A Proof of the Compactness Theorem for Arithmetical Classes *).

By

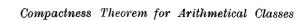
H. Rasiowa (Warszawa).

This paper contains a simple mathematical proof of the following compactness theorem for arithmetical classes stated by Tarski:

(*) If **K** is a set of arithmetical classes and $\prod_{X \in \mathbf{K}} X = 0^{1}$, then there is a finite set $L \subseteq \mathbf{K}$ such that $\prod_{X \in \mathbf{L}} X = 0$.

The mathematical proof proposed by Tarski [1] is involved. The other proof is based on the metamathematical completeness theorem of Gödel²). The method used in this paper is a modification of the algebraic method of proving the Skolem-Löwenheim theorem³). A similar proof can be given for the analogous compactness theorem for arithmetical functions⁴).

(**) If $\mathcal K$ is a set of arithmetical functions and $\bigcap F = \bigwedge$, then there is a finite set $\mathcal L \subseteq \mathcal K$ such that $\bigcap F = \bigwedge$.



§ 1. Arithmetical functions and arithmetical classes 5).

Let $\mathcal A$ denote the set of all abstract algebras $\mathfrak A=\langle A,\circ \rangle$ 6), i. e. the set of all systems $\mathfrak A=\langle A,\circ \rangle$, where A is a non-empty set and \circ is a binary operation class-closing on A. The set of all nonnegative integers is denoted by ω , and the set of all infinite sequences $x=\langle x_0,x_1,...\rangle$ whose terms are in A is denoted by A^ω .

- 1.1. By F we shall denote the set of all functions F the domain of which is \mathcal{H} (in symbols $D(F) = \mathcal{H}$) and such that $F(\mathfrak{A}) \subseteq A^{\omega}$ for every $\mathfrak{A} = \langle A, \circ \rangle \in \mathcal{H}$.
- 1.2. By $I_{k,l}$ and $S_{k,l,m}$ (k,l,m=0,1,2,...) we shall mean the functions defined as follows:

$$D(I_{k,l}) = D(S_{k,l,m}) = \mathcal{R}$$

and for every $\mathfrak{A} = \langle A, \circ \rangle$

$$I_{k,l}(\mathfrak{A}) = \underbrace{F}_{x \in A^{\omega}} (x_k = x_l)^{7};$$

$$S_{k,l,m}(\mathfrak{A}) = \underbrace{F}_{x \in A^{\omega}} (x_k \circ x_l = x_m).$$

- 1.3. Let $F, G \in \mathbf{F}$ and let k = 0, 1, 2, ...
- (i) The union $F \cup G$ is the function H such that $D(H) = \mathcal{R}$ and $H(\mathfrak{A}) = F(\mathfrak{A}) + G(\mathfrak{A})$ for every $\mathfrak{A} \in \mathcal{A}$.
- (ii) The intersection $F \cap G$, the complement \overline{F} , the union $\bigcup H$ and the intersection $\bigcap H_t$ are defined analogously (in terms of operations on sets of sequences).
- (iii) The outer cylindrification $\bigvee_k F$ is the function H defined by the conditions: $D(H) = \mathcal{R}$ and, for every $\mathfrak{A} = \langle A, \circ \rangle$, $H(\mathfrak{A})$ is the set of all sequences $y \in A^{\omega}$ such that $x \in F(\mathfrak{A})$ for some sequence $x \in A^{\omega}$, which differs from y at most in its k-th term. In a similar way we define the inner cylindrification $\bigwedge F$, by replacing "for some sequence" with "for every sequence".

^{*)} Presented at the Seminar on Foundations of Mathematics in the State Institute of Mathematics in June 1951.

¹⁾ $\prod_{X \in K} X$ and 0 denote the set-theoretical product and the empty set, respectively.

²⁾ After having submitted my paper for publication I was informed by Professor A. Tarski that he has found another mathematical proof of this theorem.

³⁾ See [2].

⁴⁾ This theorem is stated in [1]. The proof of (**) differs from that of (*) by the lemmas 3.1 and 3.2. The dual ideal generated by a set $\mathcal K$ of arbitrary arithmetical functions does not preserve all the sums (3) (see 3.1 (ii)). By a simple modification of the lemmas 3.1 and 3.2 this difficulty may be avoided.

