64 J. Novak.

Now, we ean answer the?) question whether there exists an
ordered continuum ¢ of power 2%, where m(C)<#&,, without con-
taining points with character ey The answer to this question is
negative. As a matter of fact, suppose on the contrary that C is
such an ordered continuum. Let P be a partition of C. Since ¢
does mnot contain any point with character ¢y, every symbol
Tigtptpein<ey; Where ip=0 and ip=1 for infinitely many natu-
rals » and «/, denotes an interval of ¢ belonging to PB. The car-
dinal number of all intervals like these is 2%. According to lemma 3
every two intervals of this sort have at most one point in com-
mon. As m(0) <8, we have 2%=x, and consequently 2% <28 Thyg
the above supposition contradicts Theorem 5.

Corollary. Every ordered continuum € with power 2% and
with m(0)=n, contains a subset of power 2% which is dense in C
and whose points have character ey,.

Proof. Every?) interval JC ¢ has the power 2%. Since m(J) <,
there is & point in J — as we have just shown — with character ¢y,
Qonsequently, the subset 4,CC of all points with character Coo
is dense in O and the power of A, is =8, and <2% at the same
time. Therefore if the power of 4,, were < 2% then we should have
8, <2% Now, let P be a partition of €. The cardinal number of
the system of all intervaly of B of order o and of all points of ¢
of the same order w is 2%. According to Lemma 3 and because
m(0)==#, the system of allintervals of P of order w has the power <§,.
Therefore the cardinal number of all points in € of order w is 2%.
The power of A, is >2% every point of order o belonging to the
set A, Thus we should get a contradiction.

Remarks, 1 do not know whether or not there exists an
ordered continuum of power 2% with m(0)=g, such that the power
of 0—A4,, is 2%,

From Theorem 5 it follows that the more general question
wh_ether there exists an ordered continuum of power 2% without
points of character ¢y, is equivalent to the question whether 2%=2%

7) See J. Novik, 1. c. ad ), p. 79.
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Characterization of Types of Order Satisfying
g+ 0y =0y + O
By

N. Aronszajn (Lawrence, Kansas, U.S.A).

Introduction. The question of what types of order o, and ¢
are commutative with respect to their addition is ome of several
seemingly simple questions in the theory of ordered sets. A few
cases of commutative types of orders have been known for a long
time:

(a) ag=0m, o=>0n, Wwith some type of order d, m and n being

natural numbers,

(b) ag=a0+8-+ a0* or

== g —+6-4 age* with some type of order 4.

A. Tarski has communicated to the author that in the middle
thirties he proved that (a) and (b) represent all the commutative
types if one of them is assumed to be either enumerable or dispersed.
He also made a conjecture that these two cases exhaust all possible
commutative types, but a counter-example was constructed by
A. Lindenbaum. (None of these results have been published).

In the present paper we shall give a complete characterization
of all commutative pairs aq, oy of types of order. The characteri-
zation is obtained by using the theory of partitions of ordered sets,
and also by introducing the new notion of semi-similarity between
ordered sets. We are thus able to attack the problem in a much
more general form.

We consider a class of types of order {as}, iel, where I is
an arbitrary set of indices. In I we introduce two order relations
which make of I two different ordered sets I’ and I'". The problem
s then one of characterizing all the classes {ai} satisfying the
«generalized commutativity” equation

521" = EZI, i
Fundamenta Mathematicae. T, XXXIX,
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A particular case of this general problem is one where I’ and I
are of the same type of order; this case corresponds to a permu-
tation in the set I. Clearly, the problem of two commutative types
is the simplest one of this kind.

The specific results obtained in this paper concern the general
problem in the case where the types of order of I’ and I'" are hoth
real (i. e. similar to a set of real numbers). In this case the general
problem is reduced to the same problem considered only for real
types of order aj.

In the problem of two commutative types of order where
the set I is composed of only two elements, ¢=0,1, this reduction
leads to a complete characterization given in the following theorem.

