - wz.

II. Axioms of order: IV. Axioms of power:

5. sy <> ) (w42=7), 12, sl=g,

6. 1<, * 13. avtr=gu. g7,

T 2<yt+ls<y.
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V. Axioms of primes: VII. Axiomsfor the functor u:
14, py=141, 20, u(1)=
15. P(py), ’1 1/.2,—>p w(®))e,

16. P(z)- ﬁj<“_>7)1+1/”‘

Sl u('f)/J%pr!J?-
17. P(@)— J(a=1py),
T

VIII. Axioms for the func-

18, oY —> Pl Py. tor A:
23, iw,1)=1,
VI. Axiom for the functor ¢g: 24, p_ly — pAxa|y,
Xl x s
19. ge(w)=wm. 25. p |y~ (pLHea]y).

In the last group of axioms we shall use the abbreviation

Ty(@,y,%) for
[It<my )= ULy) = t,w)]-ﬂ (<< pl@) = A1, 2) = A0 + w(y) +1,2)] -
II( Ptl”‘>{Pt\JV2[ 1) =1)-pael}).

t
IX. Axioms concerning representabihty of integers by primes:
26, (L<<®y)- (l<’b2 H[ p,‘xlﬁpt[z; At 1) = A(t, )] =@y = s,
(1<) 1< @)~ 3 {(u)=1) th<t—>7< )= e, 2]},
(L) (1< —>Z‘f (2,9,7).

-3

A

CL

Axiom 26 states of course that every integer greater than l is
uniquely representable as a product of primes. Axiom 27 states -
that if o= pft...poe (p=p(®)) and i< u(a), then the integer- Pt pft
exists. Finally axiom 28 states that if y=pf1 .. pj%, where 4y <l,<...<fj
and z=pj’;1,..pj1;l, where §;<j,<...<j; then there exists an integer
with the development

Py Pk Lty p"k+1+11

The deseription of the system A, is thus complete. The sys-
tem A, can of course be represented as S(py, ..., D, ..., Dog), Where
D,- D,y arve the axioms of 4,

To complete this section, we shall note further theorems of 4,
and introduce a number of abbreviations.

Definition, Functors (without arguments) l=gy, 2=1+-1,
=241, ... are calledl numerals. The n-th numeral will be denoted by 7.

Theorem 14, \-4r<nt+l—a=1V..VE=n."
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Proof. We use induction with respect to n. If n=1, the theo-
rem to be proved becomes 4% <2<+>x=1.

This follows immediately from axioms 3 and 5-8. If the theo-
rem holds for an integer n it does so for the next higher integer,
since by axiom 7 we have L 4,8<R+424>(s<n+1)V (2=n+1).

Definition, Let x be an n-tuple of variables (@1, ..., n). We put

Z ZZ (T, ) - Tofo, 21, @) - TRy 20y @) ..
‘n—2

e 172(~’n~-2;£’n—3 ) mn—l) " Tz(m; n—1, mn)]-
Theorem 15, (i) Fa(l<ty)...(l<wn)— 3 Ta(2,%);
X
(i) Fa(l<<ay)...(I<wp) = Thp(n',x) To(2',z) > &' =o".
Proof. (i) can be obtained from axiom 28 by induction on n.
To prove (ii), we first investigate the case n=2.
From the definition of T, we easily obtain
-4, (] <?/) : (1 <z) - To( ( ',7@/)”) -1y (.CU”,'_I/,Z)-—>'
U > pla”) - (Mt 0') = 2t @),

whence by axiom 26:
Fa(I<y)-(1<z)- Ty’ y,2) - Ty, y,8) — ' ="’

The general case now follows by an easy induction.

Matrices T, will be particullary useful when we discuss se-
quences of integers and their representability in the system 4,.

A finite sequence ay,...,a; can be represented by a single in-
teger 2°13". pi¥. If @ represents a sequence oy, 0 and Ta(w,%),
then « represents the sequence af),..l,agi),a(f),...,agz;,...,c@"),...,wg{g.

Not every integer represents a sequence but only integers in
which all primes up to a certain one oceur. In connection with this
remark we introduce the matrix ¥(x) defined as follows:

(1 <W)-H [py] 2>y < pu(2)].