⁵⁾ We shall use the terminology of Tarski (see [1]).

^{•)} To avoid any appearence of antinomial construction we can consider only algebras $\mathfrak{A}=\langle A,\circ \rangle$ in which A is a subset of a certain infinite set $\vee *$ fixed in advance. See [1].

⁷⁾ The symbol $E_{x \in A^{\omega}}(x_k = x_l)$ denotes the set of all $x \in A^{\omega}$ such that $x_k = x_l$. The meaning of $E_{x \in A^{\omega}}(x_k \circ x_l = x_m)$ is analogous.

-11

1.4. \wedge and \vee are functions such that $D(\wedge) = D(\vee) = \mathcal{R}$, and $\wedge (\mathfrak{A}) = 0$, $\vee (\mathfrak{A}) = A^{\omega}$ for every $\mathfrak{A} = \langle A, \circ \rangle$.

1.5. We shall write $F \subseteq G$ if $F(\mathfrak{A}) \subseteq G(\mathfrak{A})$ for every $\mathfrak{A} \in \mathcal{A}$.

1.6. The set AF of the arithmetical functions is the least set including $I_{k,l}$, $S_{k,l,m}$ for k,l,m=0,1,2,..., and closed under the operations \cup ,—and \vee for k=0,1,2,... It is easy to see that AF is likewise closed under the operations \cap and \wedge for k=0,1,2,...

1.7. Given $F \in AF$, let $\mathrm{Cl}(F)$ denote the set of all algebras $\mathfrak{A} = \langle A, \circ \rangle$ such that $F(\mathfrak{A}) = A^{\omega}$.

1.8. By an arithmetical class we shall mean a set $S \subseteq \mathcal{R}$ such that $S = \mathrm{Cl}(F)$ for some $F \in AF$. The set of all arithmetical classes will be denoted by AC.

1.9. Given an arithmetical function F let $(F)_k^l$ (k,l=0,1,2,...) denote a function defined as follows: $D((F)_k^l) = \mathcal{R}$ and for every $\mathfrak{A} = \langle A, \circ \rangle$, $(F)_k^l(\mathfrak{A})$ is the set of all sequences $y \in A^{\omega}$ such that $x \in F(\mathfrak{A})$ for the sequences $x \in A^{\omega}$ defined by conditions $x_k = y_l$ and $x_l = y_l$ for $i \neq k$.

1.10. By index of $F \in AF$ we shall understand the set Ind F of positive integers defined as follows:

Ind
$$F = E(\bigvee_{k \in \omega} (\bigvee_{k} F \neq F).$$

It is easy to see that $\operatorname{Ind} F = \underbrace{F}_{k \in \omega} (\bigwedge_k F + F)$.

The following lemmas either are cited in [1] or are very simply derivable.

1.11. The system $\mathfrak{B}_0 = \langle AF, \cup, \cap, - \rangle$ is a denumerable Boolean algebra 8) (i. e. the power of \mathfrak{B}_0 is κ_0). \wedge and \vee are the zero element and the unit element of \mathfrak{B}_0 , respectively; \subseteq is the inclusion relation in \mathfrak{B}_0 .

1.12. Given $F \in AF$, there is a $G \in AF$ such that Cl(F) = Cl(G), and $\bigwedge_k G = G$ for every k = 0, 1, 2, ... This function will be called a simple function.

1.13. $I_{k,k} = \forall$, $I_{k,l} = I_{l,k}$, $I_{k,l} \cap I_{l,m} \subseteq I_{k,m}$.

For every $F, G \in AF$ and $k, l, m, n, p \in \omega$ we have

1.14.
$$\bigwedge_{k} F \cap \bigwedge_{k} G = \bigwedge_{k} (F \cap G)$$
.

1.15. $F \subseteq G$ implies $\bigwedge F \subseteq \bigwedge G$.

1.16.
$$\wedge (\overline{F} \cup G) \subseteq \overline{\bigvee_{k} F} \cup G \text{ if } k \in Ind G.$$

1.17.
$$\wedge F = \sqrt[]{\overline{F}}$$
.

