A Proof of the Compactness Theorem
for Arithmetical Classes *).
By

H. Rasiowa (Warszawa).

This paper contains a simple mathematical proof of the follow-
ing compactness theorem for arithmetical classes stated hy Tarski:

(*) If K is a set of arithmetical classes and [] X=07), then there
is a finite set LCK such that [] X=0. XeK

Xel

The mathematical proof proposed by Tarski [1] is involved.
The other proof is hased on the metamathematical completeness
theorem of Gddel?). The method used in this paper is a modifi-
cation of the algebraic method of proving the Skolem-Liwenheim
theorem ®). A similar proof can be given for the analogous com-
paciness theorem for arithmetical fumctions 4).

(**) If K is o set of arithmetical functions and O P N, then there
is a finite set L C K such that F\F A. FeX

*) Presented at the Semimu on Foundations of Mathematics in the State
Ingtitute of Mathematics in June 1951.

%) XIJK X and 0 denote the set-theoretical product and the empty set,

Tespectively.

!) After having submitted my
Professor A. Tarski that he has f
theorem.

) See [2].

) This theorem is stated in [1]. The proof of
by the lemmas 3.1 and 3.2. The dual ideal generated by a set K of arbitrary
arithmetical functions does not preserve all the sums (3) (see 3.1 (ii)). By
a simple modification of the lemmas 3.1 and 3.2 this difficulty may be avoided.

Ppaper for publication I was mformed by
ound another mathematical proof of this

(**) differs from that of (*)
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§ 1. Arithmetical functions and arithmetical classes ).

Let A denote the set of all abstract algebrags A=< 4,0 ®),
i. e. the set of all systems Y=d{4,-), where A is a non-empty set
and o is & binary operation class-cloging on 4. The set of all non-
negative integers is denoted by w, and the set of all infinite sequences
#={&g,®y,...> Whose terms are in A is denoted by A®.

1.1. By F we shall denote the set of all functions F the
domain of which is A (in symbols I}(F) =) and such that FAHCA®
for every U=<d,o> ¢ A.

1.2. By Iy and Swim (k1,m=0,1,2,...) we shall mean the
functions defined as follows:

D(Tna) =D Snim) = A
and for every =<4, >

I W) = [ (we=m)");
xeA®
Siim(W) = F (@ro01=0m).
xeA®

1.3. Let F,G ¢« F and let k=0,1,2,...

(i) The union FUG is the function H such that D(H)=A
and H(UA)=FA)+GA) for every A e A.

(ii) The <ntersection FNEG, the complement F, the umoniUH

and the intersection M H; are defined analogously (in terms of ope-
el N

rations on sets of sequences).

(iii) The outer cylindrification’ V F' is the function H defined by

k .

the conditions: D(H)=X and, for every A={A4, >, H(U) is the sit
of all sequences y e A” such that @ F(A) for some sequence wed”,
which differs from y at most in its k-th term. In a similar way we

define the inner cylindrification AT, by replacing “for some sequence”
with “for every sequence”.

5) We shall nse the terminology of Tarski (see [1]). i

) To avoid any appearence of antinomial construction we can GO!lS.ldeI'
only algebras A={4,0) in which .4 is a subset of a certain infinite set V¥ fixed
in advance. See [1]. N

?) The symbol J§ (wx =) denotes the set of all 2ed® such that xx =%/,

XEA
The meaning of F (rxocir;==rm) is analogous.
x€A®
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14. A and V are functions such that D(A)=D(V )=, and
A@)=0, V(UA)=A4" for every A=4,°>.

1.5. We shall write FCG if FA)CGFHA) for every e,

1.6. The set AF of the arithmetical functions is the least set
including ZIrt, Spim for k,I,m=0,1,2,..., and closed under the
operations U, — and \k/ for k=0,1,2,... It iy easy to see that AF is

likewise closed under the operations N and A for k=0,1,2,...
k

1.7. Given F ¢ dF, let Cl(F) denote the set of all algebras
A=(4, 0> such that F(A)=A4".

1.8. By an arithmetical class we shall mean a sob sg,% such
that §=Cl(F) for some Fe L. The set of all arithmetical classes
will be denoted by 4C.