We note without procf some theorems concerning the ma-
trices ¥ and Tp:

n
Theorem 16, (i) ““ﬂ Y(@) Tu(w,2,,...,25) — Y (),

(50 b [T T Ta(o, 8, ., 0) > @)= )+ ..+ ()

Azxiom of Induction 253

(iii) F&IQ{Y(W-T,.(m,ml,...,m,,)_>
= [A1,2) = A1, 21)] - [A{p(®),%) = A u(w), 20n) T},
(w i—A.,H V() Tnl(@, g, ..., %) -2 < pal) —
'*,é' §[u<;c ) (3= (@) + oA Tp1) ) - (U2, %) = A, )]

The last auxiliary matrix which we shall need later is intro-
duced by the following

Definition. If x=(ry,..,x,), we use r=1-4max(x) as an
n n
abbreviation of J] (z<m) ‘2.71(“’1+1 =uz).
=1 i=

n
Theorem 17. \48=1+max(x)—>[2<y+1+>]] (#:<y))
H
The proof proceeds by induciton on n. '

6. Models and extensions of 4, In the following thecrem
we exhibit a well ordered model of A:

Theorem 18. A, has the model Mo={I,, <,f;,...,fs}, where I,
is the set of positive integers, < is the ordinary less-than relation
and fi-fs have the following mmni'ngs: fi=1, fom,n)=m+n,
fa(m,n)==m-n, f(m,n)=mn fy(m)=pm, fom)=Ilargest n such that
Palm, fi(m,n)=Ilargest s such that pfn‘lln,k fo(m)=m.

The proof of this theorem is obvious.

M, will be called the natursl model of A,.

The set of matrices of A, which are true in M, will be called
Peanian arithmetic. If @y, ...,D; belong to. Peanian arithmetic, then
8@y, -y 9g, Dry..., @) will be called a Peanian system.

To give an example of Peanian system, we remark that if
O(x) is an arbitrary matrix of 4,, then the sentence
(22) 0(1)-[116(x) ~O(a-+1)] > [16(2)

x

belongs to Peanian arithmetic. Hence, if @y,...,9; all have the
form (22), then S8(gy,...,¢5 Py,...,P1) is a Peanian system.

Begides Peanian systems we shall consider their extensions
obtained by the methods described in theorems 9 and 12. These
extended Peanian systems, as we shall call them, possess well oxr-
dered models My={(I,, <,f,...,fx] Which can be obtained from M,
by adjunctions of new functions. Models of this kind will also be
called natural models of the extended systems.
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Natural models are not the only models of Peanian systems.
As Skolem [1] has shown the contrary is the case:

Theorem: 19. Bvery (emtended) Peanian system has at least
one non-natural model M=[I,< F, .., fxl; the set I, of integers is an
initial segment of I and the relation < and the fmftwns fl, ofe re-
stricted to I, are identical with the relation < and the functions fy,...,fe
of the natural model DI ,. '

Remark., It can be shown that I, is an initial segment of
every non-normal model of a Peanian system and that the functions
of the model restricted to I, are always identical with the functions
of the natural model. For our purposes it is however sufficient to
know that there exists at least one non-normal model with this
property; and precisely this has been proved by Skolem.

Using the notion of normal models, we can replace unpreeise
remarks concerning the intuitive content of the axioms and defini-
tions introduced in A, by precise theorems. For instance, we have

Theorem 20, If m>1,
Eu, To(g,m,n) is equivalent to g=2"..

n>1L, m=2"_.p% n=2% . pll then

b b
p;’*p,‘jf_i...pka.

A similar result can be formulated for the matrix 7, as well
as for other matrices defined at the end of section 6.

7. The set D(a). Let S=8(p1y - 9ps @ Dy,...,P;) be an arbitrary
Peanian system and let M=[I,<3, Fiseees Fl be 1th model. We as-
sume that f; has my arguments (j=1,2,...,%).

Let a be an arbifrary element of I. We call a the 1-st descen-
dent of . Assume that we have already defined the i-th descendents
of & (i=1,...,n). An element b eI will be called an n-1-st descen-
dent of a it there is a 7<% such that b:fj(cl, ey ij), where ¢p is a ip-th
descendent of a (ip<<n, h=1,2,...,m;) and not all 74 are less than n.

The set of all descendents of & is denoted by D(s). It is
clear that if ¢y,...,¢m ¢ D(a), then fyey,...,0m) ¢ D(a). Hence res-
tricting < and fl, ,]i;, to D(a) we obtain a pseudo-submodel
Mia) =[D(a), <<, fiy.-sJ2d of M (cf. section 2, p.243). We shall
call M(a) the (pseﬁdo) model generated by a.