1.18.
$$\bigvee_{p} ((F)_{k}^{p}) = \bigvee_{k} F \quad if \quad p \in \text{Ind } F.$$

1.19.
$$\bigvee_{m} ((F)_{k}^{p}) = (\bigvee_{m} F)_{k}^{p} \text{ if } p \neq m \text{ and } k \neq m.$$

1.20. Given $F \in A.F$ and $k_0, l_0, ..., k_n, l_n \in \omega$, $(((F)_{k_0}^{l_0})...)_{k_n}^{l_n}$ is an arithmetical function. (The proof by induction on the length of F is based on 1.18 and 1.19).

1.21.
$$\bigvee_{m} S_{k,l,m} = \bigvee$$
.

1.22.
$$S_{k,l,m} \cap S_{k,l,n} \subseteq I_{m,n}$$

1.23.
$$(F)_{k}^{p} \subseteq \bigvee_{k} F$$
 for every $p \in \omega$.

1.24 If
$$(F)_k^p \subseteq G$$
 for every $p \in \omega$, then $\bigvee_k F \subseteq G$.

1.25.
$$\bigvee_{k} F = \sum_{p \in \omega} (F)_{k}^{p}$$
 9) [from 1.23 and 1.24].

§ 2. Lemma on the existence of prime ideals in Boolean algebras ¹⁰).

Let i be a dual ideal ¹¹) of a Boolean algebra $\mathfrak{B} = \langle B, \cup, \cap, - \rangle$, let $a, a_{\mathfrak{r}} \in B$ for $\tau \in T$, and

$$a = \sum_{\tau = T} a_{\tau} \quad \text{in} \quad \mathfrak{B}.$$

We shall say that the ideal i preserves the sum (1) if $[a] = \sum_{r \in I} [a_r]$ in $\mathfrak{B}/\mathfrak{i}$, where, for every $b \in B$, [b] is the element (of the quotient algebra $\mathfrak{B}/\mathfrak{i}$) determined by b.

^{§)} The operations \cup , \cap , — correspond to the Boolean operations of join, meet, and complement, respectively.

⁾ $\sum\limits_{p \in \omega} (F)_k^p$ denotes the Boolean sum in Boolean algebra $\mathfrak{B}_{\mathfrak{g}}$.

¹⁰⁾ This lemma is due to R. Sikorski.

¹¹⁾ A dual ideal of a Bolean algebra $\mathfrak{B} = \langle B, \cup, \cap, - \rangle$ is a subset $i \subseteq B$ such that 10 if $a, b \in i$ then $a \cap b \in i$, 20 if $a \subseteq b$ and $a \in i$ then $b \in i$. The ideal i is proper if $i \neq B$.

2.1. Let a_n and $a_{n,\tau}$ ($\tau \in T_n$, where T_n is an arbitrary set, n=0,1,2,...) be elements of a Boolean algebra $\mathfrak{B}=\langle B, \cup, \cap, -\rangle$ such that

(2)
$$a_n = \sum_{\tau \in T_n} a_{n,\tau} \quad in \quad \mathfrak{B}$$

Then every proper dual ideal i of B preserving all the sums (2) is contained in a prime dual ideal p preserving all the sums (2).

In fact, by hypothesis we have

$$[a_n] = \sum_{\tau \in T_n} [a_{n,\tau}]$$
 in $\mathfrak{B}/\mathfrak{i}$.

On account of lemma (iv) in [3] there is a prime dual ideal pa of B/i which preserves all the sums (2). The prime dual ideal p formed of all $a \in B$ such that $[a] \in \mathfrak{p}_0$, is the required one.

§ 3. Fundamental lemmas.

- 3.1. Let K be a set of simple arithmetical functions. Let i be the dual ideal of the Boolean algebra $\mathfrak{B}_0 = \langle AF, \cup, \cap, - \rangle$ generated by K. Then
- (i) for every arithmetical function G the condition $G \in \mathfrak{t}$ implies $\wedge G \in i \ (k = 0, 1, 2, ...),$
- i preserves all the sums

(3)
$$\sum_{p \in \omega} (F)_k^p = \bigvee_k F \qquad (F \in \mathbf{AF}, \ k = 0, 1, 2, \dots).$$

Proof. The remark (i) follows from the definition of the dual ideal and from 1.12, 1.14, 1.15.