Theorem I. In order that oy oy=a;- a, it is necessary and
sufficient that either ay,a, be in case (b) or that they be representable
in the form

) YO+, w=rt Y

035 e

@) ay=7, + VASE U

where & is real, 0<ey<<l and vy, vy, and y'(§) are types of ovder,
y'(€) being defined in the interval 0 <E<1 and satisfying the conditions:
1 Y& =p"(&) if E—&=m+ m&, for some integers m and my;
20 y(E)=yi+v, for all E=m+ myE, with any integers m and my.

Case (a) above of commutative types is obtained from the
general form (1) when &, is a rational number. The representation
i§ not unique. Some commutative types belonging to (b) may be
represented in form (1). Also, some types in the case (a) may be
represented in form (1) with an irrational &;.

These considerations may be easily generalized to types of
partial order if we define their sum in a similar manner to that
of types of order. The formulation of the general problem will then
involve a consideration of ordered partitions of partially ordered
sets. The consideration of partially ordered partitions of partially
ordered sets leads to an extension of the general problem which
seems to present some additional difficulties.

1. Partitions. We shall use the notation U and M for union
and intersection of sets respectively. The intersection of a finite
number of sets will also be denoted by AIA .An. The symbol E Ay

will be reserved for the ordered union of ordered mutually dls]omt
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sets 4; where / rans through the ordered set 7. The order relation
will be denoted by < in the strict sense, or < in the large sense;
if necessary we shall also use the symbols < and =

For two subsets 4’ and 4" of an ordered set A we shall write
A'<d’ or 4”7 >4", if for every # ¢4’ and every #'e¢ A" we have
#'<x". We shall also write 3<4’ or 4’ >, if w<z’ for all ' ¢ A"

As usual, a type of order will be called enumerable if it is the
type of an enumerable set. We shall call a type of order real if it
is the type of a set of real numbers with their natural order relation.

A subset B of an ordered set 4 is called dense in A if for any
two elements ¢’ and &' in 4 with a’'<a' there exists an element
be B such that &'<<b<{a'1). Using this definition of density we
can condense some well known theorems characterizing the real
types of order in the following way: for an ordered set A o be of
real type @t is necessary and sufficient that it contain a dense enu-
merable subset.

If 4 is of real type it presents an at most enumerable number
of jumps. We can then adjoin to any dense enumerable subset of 4
all the endpoints of jumps and obtain an enumerable dense sub-
set B of 4 which contains for any a’'<a’’ in 4 either both elements
¢’ and @ or an element b satisfying a’'<b<a’".

As usual, by an interval P of an ordered set 4 we mean a non-
empty subset of 4 such that with every two elements ¢ and b in P,
every element & of 4 with a<x<b belongs to P. An interval con-
taining more than one element will be called a proper interval.

A class of mutually disjoint intervals 4;, eI, is called a par-
tition of the ordered set 4 if A— UA,;. We shall denote this par-

tition by [d;}; or {4;}. The orderwéf 4 induces an order relation
in the set of indices I: 4’ <i’’ if and only if every element of Ay
precedes every element of Ax. Thus I becomes an ordered set and
we can write - V’A;

A partition {A,}, is equivalent to the partition {4,); if there
is a one-to-one correspondence between I and J such that for cor-
responding indices 7 and j we have Ay=4d}. The correspondence
between I and J is then a similarity. Ordinarily we shall not dis-
tinguish between equivalent partitions.

*) This definition of dense subsets is slightly more general than the usual
one; for example, in a finite ordered set of n elements there exist dense subsets
of [n/2] elements.

5
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The type of order of I is called the type of the partition. An
enumerable partition is of real type. For any partition of real type
we may assume that the set of indices is a set of real numbers.

It {A{}r is a partition of 4 and if ¢ and o; arve the fypes of
order of A and 4; we can write
(1.1) a= Y u.

iel

A partition {4}, is a subdivision of the partition {4, if
. every Ajis contained in some 4;. Such a subdivision induces a par-
tition {J;}; of the ordered set J: an element jeJ belongs to J; if
AjCA;. The subdivision induces also a partition of every 4;:

A= 3 A
Jedy

If {43}, is a subdivision of {4;}; we will call the fivst a finer
partition than the second and the second a smaller partition than
the first. In a class of partitions of 4 there may exist the smallest
one — of which every partition of the class is a subdivision, or
the finest one — which is a subdivision of any partition of the class.

