On Uniform Convergence in Some Classes
of Functions ™*).

By
M. Nosarzewska (Wroclaw).

The following theorem is well known1):

(*) If @ sequence of monotonic functions defined in an open inder-
val converges everywhere t0 o continuous function f, then it converges
almost uniformly %) to f.

The question arises whether an analogous theorem holds for
other classes of funetions, i. e. whether, for another clags of fune-
tions, the pointwise convergence or another weaker kind of con-
vergence always implies almost uniform convergence ). The classes
examined in this paper are: the class of all convex functions, the
class of all functions convex relative to g family @ of funetions,
the class of all functions the p-th difference of which has a con-
stant sign ¢), and the class of all subharmonic functions on a plane
domain,

Suitable examples (v.5) show that the answer is negative in
the case of subharmonic functions.

The answer is affirmative for the remaining classes of fune-
tions mentioned ahove (v. 2-4). Besides the known kinds of con-

*) This paper contains the chief results from the author's doctoral thesis
presented at the University in Wroctaw, 1949, The paper was presented at the
Polish Mathematical Society, Wroctaw Section, on November 19, 1048.

) Bee e. 9. G. Polya und G. Szegd, Aufgaben wnd Lelrsilze aus der
Analysis, Band I, Berlin 1925, p. 63 and 126. See also L. Maxrezewski et M. No-
sarzewska, Sur la eonvergence uniforme et lo mesurabilitd relative, Collogquium
Mathematicum 1 (1947), pp. 15-18.

*) The definition of almost uniform convergence is given on p. 40. The
word "almost” should be omitted in the case of a closed interval.

3y This guestion was posed by E. Marczewski.

1) The examination of this clas:

s of functions was g it
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vergence (pointwise convergence, asymptotic convergence, con-
vergence in a dense subset) we shall examine a still weaker notion

called the pointwise appromimation of a function by a sequence of

functions. It will be proved that, for the classes of funections, con-
sidered in 2-4, pointwise approximation always implies almost
uniform convergence.

1. Pointwise approximation and various kind§ of
convergence. The letter I will always denote a fixed open inter-
val a<@-<<b. ANl functions considered in 1-4 are real and de-
fined in I.

A set ACT is said to be #-dense (5 >0) if for every @ ¢ I there
is an wged such that |o—a)<<y. Clearly every dense subset of_ I
is n-dense for every 5>0, and every measurable set ZCI with
mes (I —2Z)<#n is n-dense. ) o

A sequence of functions {f} is said to approzimate wmiw_wc
a funetion f provided that, given >0 and >0, there is an in-
teger N such that the set

. E (falo)—f@)<e)

is #-dense for every m >N. . o

For instance, the sequence {sin nz} a,pprOX{mates pointwise
every continuous function f such that |i(m)(§ 1. This ‘ex'm'nple shows
that a sequence {f,} may pointwise a,pprommat(-a an infinite numbe',r
of functions f. Therefore pointwise approximation cannot be consi-
dered as a kind of convergence. O )

The following simple lemmas show that pointwise approxi-
mation is a weaker notion than the kinds of converegnce usually
considered.

Lemma 1. If S is a dense subset of I and Iim]‘,,‘(m)= f(z) for
every wel, then the sequence {f.} approwimates pointwise the func-
tion f.

Let ¢>0, >0, and let S, be an 7-dense finite subset of 5.
Clearly there is an integer N such that

[falw)—f(m)|<s for n>N and xS,

The set J (|fa{#)—f(#)|<¢) is thus y-dense for n>N.
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Lemma 2. If a sequence {f»} of measurable functions converges
asymplotically %) to a measurable fumction f, then {f.} appromimates
pointwise the function f.

Given ¢>0 and #>0, there is an ¥ such that

mes (F (|fa(@)—f(@)] > &)<y for n>N.