To every element ¢ of D(a) we let correspond a numerical
expression I¢(@)=I"(x) which is said to be at'ached to c. If ¢=a,

we put I(@)=x. If c=Fj(cy,.. -3Cmy)y We put Lop(m) =g (T (% ),..,,chj( 7))

icm
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In general, there will be many numerical expressions attached to
one and the same descendent of a. Note that the numerical ex-
pression 7 is attached to the integer n=1-41..+1. The following
theorem is obvious:

Theorem R21. If ceD{a) and I(x) is atiached to ¢, then I'(z)
has emactly one free variable and Iy(a)==c.

Theorem 22. In order that ¢ be an at most n-th descendent
of @, it is necessary and sufficient that there ewist two finite sequences

(23) gyernsGny  HyyeenyMp

such that

(24) ayel, ny=1, w;<<n (j=1,...,h),
(23) th=a, ay=¢,

a and ng=
sueh that

(26) if 1<s<<h, then either as=
i<k and ty,.. oty < 8
n_,=1+ma-x(m“...

1 or there ewist integers
g = ittty ooy “fmj) and
Nty )-

? ml

Proof. Let us first assume that sequences (23) satisfy con-
ditions (24)-(26); we prove then by induetion on s that g, is an neth
descendent of a. Henece, the condition given in the-theorem is suf-
ficient.

To prove thabt it is necessary, we construct the required se-
quences (23) for an arbitrary ceD(a). If ¢c=a, then we put h=1,
;= a, ny=1. Let us assume that sequences (23) with the pmpermeb
24) (76) exist for arbitrary i-th descendents of a (i=1,...,n). Let ¢
bu an #-+1-st descendent of a, i.e. let e= Fi(CsseenyCm y) Where ¢p 18
an i,-th descendent of o (fp<n;p=1,2,. oy ). Aecordlnw to the in-
ductive hypothesis there exist my sequences of,...,a®, n{P,...,n
(p=1,2,...,my) which satisfy the conditions qnalogoux to (24)-(26).
Now, we congider sequences

afd, a0, o,

(m) -
RRTPLL) "a'h,},j’(’,

; D n
2P, 0P, 1P

. ,-ng‘;j),n—(— 1,

and prove without difficulty that they satisfy conditions (24)- (”‘b)
Hence, the condition given in theorem 22 is necessary.

We shall now construct a matrix R(z,y,2) the intuitive con-
tent of which is: # is an at most y-th déscendent of 2.
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First we define the auxiliary matrix U(»,y,2,1,s)

(1) ¥(s)-[p(t) = pe(8)]-[A(1, t) =] - [A((0), 1) =] - [A(1,8)=1]-

H[7;<,u8 = Mo, 8)<y]- [T{(v < p(t) = (A, 1) = -

v

(A, ) =1)V F 3 .. F{8<0) . (Smy <0) (A0,8) = g;(A(8,1), ...,

j=1s81 sml

Hsmy 1)) LA(0,8) =14 MAX ({84, ), .., A5y, )1}

k-

The matrix R(%,7,2) is now defined as
2 2 U,y,515)
&

The meaning of the matrices U and B is explained in the
following

Theorem 23. Let My be the natural model of S and a,n,e,u,v
arbitrary integers, w=2"..pg, v="2", .. pH¥. Then, Eag Ule,m,6,u,0)
holds if and only if h="1' and the seguennes GgyoeeyOpy Ny eeny gy CONSESE
of positive integers and satisfy the conditions (24)-(26); g Bleyn, 0)
holds 4f and only if ¢ is at most an n-th descendent of a.

Proof. Let us first assume that Fag Ule,n,0,%,). 1t follows
that k. ¥(u)-¥(v) and hence ay,...,as and Mgy MUSE be po-
sitive. Since and v satifsy the matrix u(s)= u(t), it follows that
h=1'". Considering the next factors of the matrix U, we infer that
& =0, ap=20,ny=1 and n<<n for j=1,2,...,h. (26) results immedia-
tely from the assumption that % and v satisfy the last factor of U.
It can be proved similary that if ¢,n,a,u,v satisty conditions (24)-(26),
then Eag Ulo,n,0,u,0).

It Fag E(e,n,a), then there are u,v such that {:M, Ul(e,n, a,u,v)
and hence there exist sequences satisfying conditions ("{) (26),4.e. ¢
is an at most n-th descendent of a. Conversely, if ¢ is such a des-
cendent of «, then there exist sequences satisfying (24)-(26) and
hence there exmt integers w,v such that kg Ule,mya,%,v) which
supplies Ea Blc,n,0).