1.9. Given an arithmetical function ¥ let () (k,1=0,1,2,...)
denote a function defined as follows: D(F})=A and for every
A=C4, >, (FL(Y) iy the set of all sequences yeA” such that
2 eF(A) for the sequences ¢ A” defined by conditions xx=y; and
2y=1; for ik,

1.10. By index of ¥Fe¢AF we shall understand the set Ind F
of positive integers defined as follows:

Ind ¥ = E(\){F#:F)‘

hew
It is easy to see that Ind P=J' (A F+T).
keo R

The following lemmas either are cited in [1] or are very simply
derivable.

111 The system B,=<AF,U,N,—> is a denumerable Boolean
algebra ®) (i. e. the power of B, is 8o). A and V are the zero element
and the unit element of By, respectively; C ig the inclusion relation
in B,.

1.12. Given F e AF, there is a Ge AF such that Ol =01(&),
and {\G_—.G for every k=0,1,2,... This function will be called
a simple function. ‘

L13. Ipa=V, Ipy=Iy, Lig NI C Iim.

8) The operations (U, (), — COTYesD

ond to the Boolean operations of join,
meet, and. complement, respectively.
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Tor every B,G e AL and k,l,m,n,pew we have
L. AFOAG= {‘\ (FNG).

k k
1.16. FC G dimplies Q\Fgﬁ\G.

1.16. AFUG) CVEFUEG if keInd 6.
k

k

1.17. AP=VTF.
k k

LIS, V(@)= VIEF if pelndF.
p k

1.19. V((IR= (VY if pm and k=m.

m m
1.20. Given FedF and Togylyy-. knylocw, (F)R)..)in i an
arithmetioal function. (The proof by induction on the length of F
is based on 1.18 and 1.19).

1.21. V8um=V.

1.22. ;Vl;,.z,,,, OV Sutn C Tinyn -

1.23. (ﬁ‘)ﬁ_@}/ﬁ’ for every peo.

1.24. If (MR C G for every pew, then \k/FQG.

1.25. VI = 2 (I} %) [from 1.23 and 1.24].
k

pen

§ 2. Lemma on the existence of prime ideals
in Boolean algebras ).

Tet i be a dual ideall) of a Boolean algebra B=={B,U,N,—>,
let a,a.€B for veT,; and
(1) a=Ya in B.

weT
We shall say that the ideal ¢ preserves the sum (1) if [a] ="Z}l (o]

in B/i, where, for every beB, [b] is the element (of the quotient
algebra B/i) determined by b.

%) X Iy denotes the Boolean sum in Boolean algebra B,.
DEW . .
10) This lemma is due to R. Sikorski. ) .
1) A dual ideal of a Bolean algebra B=<(B, U,_ﬂ’ — is a sub§;t ;{C_{Bs
such that 1°if a,bei then aMbei, 2° if aCd and aei then bei. The ideal i i

proper if i DB.
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2.1. Let an and @n, (veTn, where T'n is an arbitrary set,
n=0,1,2,...) be clements of & Boolean algebra B=I(B,, N, —>
such that
(2) =3 s 0 B

rely .
Then every proper dual ideal i of B preserving all the sums (2) is
contained in o prime dual ideal p preserving oll the sums (2).
In fact, by hypothesis we have

[an] = _54; [aln,z] in QS/{

On account of lemma (iv) in [3] fthere is a prime dual ideal p,
of B/t which preserves all the sums (2). The prime dual ideal p formed
of all @ ¢ B such that [a] ep,, i3 the required one.

§ 3. Fundamental lemmas.

3.1. Let K be a set of simple arithmetical functions. Let i be
the dual ideal of the Boolean algebra By=<(AF, U, N, —> generated
by K. Then
(i) for every arithmetical function @ the condition G ei implies

AGei (k=0,1,2,..), '

k

(ii) 1 preserves all the sums

3) : S(F)ﬁ:ylﬂ (FeAF, k=0,1,2,...).
pew

Proof. The remark (i) follows from the definition of the dual
ideal and from 1.12, 1.14, 1.15.

By 1.23 we have
(4) [(F)filg[\k/l"]-

Supp(ﬁ [(ME C[G] for every pew. Hence (MU Gei and
by @), I/)\((F)ﬁu &) ei. In particular, this holds for such integers p,
thaﬁ_p_ belong neither to Ind F nor to Ind ¢. We then have by 1.16,
ﬁ\((F,ﬁU G)_c_;y(uﬂ)z)u G Therefore \p/((F,Z)uGsi. By 1.18, Wuaei.
Consequently, ‘
(5) [yFICL)

(4) and (5) imply [YF] = Y [(I"k], which proves (ii).
pie
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3.2. Let K be a sei of arithmetical functions. If K is contained
in & prime dual ideal p of By={ A F,J, N, —> preserving all the sums (3),
then O I'==A.