By 1.23 we have

$$(4) [(F)_k^p] \subseteq [\bigvee_k F].$$

Suppose $[(F)_k^p] \subset [G]$ for every $p \in \omega$. Hence $(F)_k^p \cup G \in i$ and by (i), $\wedge ((F)_k^p \cup G) \in i$. In particular, this holds for such integers p, that p belong neither to Ind F nor to Ind G. We then have by 1.16, $\wedge _{p}(\overline{(F_{/k}^{p} \cup G)} \subseteq \overline{\bigvee_{p}((F_{/k}^{p}) \cup G}. \text{ Therefore } \overline{\bigvee_{p}((F_{/k}^{p}) \cup G} \in i. \text{ By } 1.18, \overline{\bigvee_{k} F \cup G} \in i.$ Consequently,

$$[\bigvee F] \subseteq [G].$$

(4) and (5) imply $[\bigvee_k F] = \sum_{n \in \omega} [(F)_k^n]$, which proves (ii).

3.2. Let K be a set of arithmetical functions. If K is contained in a prime dual ideal p of $\mathfrak{B}_0 = \langle AF, \cup, \cap, - \rangle$ preserving all the sums (3), then $\cap F = \wedge$. $F \in \mathcal{K}$

Proof. Suppose the assumptions of 3.2 are satisfied. Given an arithmetical function F, let $C(F, \mathfrak{A}; x)$ denote the characteristic function of the set $F(\mathfrak{A})$ (where $\mathfrak{A} = \langle A, \circ \rangle$), i. e.

$$C(F, \mathfrak{A}; x) = \begin{cases} 1 & \text{if } x \in F(\mathfrak{A}) \\ 0 & \text{if } x \in F(\mathfrak{A}) \end{cases} \text{ for every } x \in A^{\omega}.$$

Clearly C may be interpreted as a function whose values belong to the two-element Boolean algebra $\mathfrak{B}_0/\mathfrak{p}$. Obviously

(6)
$$C(F \cup G, \mathfrak{A}; x) = C(F, \mathfrak{A}; x) \cup C(G, \mathfrak{A}; x),$$

(7)
$$C(\overline{F}, \mathfrak{A}; x) = -C(F, \mathfrak{A}; x),$$

(8)
$$C(\bigvee_{k} F, \mathfrak{A}; x) = C(\sum_{p \in \omega} (F)_{k}^{p}, \mathfrak{A}; x) = \sum_{p \in \omega} C((F)_{k}^{p}, \mathfrak{A}; x).$$

Let k, l be arbitrary non-negative integers. By saying that $k \approx l$, we shall mean that $I_{k,l} \in \mathfrak{p}$. By 1.13 the relation \cong is a congruence relation. Let |k| denote the class of all $n \in \omega$ such that $n \cong k$. Let A^* denote the class of all |k|, where $k \in \omega$. For every $|k|, |l|, |m| \in A^*$, let

$$|k| \circ |l| = |m|$$
 if and only if $[S_{h,l,m}] = 1$ 12) in $\mathfrak{B}_0/\mathfrak{p}$.

Obviously we have |k|=|l| if and only if $[I_{k,l}]=1$ in $\mathfrak{B}_0/\mathfrak{p}$. Making use of 1.21, 1.22 and of the fact that the ideal p preserves all the sums (3), it is easy to show that the system $\mathfrak{A}^*=\langle A^*, \circ \rangle$ is an algebra. Consequently $\mathfrak{A}^* \in \mathcal{A}$.