Thus the set F (Jfa(2)—F(%)
q.e. d. ¥
. A sequence {f,; of functions on I iy said to converge almost
uniformly ©) to a funetion f if {f,} converges uniformly to f on every
closed interval I,C1. ‘

<g) is g-dense for every n=N ,

Lemma 3, In order that o sequence {fa} converge almost uni-
]for?nly to & funcion f and that this limit function f be continuous
U is necessary and sufficient that, for every xyeI and for every a>0,
there be an >0 and an integer N such that ‘ ’

(1) fa(@)—fz)l<e for n>N and
The necessity follows from the inequality
Ifa(@)—F(@o)| < Ifa() —F(@)] + ) —f(y)]-

To prove the sufficiency we first notice that f(o)==1im fp (2}
for every wel on account of (1). The condition (1) implies that

2 f@)~fwo)|<e it |w—amy| <y

which proves the continuity of f.
We infer from (1) and (2) that

3) (@) —f(2)| <2¢ if n>N and fo—aof << .

lo—my] < 7.

Let I,CI be a closed interval. For ev
; . ery x,el, there exists
’:;h nelghbonrhooq lw—.w9|<n where (3) holds. By thg Heine-Borel
Goeorem there is a Flmte covering of I, by such neighbourhoods.
nsequently, there is an integer N, o Such that -

Ifalz)—f(z)| <26 for 2ely, and >N,
Thus- {f»} converges almost uniformly to 7,

*) For the definition of asym i
ptotic conv:
Measure Theory, New York 1950, p. 91. craenee,
‘ ®) This notion is due to P. Montel,
fonetions analytiques, Paris 1927, p. 26.

see ¢. g. P. H. Halmos,

Legons sur les familles normales des

icm

Uniform Convergence in Some Classes 41

2. Monotonic functions. Theorem (*) can he proved in
the following stronger form:

Theorem I. If a sequence {f.} of monotonic functions approni-
mates pointwise & continuous function f, then {fn} converges almost
wniformly to f.

It iy sufficient to prove that every sequence {fn} of non-de-
creasing functions satisfies the condition (1) of Lemma 3.

Let ¢>0 and z,el. The fanetion f being continuous, there

is an x>0 such that
(1) lf@)—flag)l< 5 i fo—aol< 2.
Let N be an integer such that, for » >N, the set
(2) Au=E(lto)—flol <3
is ?—)Z-dense. There are points zy,s,e4, such that
(3)_ Hq—2m <@y <<@y—1n and @y n<<y<Zy+ 2.

It |z —,|<y and n>N, we infer from (1), (2), and (3) that

& &
Fo) — &< f(3) —5 < Fa (@) < ful®) < fu(s) < f(202) +-5<[() +&.
Hence
[fa(@)—f(mo)| <& for n>N and |o—n|-<7,
3. Convex functions. A function f is said to be convexr if
Hm) (a5 23, f(y); %o, f(2a))  fOT 2 SOK Ty 81,85 € L,
where w(; &, ¥g; €2,Y) is the linear function, ¢.e. which has the
value y; at the point z;, ¢=1,2.
This definition of convexity may be generalized 7). Instead of
linear functions we can take another class @ of functions.
Let @ be a class of functions on I, such that
(a) every function ¢ e® is continuous;
(b) given numbers &, %, Yy, Y, (¥, @€ I, 2= a,), there is exactly
one function @@ such that p(z)=y:, +=1,2.
This function g(z) will be denoted by ¢(®; y,¥s; LyYs)-
A funetion 7 is said to be P-convex if (for every @y,®, € I, 2,< ;)
we have

q. e. d.

1) < pl@; @0, f(@); 0, f(00))  TOr 2 <KD,

7) E. F. Beckenbach, Generalized Conver Funclions, Bull. Amer. Math.
Soc. 43 (1937), pp. 363-371.
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The conditions (a) and (b) imply the following properties 8)
of @ (where ¢y, D, @y, wye I, 3,<1,):

) I pl@)<gym) and @(0,)<@y(m,), then pz)<py(w) for
LK Ty ‘

(i) If gy(@)<ouye) and gy(g,) >pys,), then gy@)<py@) for
a<a gy and ¢ (1) >qy(2) for s, <o<<b. Analogously, if g, (») >y(%)
and ¢, (#,)<@y(%,), then @(x)>g@,(x) for e u<w and @ ()< py(a)
for g, Lo<h. 0

(iii) Given numbers yy,y, and >0, for every closed interval
I,CI there exists an >0 such that

lolews @'y y's 2,97 — s @y, 95 By y0)| << 6

for every @ e I, |o'—ai|<a, |0 —ay| <y, [y'—y,]<n and |y —y,l <.
The P-convex functions have some properties similar to those
of the convex function in the usual senge. For instance,
(iv) If f is O-convex and @,,m, ¢ I, #,<a,, then

A#)2 p(2; @5, f(@y); @y, {(2,)) for a<o<e, and By << D,

(v) Every ¢-convex function is continuous o).