FeX

Proof. Suppose the agsumptions of 3.2 are satisfied. Given
an arithmetical function ¥, let C(FF, A;») denote the characterigtic
function of the set F(A) (where L={4,o>), i.e.
1L it we ()
0 if xeR()

Clearly ¢ may be interpreted as a function whose values belong
t0 the two-element Boolean algebra Byfp. Obviously

o, o ) = § for every e A”.

(6) (PO G 2)=0F,A; ) L G, As 2),

(7) O(F, ;) =—CO(T, U; »),

(8) oLy 1, Wa)= ({3 (I, %; @) = 3 O(FVk, U; ).
3 pee pew

Let k,I be arbitrary non-negative integers. By saying that k=1,
we shall mean that In;ep. By 1.13 the relation = is a congruence
relation. Let |k| denote the class of all n e w such that nak. Let A*
denote the class of all |k|, where kew. For every [k],[l],[m|ed*, let

[Io|o Jt| =|m| if and only if [Sim]=12) in Bofp.

Obviously we have |k|=l] if and only if [Ir/]=1 in By/p.
Making use of 1.21, 1.22 and of the fact that the ideal p preserves
all the sums (3), it is easy to show that the system U*={A* >
is an algebra. Consequently A* e A.

Let a* < 4* denote the sequence #,=|n|. Clearly

(9) (Simy W 0%) =[Srpm];
(10) OIp,z, W 2*)=[Ln,]-

Since the ideal p preserves all the sums (3), it is easy to show
by a simple induction argument (making use of (6)-(10)) that
C(F, W; o*)=[F] for every FeAF. In particular, if FeX then
C(F, A*; a¥)=1. Henco a*eFU*), for every FeX. Consequently,
a* e OV (A*). Therefore N F=A.

FeX FeX

12) 1 denotes the unit element of the quotient algebra By/p. For every
FeAF, [F] denotes the element of By/p determined by F.
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§ 4. Proof of the compactness theorem.

Theorem (*) is the immediate consequence of the following
theorem:

(*+*) If K is a set of simple arithmetical functions and N F=A,
then there is a finite set L£C K such thut ﬂI’ A. FeX

Proof. Suppo% ﬁ F=A and for every finite _ecgc ﬂ 14:|-_/\

Hence, for every fnutc LCK the dual ideai of t,h(, ,ngebm,
By=(AF,U,N,—> generated by L is proper. Consequently, the
ideal genera,ted by &K is proper. By 3.1 this ideal preserves all the
sums (3). Hence, by 2.1, it is contained in a prime dualideal p of B,
preserving all the sums (3). In consequence, by 3.2, N F==A, con-
trary to supposition. res
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Sur un probléme concernant les coupures des régions
par des continus.

Par

C. Kuratowski et C. Zarankiewicz (Warszawa).

1. Préliminaires. Noug nous occupons dans cette note du
probléme suivant.

Imaginons sur la surface sphérique &, (= plan enclidien
augmenté du point & Linfini) % continus ;

(1) Ky, Kooy Ix
et 7 régions (= ensembles ouverts connexes)

(2) Ry, Ry, ..., Rn.

Admettons que:

(i) les continus K, sont digjoints deux & deux,

(i) les régions R, sont disjointes deux & deux,

(iii) pour tout couple %,j on a K;-R;+0,

(iv) aucune région E; n’est une coupure de S, (c’est-d-dire
que Pensemble &§,—R; est conhexe)..

Envisageons tout couple 4,j tel que lensemble I;—K; n’et
pas connexe (c'est-a-dire que le continu K; coupe la région R;) et
désignons par sz, le nombre minimum de ces couples (pour K,
et R; variables).

Il s’agit de caleuler le nombre syp.

L’hypothése de M. Zarankiewicz est que

(3) spa=(k—2) (n—2) pour k=2 et n=21).

Nous nous proposons de démontrer 1a formule (3) pour le cas
particulier ott, soit k<4, soit n<4. Dans le cas général, le probleéme
reste ouvert.

1) Le probléme a été posé par M. Zarankiewicz pour le cas oit n=Fk.
La forme actuelle du probléme est due 3 M. A. Rényi
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