Theorem 23 is thus proved.

Theorem 24. \sy <y,—>[R(#,yy,2) —~ R(,,,2)].

To prove this theorem it is sufficient to remark that the va-

riable y ocenrs in R, only in the factor

[Ttv<p(s) >o<y).
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Theorem 25. 5 U(x,y+1,2,1,8) - (<< u(t)) = (A{u,8)<y):

This theorem is an immediate consequence of the definition
of U and of theorem 17.

Theorem 26. (i) b U(,1,2,2%2) <> 0=¢,

(ii) bsR(%,1,2)<>0=2.

This theorem results immediately from the definition of ma-
trices U and R; it is sufficient to remark that if we substitute in U
the numeral 1 for the variable y, we can omit the last factor of U
since it is automatically a theorem of §.

Theorem 27,
(1) FsUlz,y+1,2,8s) (g<ud)-(uE)=g)-(1(s)=g)-
T < g~ [, )= A, )] - [A,8) = A, 8)1} > U(Ag,1),4,2,¢',8"),

(11) l"'SR(l‘ﬂ/‘*‘l/z) —>R({0,‘7 7z) \Y

%

,”J}da-

:‘_.1 . HJ[R (@1,y,2)]* [2=g¢; (®y,... '”ml)]

I Sk | *mj =1

Formula (i) results without any serious difficulty from the
definition of the matrix U. The intuitive content of this formula
is the following: if ¢=2%...pk and s=2"..pH* are integers such
that the sequences

Opyeeey ey Nyyooyfy (y<Kn+1 for 1=1,2,...,k)

satisfy the conditions (24)-(26), then the integers #'=2"...p2¢ and
§'=2"..pl enjoy the same property and n;<n for i=1,2,..,q.

Formula (ii) ean be proved as follows. First we have

s Uz, y+1,2,5,8) - (u(t)=1)—=>o=2

and hence by theorems 26 (ii) and 24
(27) b5 U(®,y+1,2,1,8) - (u(t)=1) = E(x,y,2).

From the definition of the matrix U we obtain

}—sU(w y+1,2,4,8) - (u(f) +=1) —

(28)

k
U=z VE _2 Z H[ .S‘,</l. "0:931(/1(317”7“'7'1(8?!!,;”)]'
J=1 8 s,,,ji——l

Fundamenta Mathematicae T, XXXIX, 17
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From formula (i) we obtain

s U(m’y+])37t)s) : u‘</-‘(t) —»R(A(n,t),y,z),

and hence (28) proves that

s Uz, y+1,2,8,8) (u(t)==1) —

m

V {H[R (un,y,2)] ("("Z(fj(u]r“?

ml i=1

k
—ER(a,y,2)v >3 3

J=1 “1

ij))}-
This formmla together with (27) yields

k
U(wyy‘!‘l;zatas)_*R(w?yy \/ZE Z{I{[R (19,2 :' m—'(fj TR

J=1uy "mj =1

7’””1])}
and we obtain the desired result.

Theorem 28, Let ¢ be an at most n-th descendent of o and lot
I(z) be a numerical expression attached to ¢. Then s B(I(2),n,2).

Proof. We proceed by induction on n. If n=1, then I'(z) is 2
and the formula to be proved becomes +gR(z,1,2). This results
immediately from theorem 26 (ii).

Let us assume that the theorem holds for i-th descendents
(¢=1,2,...,n) and let ¢=f(¢,,.. «yCmy) e an n+4-1-st descendent of a.
Let ¢ be an #;-th descendent of a (ny<n) and let I'(x) be the nu-
merical expression ¢;(Iy(®),...,Iom(w)), where the expressions Iy(#)
are attached to ¢ ('i=1,2,...,m,). According to the inductive hypo-
thesis we have

FS.EZ U(Fi(z)ynh":tﬁsi)

8y

Using theorem 15 (i), we infer that it will be sufficient to prove
the following formula:

m
}——s}iU(ﬂ(ﬁ),”:,z,i},ﬁ)~T,,H_1(t,t1, gy 270) Ty (5,55, et

—=U(I'(2),m,2,1,s).

ot
Sy 2 )—

Let H be the antecedent of this implication. From theorem
16 (i), (i) and (ili) we obtain

X1 Y(5)-(ult) = () - (M1,1) =) (Ma(t), 1) = I(2)) - (A(1, ) =1).