Lemaa 4. Let F be a set of D-conver functions. If &>0,
By<Ly< Wy, &y, @yel, and if, for every feF, we have

(1) [Fa)—yi <§- for i=0,1,2,

then there is an 1 >0 such that [f{w)—y,|-<e for every f T and | —ao|< 9.
Sinee the functions

Il

?’1(‘”)2‘77(”3 o, y1+%5 @o, Yo+
Pol@) ?)(xi”o:yo‘l‘%; Ty Yot

Pa(@) =g w; oy, 9.+ %5 Zoy Yo

e
i)
&
2]
£
i)

(f"(m) :q)(a;; Zo, ?/0"“:92-5 @y, Yo+ %) ?

%) Loc. cit. 7).
L] IR
and R)gh(ge? are other defm}\tmns of relative convexity (I. T, Bee kenbach
(1045), pp, 220.530) sacn G Jonves Functions, Trans. Am. Math. Soc. 58
5), pp. - ncl at the ctions in & can bhe n - Math. .
i i . - . on-continu ;
then pointwise convergence does not imply almost uniform eonvergencoeu& but
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are continunous, there is an #,>0 such that
& o _
2) ]¢p(w)—tpp(w0)|<§ for p=1,2,3,4 and |z—z|<7,.

Let 7==min (g, Be— &y, B,—,). It follows from the definition
of the ®-convexity and from (i), (ii), (1) and (2) that, for every feF,
the condition #,—n<<a<<#, implies

f@) =y < @@ 3y, (@1); B0, f(%0)) — Yo < Fu(®) — o=
(@1(B) — g (8)) 4 (o (@o) — o) < &
and
1) — Yo = @(&; Do, [(@a); Bay [(F)) — Yo =>Pa(2) — Yo=
(pa(®) —4(@o)) + (q4(0) —Yo) >—e.
Analogously, if s,<<a#<#y+7, then
H(@)— Yo gal @) —Yo< e and f(#) — o2 ga(0) =Yg >—¢
Consequently, for every feZ,
lf@)—yol<e it |o—m|<<y, q. e d.

Lemma 5. If {f} is & sequence of P-conver functions and
B fu(#)=f() for every wel, then f(x) is continwous and {fn} con-
werges uniformly to f.

It is sufficient to prove that the condition (1) of Lemma 3
is satisfied.

Tet >0 and z,el. Since I is open, there are #,2,el,
@< @y-< . Let N be an integer such that

[l —Fflap| <5 for =a>N, i=0,1,2.

By Lemma { there is an % >0 such that
[falm) —f(mg)|<e i 2>N and |r—m|<y, q. e d.

Lemma 6. For every nwmber m and for every closed interval
I,C1I there is a function ¢e® such that p(z) >m for zely.
Let ¢ and d be the end points of I, e<d, and let

gn(®)=p(2; ¢,n; d,n)
and
Qn=[ (ga(x)=m).

xely
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It is sufficient to prove that @, =0 for an integer n,. In fact,
the function ¢, (z) is then the required one.

Suppose the contrary, i. ¢. @n==0 for all positive integers n.
Since gap1(2) >pa(2) for wel, by (i), we have @,11CQ,. The sets Q,
being compact, there is a point #, ¢ @, for n=1,2,..., 7. e.

(3) ra(@g)<m  for mn=1,2,..

Let ny be such an integer that

Ty (C) =Ny >p(6; Zo,m 415 d,m--1)
and
(@) =19 >q{d; 29, m4-1; &, m~-1).
By (i) we have

Ty (%) = (@93 B, m~4-1;5 dym+1)=m--1
which contradiets (3).