Let $x^* \in A^{*\omega}$ denote the sequence $x_n = |n|$. Clearly

$$C(S_{k,l,m}, \mathfrak{A}^*; x^*) = [S_{k,l,m}],$$

(10)
$$C(I_{k,l}, \mathfrak{A}^*; x^*) = [I_{k,l}].$$

Since the ideal p preserves all the sums (3), it is easy to show by a simple induction argument (making use of (6)-(10)) that $C(F, \mathfrak{A}^*; x^*) = [F]$ for every $F \in AF$. In particular, if $F \in \mathcal{K}$ then $C(F, \mathfrak{A}^*; x^*) = 1$. Hence $x^* \in F(\mathfrak{A}^*)$, for every $F \in \mathcal{K}$. Consequently, $x^* \in \cap F(\mathfrak{A}^*)$. Therefore $\cap F \neq \wedge$.

¹²⁾ I denotes the unit element of the quotient algebra 30/p. For every $F \in AF$, [F] denotes the element of $\mathfrak{B}_0/\mathfrak{p}$ determined by F.

8 4. Proof of the compactness theorem.

Theorem (*) is the immediate consequence of the following theorem:

(***) If \mathcal{K} is a set of simple arithmetical functions and $\cap F = \wedge$, then there is a finite set $\mathcal{L} \subseteq \mathcal{K}$ such that $\cap F = \wedge$.

Proof. Suppose $\bigcap_{F \in \mathcal{K}} F = \bigwedge$ and for every finite $\mathcal{L}\subseteq \mathcal{K}$, $\bigcap_{F \in \mathcal{L}} F = \bigwedge$. Hence, for every finite $\mathcal{L} \subseteq \mathcal{K}$ the dual ideal of the algebra $\mathfrak{B}_0 = \langle AF, \cup, \cap, - \rangle$ generated by \mathcal{L} is proper. Consequently, the ideal generated by $\mathcal K$ is proper. By 3.1 this ideal preserves all the sums (3). Hence, by 2.1, it is contained in a prime dual ideal p of B. preserving all the sums (3). In consequence, by $3.2, \cap F \neq \Lambda$, contrary to supposition.

References.

[1] A. Tarski 18), Some Notions and Methods on the Borderlinie of Algebra and Metamathematics, Proceedings of the International Congress of Mathematicians 1 (1950), pp. 705-720.

[2] H. Rasiowa and R. Sikorski, A Proof of the Skolem-Löwenheim Theorem, Fundamenta Mathematicae 38 (1951), pp. 230-232.

[3] - A Proof of the Completeness Theorem of Gödel, Fundamenta Mathematicae 37 (1950), pp. 193-200.

Sur un problème concernant les coupures des régions par des continus.

Par

C. Kuratowski et C. Zarankiewicz (Warszawa).

I. Préliminaires. Nous nous occupons dans cette note du problème suivant.

Imaginons sur la surface sphérique \mathcal{S}_2 (= plan euclidien augmenté du point à l'infini) k continus

 K_1, K_2, \ldots, K_k (1)

et n régions (= ensembles ouverts connexes)

 R_1, R_2, \ldots, R_n . (2)

Admettons que:

- (i) les continus K_i sont disjoints deux à deux,
- (ii) les régions R_i sont disjointes deux à deux,
- (iii) pour tout couple i, j on a $K_i \cdot R_j \neq 0$,
- (iv) aucune région R_I n'est une coupure de \mathcal{S}_2 (c'est-à-dire que l'ensemble $\mathcal{S}_2 - R_I$ est connexe).

Envisageons tout couple i, j tel que l'ensemble $R_i - K_i$ n'est pas connexe (c'est-à-dire que le continu K_i coupe la région R_i) et désignons par $s_{k,n}$ le nombre minimum de ces couples (pour K_i et R_i variables).

Il s'agit de calculer le nombre $s_{k,n}$.

L'hypothèse de M. Zarankiewicz est que

(3)
$$s_{k,n} = (k-2)(n-2) \text{ pour } k \ge 2 \text{ et } n \ge 2^{-1}$$
.

Nous nous proposons de démontrer la formule (3) pour le cas particulier où, soit $k \leq 4$, soit $n \leq 4$. Dans le cas général, le problème reste ouvert.

¹³⁾ I wish to thank Professor A. Tarski for the opportunity he gave me to see the manuscript of his paper.

¹⁾ Le problème a été posé par M. Zarankiewicz pour le cas où n=k. La forme actuelle du problème est due à M. A. Rényi.