icm
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From theorem 16 (iv) we obtain further
H > [][v< pls) — (Av,5) <m+1)].
v

Thus it remains to prove that

s H-(v < u(t)) — A, t)=2-A(v,8)=1
Iﬂh

VI 3.3 [ (si<v) [l =qa(Ms, 1),

k=131 smh i=1

;Z(smhnt'))] N
-[A,8) =1-+max (A(8,8), ..., ASmp, SN ]

We write this formula briefly thus: pgsH-{(v<p() = 0(2,13).
To prove this formula, we first remark that

b H-(v=p(t)) > (Au(t),1)=T(2) - (M u(s),8) =2 +1)
and
. g H — Mplty) 4 ...+ plt) +1,8) = (%),
!—SH""z(ﬂ( ) pt) 1, 8) =7
Sinee FgH — ulty) + .. 4 pltd < u(f) for i=1,2,...,my, and
n-L+1=1-+max(ny,.. A_n,,,) we infer from these formulae t]mt
FsH-(v=pu(t)) - HI{ s1<®) - [A0, 1) = (M8 t)y -
31 Snll =
2y )] [A(0,8) =1+ X (253, 8); - A Sy 8D -
Since g H — U(a(2), 1,2, fepa, 1), We have
(30) bs H- (1< utign) = Clrytapa, Sepa).
Now, we remark that
(31)  bsH-(v=plty)+ ..t p(td+r) - (r< pitas)) > (2 Hrytupn) =A(2,1)),
and -
20 bg H - (0= p{ty) oo plt) 1) - (< pltaga)) - << >
B2 )t ettt w<0) - (1) ol 10y 8) = A ).
1t follows from formulae (30)-(32) that

b H- (0= plty) 4 oo 2t =+ 1) (r< 1(ts)) = O(0,1,9)

and since (by theorem 16 (iv))
mi_q

s H-(r< pu(t)) — 2

=i

(v=p(t) =+ ...+ ultd)+r)-(r< #(tem)),

~ [\d

we obtain
FsH (v n(t)) = C(e,t,8).
17*
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Combining this with (29) we obtain the desired formula
FsH - (o< p(t)) = O(v,1, ).
In this way we have proved that g — U(I(z),m,2,t,5) and
theorem 28 is proved.

8. Proof that the Peanian arithmetic is non-axioma~
tizable. We shall prove in this section the following

Theorem 29. For every Peanian system S (cf. § 6, p. 253) there
ewists a matriz O(x) such that :
(33) non -g@(1) -] [6(2) >O(z+1)]— []6(x).
X X
This theorem shows that Peanian arithmetic (§ 6, p. 253) is not

axiomatizable by means of any finite system of axioms.
Theorem 29 results of course from the slightly stronger

Theorem 30, For every extended Peanian system
,P1)
(§ 6, p. 2B63) there ewists & matriz O(x) such that (33).

Tt will therefore be sufficient to prove theorem 30. We divide
the proof into two parts:

st((l’la coey Phy Py

j_[. fA_xioms D,...,P; of § do not contain guantifiers and § has
2 majorizing funetor, e. g. @;.

) In this case we congider the matrix R(z,y,2) defined in sec-
tion 7 and put
Qu,2) = 3 [1 [R(w,y,2) > 2 <1},
x

Hly) =192
‘We shall prove three lemmas.
Lemma 1. +g¥(1).
Indeed, from theorem 26 (ii), we have g[] R(%,1,2)—>z<zs]
and hence +s@Q(1,2) which proves that l—s‘I/(l).x
Lemma 2. —g¥(y)—¥(y+1).
Proof. From theorem 27 (ii) we obtain

*_SI;“:R(qu 7z) ~>$<t] 'R(a":?/‘}'l:z) o<t

k m
VJZ 22 [rl/<”<t)’w=(f](”1= ey Umy) ]

=1 vy =1

)
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@, being 2 majorizing funetor of §, we obtain

my
F‘S‘nl(l’}g 1) = @y{0y, ey Tmy)) > B x(1)
i+

and the two last formulae yield

b s [TTR(, y,2) = 0<1]- Rla,y+1,%) > 3<t Vo< ga(d)-

Since S contains an identity functor, we obtain further
For<t— o< ry(f), and it follows by the previous formula

Fs [T [R(2,y,2) = s <t]— [T [R(2,y +1,t) > 1< g (1]

Transforming this formula by means of easy logical calculations,
we infer that +gQ(y,2)—>@(y—+1,2), which gives FsP(y)—P(y+1).
Lemma 2 is thus proved.