Lemmna 7, Let F be a set of D-comves functions, let Ly=<a',b'>CI
be « closed interval, and let n=% min (@’ —a,b—b’). I f there is @ num-
ber m such that the sets

A(f)y=F (f(=)<<m)

X

are 7-dense for every f e, then there is a number M such that Hoy<M
Jor every feF and for every wel,.

By Lemma 6 there is a function Poe P such that gy(z) >m if
at+n<e<b—ny, Let M be the least upper bound of @y in the in-
terval a--n<e<h—y.

Let feF. Since A(f) is y-dense, there w ints .2
such that 7 ) Te points a2 € A(f)

o+n<z'<at+3y<a, b'<b—3n<a'<b—y.
The property (i) implies that
o) < g(w; 2, f(a'); 8", fa'")) < pla; @', m; &y m) < o) < M
for every nel,.
Theorem IT, If a sequence {f,}

wiimates poinlwise a continuous function
uniformly to f. !

By Lemma 5 it is sufficient i
for overy o7 to prove that lim Frl@o) = f(z,)

of ®-conver functions appro-
f) then {fs} converges almost
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Let >0, and let I,=<a’,b’> be a closed . interval,
a< @' < By b'<b. Let n=3 min (&' —a,b—b’). There is an integer N,
such that the set
E (|fal@)—F(a)|<1)

is g—-dense for m>N,. Since f is continuous, there is a number m
-

K/
such that f(z)<<m—1 for a+g<m<b~:z. Hence the set

E (fn() <m)
x
is n-dense for » >N;. By Lemma 7 there is a number A such that
Fal®) < for wely; and n>N;. Let
%(v’”):fp(m: Wo;f(‘”o)? b’1 M),
q’z({ﬂ)z(p(w; a’y M m,, ).

By (iii) there is a §>0 (4= 8 e Ip) such that

(4) ey (@) —(ex; By, F80) +35 B, M)|<s
and
{5) o) —ap(; @, M5 @, f(@00) + )| <&

if |o—w|< 8, |#|< 6 and a'S<mLY"
Since f is continuous, there is a y >0 such that

6 .
(6) . ,|f(af')”‘f(xo)l<§ if ]17"‘—970‘<'V'

Let p=min (8,7). There is an integer N (>DN,) such that
the sets

M A= (a1~ <5)

are {;"-dense tor n>N. Consequently, if n >N, there is a point

@pe A, such that s, —u<sa<,. We have from (i), (4), (6), (7)

5,
1200 (505 s o 1, D)< 55 )+ 53,
< (@0} Ba, f(@o) + 85 1", M) < () + = (%) +&-
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It follows from (i), (ii), (3), (6), (7) that

e 005, 35 ) o 1,20 ) —)
> @(@; 0, M5 By, f(5) — 6) > py(wg) — &= Harg)—e.

_ Hence [fu(wy) —f(m)|<<e for n >N, which proves that
Hm f (@) =f(,), q.e. d.

If we replace the pointwise approximation in Theorem TT by
convergence on a dense subset or by asymptotic convergence, we

. o . . ’

can omit the assumption that f is continuous. This is the subject;
o-f Theoren%s III and IV below. To prove those theorems we shall
first establish the two following lemmas:

Lemma 8. Let F be o set of D-convex functions and let B(z)
be the: set of all mumbers (@) where feF (wel). If all the sets F(x)
are simultaneously bounded from above by a nuwmber M, and if, for
an soel, the set F(w,) is bounded from below by a 'nu'n’wber m 7then
every set F(z) (wel) is bounded from below. ’/

Let wel. If w<ay, let #yel, 3 >x,. By (ii) and (iv)
K@) glw; w4, f(m,); @, {(%61)) 2 leo; g, m; @y, M).
It >, let #yel, mo>m,. By (ii) and (iv)
1) > (w; w3, 1(w03); @0, 1)) > p(; 5y, M %o, ).
The Lemma is established.
ha Lenzzgc_z 9. L{sf {f{.}.be @ sequence of G-comvex fumctions such
f@)y=1m f,(x) is finite for every mel. Then f(@) is D-conven
Let my<a<my, v, 2, ¢ 1. Given ¢ i i gt '
yel. N &>0, there is an integer N suc
that fu(®) <f(z) 4¢ for n >N, i=1,2, "’We have by (i) e A7 el
Tn(®) <g(w; xlyfn(ml); wz,fn(mz))<¢(w§ w‘lvf("’"l) +& @y, f(ag) + e).
Consequently

1) <pl; @y, f(@n) + & 3, H(a) - o).
The . proposition (i) means that g(w; 2,9, Ty,Yy) I8 a con-

tinuous function with res
pect to all the ia i
taneously. Hence, when c—s 0, we olota,invam1ables Pt sty sl

-f(a;) S35 7 fwy); By f(#5)), q.e. d.
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Theorem IIL, Let {f,} be a sequence of D-convex functions.
If lim f(2) emists for o belonging to a dense subset SCI, then the se-
quence {fn} converges almost uniformly to o function f.

Let Iy=<a',b’>CI be a closed interval, and let

7 =4 min (&' —a,b—0").
Let 4 De a finite #-dense subset of 8, and let

m=max (lim f,(®))+1.
xed
There is an integer N such that |[lim f,(@)—Ffa(x)]<1 for n >N
and #e4. Consequently, the sets

E (falw)y<m) where a>N

are 5-dense since they contain the z-dense set 4. By Lemma 7 all
functions f, (#>N) are simultaneously bounded from above in I,.

The interval I, being arbitrary, we infer that the set F(x) of
all numbers f,(#) (n==1,2,...) is bounded from above for every xeI.
Since F(z) is bounded from below for each wefS, we infer from
Lemma 8 that F(z) is bounded from below for every sel. Con-
sequently f(@)=1im f,(2) is finite, thus, by Lemma 9, the function f
is @-convex and continuous (see (v)). By Lemma 1, the sequence {f»}
approximates pointwise the function f. By Theorem II, the se-
quence {f,} converges almost uniformly to 7.

Theorem IV, If a sequence {fn} of D-convex functions converges
asymptotically, then it converges almost uniformly to a continuwous
funetion f.

The sequence {f,} contains a subsequence {fm,} which con-
verges almost everywhere. By Theorem ITI, the sequence {fm,}
converges almost uniformly to a continuous function f. Clearly
f=1im as f,. Consequently {f,} approximates f pointwise, by Lemma, 2.
By Theorem II the sequence {f,} converges almost uniformly to f.

4. Functions with non-negative p-th difference. The
first difference of a function f is

Al(m’ h:f)‘_“d('ﬂy h7f):f(w+ h)—'f(‘rﬁ)
By induction, the p-th difference of f is

AP, by fy = AP @+ kB, f) — AP (e, By ).
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Clearly
n
) Ml fy= 3 (-1 (ﬁ;) Ha-kkh),
k=0
r
(i) AP, 2h,f)= > ( ,’C ) AP (w+kh, h, f),
k=0
(iii) AP (w, by f+ g)=AP (2, b, f)+AP (w, b, ).

The p-th difference A”(x,h,f) is defined only tor such wel
that s+ phel.

We shall consider only the case h>0. Since A(z,h,f)=
=(—1P 4" (# 4 hp,—h,f), the above restriction is unessential.

In the sequel % is always a positive number.

Let ¥, be the class of all functions on I with non-negative
p-th difference, 4. e. the class of all § such that A? (@, h,f) 20 for
arbitrary #el and h>>0 for which the p-th difference is defined.
Evidently ¥ is the class of all non-decreasing functions, and ¥, is
the class of all convex functions.

Lemama 10. Let feWppq and let age I and hy>0 be such that
AP (2,1, f) >0. Then
h
(1) Ap(mo—i—pho,—;%,f) >0 for m=0,1,2,...

Since fe¥,,4, we have
(@) et Ehh N>R i k>, kil=0,1,2,...
By (i), ‘

P
(D ho h
() (wo+k;3—°,g,f)=ﬂ"(wo,ho,f> >0,
k=0
Hence, by (2), 47 by o i
, by (2), Zo+P5,5,7)>0. Analogously, we obtain
by induetion on m that
h ho\ b,
A’(wo+p(g°+...+§;';~),;°;,f)>0.