Temma 3. There exists a model of S in which the sentence
[1¥(y) is false.

g
Proof. We start with an arbitrary non-normal model

M =[I,=2*1,...,f%], e g with the model constructed by Skolem
(cf. theorem 19). The set I, of positive integers is, as we have re-
marked above, an initial segment of I. Let o be an arbitrary ele-
ment of I which does not belong to I, and consider the set D(w)
of all descendents of o. We denote by <3 the relation 2* restricted
to D{w) and by fy,...,fx functions ,...,ft restricted to D(w). The
set I, is again an initial segment of D(w) since 1 (which is a second
descendent of o obtained by means of the function without argu-
ments ff=1) belongs to D(w) as do 141, 14141,...

The set D(w) being closed with respect to operation fy,...,fx
and axioms @,...,&; being matrices without bound variables, we
infer from theorem 3 that

M:[D(f'J):<7f1a"-afk]
is a model of S.
First we prove that

(34) n<o for n=1,2,3,...
Indeed, the axiom z<yVy<2o being true in M, one of the
formulae 7 <o, n=0, o-3n must be trae. The second formula is

false since wnonel,. If the third were true, we would obtain from
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t?leorem 14 that yo=1Vo=2V..Vo=n—1. Thig is impossible
since 1,2,... are numerical expressions attached to integers 1,2,...
and hence Eyw=14 would give w=1, i.e. wel, contrary to the
definition of . Formula (34) is thus proved.
We can now show that [] W(y) is false in /. Suppose the con-
. v
trary. It follows that [FaxP(w) and hence kuQ(w,w). Tt follows

from the definition of @ that there exists an element ¢e D(w) such
that for every deD(w)

(35) if kyR(d,o,m), then d<e¢ or d=e.

Since ¢+1 e D(w) it is a descendent of . Suppose that it is
an n-th one. From theorem 28 we obtain the result that if I'(z) is
a numerical expression attached to ¢-+1, then the elements I'y(w)
7, and o satisfy the matrix R(z,y,2) in M: ’

FMR(I'M((I)),%,(J)).

Since I'y(w)=6+1 by theorem 21, we obtain
EuR(e+1,n,0).

Applying now theorem 24 and formula (34), we get
EuR(e+1,0,0).

Putting d=¢+11in (35), we obtain therefore ¢--1~Je or ¢+1l=¢
On. the other hand the axiom #<<#+1 is true in M and hence c% 04—1'
Using the transitivity of <7, we obtain finally ¢~3¢ which is iim:
possible since < is an irreflexive relation.

Lemma 3 is thus proved.

Lemmas 1, 2, 3 prove according to theorem 1 that the sentence

w(1) Iy] ()~ Yy +11— [T¥(y)
y

is not provable in 8. Theorem 30 is thus proved in case L.

IT. § is an arbitrary (extended) Peanian gystem.

'{n_ this case we construct a nom-essential extension S’ of 8
eo?lmmmg 2 majorizing functor and such that no axiom of § com-
tains quantifiers (cf. § 4, theorem 9 and § 5, theorem 12). To 8" we

can apply the vesult obtained in case I ab i
v 2 ase bove and fain & ma-
trix ¥'(#) such that . opfai &

(36) non l——sf’f"(l) n [gf’(y) — \}ll(y+1)] - H ZP,(?]).

y
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§' being a non-essential extension of ‘S, there exists a matrix
O(w) of 8 such that +g ¥'(2)<>0(w). Formula (36) proves that

non-s O(1) Iy] [6(y) >0y +1)1—>I16)
v

and therefore the sentence @(1)-[][0(y)—O(y+1)]—][]O(y) cannot
v v

e provable in S since all theorems of § are at the same time theo-
rems of §’. Theorem 30 is thus proved.

Remarks. 1. Our proof of theorem 30 is effective in the sense
that it enables us to comstruct effectively a matrix @(») with the
property (33) once the system S is effectively given.

2. Our proof applies not only to Peanian arithmetic but to
arbitrary self consistent formal systems § embracing arithmetic
provided that there exist well ordered models of §. As examples
of such systems S we can cite various axiomatic systems of set-
theory, e. g. the systems of Zermelo, v. Neumann-Bernays and
several others. It follows, namely, from the well-known. work of
Gdel [2] concerning the Generalized Continuum Hypothesis that
all these systems possess well-ordered models.
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