The last inequality and (2) directly imply (1).
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Lemma 11. Let FC¥,y, let Iy=(a’,b’) be an open subinterval
of I, and let |f(@)|<<M for every me Iy and for every feF. Given two
numbers @y,®y e Ly (#,<<,), there is a continuous function g on I such
that, for every feF,

(3) AP, f+g) >0 if
(4) AP, h,g—f) >0 if a<w<z,.

By B D,

It is sufficient to put

g(o)= deml’, where d=—2—min (#;,—a’, b’ —,)
Clearly
AP oP P A
(5) AP (2, by 9)=2" M al
(6) 47 (@, 1, g) = 0.

Proof of (3). Consider first the case where d<<h<2d. Leb
0<Lugd. We have

AP (&' a4, b, f) >—2P M

on account of (i) since a'+d-+u-+t+khel, for k=0,1,2,...,p.
Consequently, by (iii) and (5),

I3

" . A”(a’—l—d-}—u,h,f-f—g)>-2’M+2”M(a-)p>0.

Since feW¥,: and (6), we infer that f4-ge¥p4s. Hence, by
Lemma 10 and (7),

h ke h
w(w+atutpht S0 4) > (@ at uct ph gz, fg) >0

for m=0,1,2,..., k=0,1,2,..., 0<u<d<h<<2d. .
Since every number z>m; can be represented in the form

h
m-—:a’%—d—}-u-{—ph—i—kﬁ,
&
where 0<{u<d and % is a positive integer, we obtain
A’(m,%,f+g‘)>0 if m<wel, d<h<2d and m=0,1,2,..

Fundamenta Mathematicae, T. XXXIX. 4
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Since every number from the open interval (0,2d) may be
represented in the form /2™, where d<{l<2d and m is one of the

numbers 0,1,2,..., we infer that

AP, f4g)>0 if z<wel and 0<h<2d.

The formula (ii) implies that the restriction h<2d can bhe
omitted. The inequality (3) is proved.
Proof of (4) is analogous to that of (3).

Lemma 11 is very useful in inductive proofs of theorems which generalize
the properties of convex functions to the cases of functions in ¥p(p>2). B. g,
the following theorem is a simple consequence of Lemma 11:

Theorem V). Every function fe Wp (p=2) bounded on an open interval
I,cI is continuous in I. .

The proof is by induction on p. If p=2, { is convex and, consequently,
continuous 1),

Suppose Theorem V is true for p. Let fe Wpi1 be bounded on an open

interval I,cI. Let y,2, €15, 2;<<@. By Lemma L1 there is a function g continuous
in I such that

AP (@b, f+9) >0 i w>um,
and

AP(h, g—f) >0 if @<,

By: fhe in(}ueﬁive hypothesis, f+g¢ is continuous on the interval (21, b),
and g—j is continuous in (4,7,). Consequently, f is continuous in I, q. e. d.

Theorem VI. Suppose {f,} is a sequence of functions in ¥, (p=2),
and |fu(@)|<M for @ in an open interval I,CI, n=1,2,...

If one of the following conditions is satisfied:

(a) {f,l} approximates pointwise a continuous function f;

(b) im f, (@) ewists for x n & dense subset of I;

(¢) {fa} converges asymptotically in I H
then f{y‘,,} converges almost uniformly in I to o continuous Junction
(=7 in the case (a)).

The proof is by induction on p.

) If p=2, the functions f, are convex. Theorem V is then a par-
ticular case of Theorems IT, ITI, IV.

1) Proved by T. Popoviciu (Sur lques idté ] i
> ) quelques propriéids des fonctions dune
ou deuwx variables réelles, Mathema,tlca. 8 (1934), pp. 1.85, in particular p. 56)
under lil;;leF st]gonger assumption that f is bounded in the whole interval I
- Bernstein and G. Doetsch, Zur Theorie d 2 i
Math. Annalen 76 (1915), DPp. 514-526. ¢ dor Romvegan, Funltionon,
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Suppose Theorem V is trae for an integer p>2. We shall
prove that it is true for p+-1.

Let {f.} be a sequence of functions in %4, both bounded in
an open interval I,CI, and let &y,», eI, #,<<2,. By Lemma 11 there
is a continuous function g such that

AP (@, b futg) >0 if m>m
and
A (@, hyg—fn) >0 i <z,

By the induction hypothesis, the sequence {f,+g} converges
almost uniformly in the interval (»y,d), and the sequence {g—fa}
converges almost uniformly in (a,z,). Consequently {f,} converges
almost uniformly in I=(a,b), ¢.e. d.

5. Subharmonic functions. The following examples show
that, in the case of subharmonic functions?) which can be con-
sidered as generalization of a convex function to the case of func-
tions of two variables, pointwise approximation does not imply
convergence, and weaker kinds of convergence do not imply stron-
cer kinds.

1. The sequence of subharmonic funetions

1 , 1
'un(w,y)=510g[w+ 5 —J—y]

converges everywhere to 0, but not almost uniformly in a neigh-
bourhood of (0,0).
2. The sequence of subharmonic functions

1
Up(2,y)=max [e,, s log (z+ y)]

where {¢,} is a divergent sequence of negative numbers, converges
if (z,y)==(0,0) and diverges at the point (0,0).

3. Let K be a fixed square. Divide K into four squares
K, K, K, K,; divide each of these four squares into four squares
denoted by Ks,Kg,...,Kasp; and so on to infinity. We obtain an in-

12) For the definition of subharmonic functions, see T. Radé, Subkarmonic
Functions, Berlin 1937.
A%
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fm.lt-e sequence of squares K, with diameters 24, and with middle
points (zy,y,). The sequence of subharmonic functions

1
Un(,Y) “Tog it log [#—&n+y —yn]

gznlw%erges asymptotically to 0 in K, but it diverges at every point
; ‘ ]

4. Divide a fixed square K into four squares. Denote by K
and K, the squares lying on the principal diagonal of K zu'ld. b‘;
K3 and Ky, the two remaining squares. Now divide oa(:h of the
4 squares Ky (j=1,...,4) into four squares and denote the sqli(»rex
t'hus obtained by Ky, (i=1,...,4%) so that the squares Iy ; (i=1, ... 4. -fL2l)
lie on principal diagonals of Ky ;. Continue this proé}ess t(; ixifini‘t r
s? that Koiq; (fi:l,...,%&"“) lie on principal diagonals of K y
(7=1,...,4"). Let 2h, be the diameter of K, 7, and let ( "
the middle point of K. '

The sequence of subharmonie funetions

mﬂ;}r?/n.l)t be

Feat
O L
Un(B,y) = 2 Tog 2 log ("v—mn,p + f’/—yn,p)
-

=1

approximates pointwise the function u(w,y)

=1 in K, but it
1not converge asymptotically to w(2, ) ’ 1t does

icm

On Partition of an Ordered Continuum.
By

Josef Novak (Praha).

The result of the consecutive division of an ordered conti-
puum is & system of intervals which satisfy certain conditions
(Theorem 3). By these conditions — as in axioms 1040 — a sy~
stem b of intervals of an ordered confinuum € — called a parti-
tion of O — is defined. From a thorough study of these axioms
a row of properties emerges concerning the partition P and the
ordered continuum C. For instance: For a given ordered conti~
nuum O all the partitions have the same cardinality equal to the
least cardinal m(C) of the set which is dense in C. Therefore the
cardinality of the partition of C is topologically invariant.

In this paper the following theorem ig proved: Let € be an
ordered continuum. Then there exists an ordinal ¢ of power <m(C)
such that C is similar to a lexicographically ordered set whose ele-
ments are transfinite sequences of zeros and ones of order-types <¢
(Theorem 4). It is interesting to compare this result with the follow-
ing theorem of Sierpirskil): For a given ordinal » every ordered
set of power 8, is similar to a lexicographically ordered set whose
elements are transfinite sequences of zeros and ones of type w,.

We shall prove at the end of the paper that a necessary and
sufficient condition for all ordered continua of power %, to contain
a point with character cg, is the inequality: Ng<2¥ (Theorem 5).
From this it follows that every ordered continuum of power ok
and of m(C)==, contains a subset which is dense in ¢ and whose
points have character ¢, (Corollary).

1) See W. Sierpinski, Sur une propriélé des ensembles ordonnés, Fund.
Math. 36 (1949), p. 56.
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