It is clear that a necessary and sufficient condition in order
that a subdivision of a partition {4,}; be enumerable is that the
last partition be enumerable and that the induced partition of
every interval 4; also be enumerable. For real types we have the
following statement.

Theorem 1.1. In order that o subdivision {Aj}; of the partition
{4}z be of real type it is necessary and sufficient that 10 {4} be of
real type, 2° an at most enumerable set of intervals A, be subdivided,
and 3° in the subdivided intervals A; the induced partitions be of
real type.

Proof. Necessity: 1° If {47}, is of real type, there exists
in it & dense enumerable subset of intervals 4}, If we consider
all the intesvals 4, containing one of these 4} they will form, clearly,
an enumerable and dense subset in the partition {4,};. Hence {Ad}
is of real type. 2° If there were a non-enumerable set of subdivided
intervals 4, each of these would have to contain at least one inter-
val A} of an enumerable dense subset in {A}}J. This is clearly im-
possible. 3° Since the intervals of the induced subdivision of an
interval 4, form a subset of the partition {47}, they must also
form an ordered set of real type. :
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Sufficiency. Denote by -4y and A4y all the non-subdivided
and subdivided intervals of {d;}; respectively. In each 4, we con-
sider the induced partition in which there exists an enumerable
dense sequence Aj . This sequence will be chosen so as to in-
clude the first and last intervals of the partition of Aw if they
exist, In the set of all intervals 4y — which is of real type — we
choose a dense sequence A, . All the intervals 4,/ and Aj @y form
an enumerable subset of the partition {4}},;. This subset is dense
in {4}};. In fact, if we have two intervals Ady<A} we may con-
sider the intervals A4;J4y and 4,24}, If A;=A) and 4,=A}p
then 4, and i, are among the indiees ¢’ and there will be some 4,
such that 4; <4 <A4;. If 4,4y and i;==1, then 4,<4,, and
i, is among the indices ¢, and there will exist some Aj ¢ such
that 4;<d]gy<4y, and hence Ap<A)gy<djp. T A 4y and
iy=1y, then 4% and 4} belong to the induced partition of 4, and
there will be some 4} ) with 474 (<4

The density property can be proved similarly if d,==d4;~.

If we have a sequence of partitions {47}m of the set 4, all
non-empty intersections

(1.2) NA%, ireln,

form a partition of 4 which is a subdivision of each partition {A7}.
As set of indices of this partition we take the subset I of the Car-
tesian product []I" of all systems {i*} for which the intersection
n
(1.2) is non-empty. The order relation induced in I by this. par-
tition coincides with the lexicographic order relation in the Carte-
sian product 2). The partition composed of the intervals (1.2) will
be called the intersection of the partitions {4F}; and denoted by

(1.3) N YL

Theorem 1.2, The intersection of an at most enumerable se-
quence of partitions of real type is of real type.

Proof. In each I™ consider a dense enumerable subset J”.
‘We may and shall suppose that J* contains the endpoints of every

3) This means that {z'n)<{i;,) if and only if for the first % for which in ins
we have in<<in.
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jump in I" For each §"< " and for each couple j" eJ™, j" eJ", m<n,
such that A;ﬂA;ﬁ)#O, the intervals (1.2) contained in the inter-
vals 4% or A A% form a partition of these intervals. We denote
?by ,P.jn or Py respectively, the first interval of this partition if
%t exists; or a chosen interval of this partition if there is mo first
interval. All the intervals P and Pimm for j™eJ™, " eJ”, m,n=1,2, ...
form an enumerable set of intervals of the partition (1.3). We sh’all
prove that this set is dense among all the intervals of this partition.

] In fact, consider two intervals (1.2) corresponding to Auquences
{ii} and {i3}. Suppose further that k ' v

Jd . . .
‘ 1=ty for I<k—1, 1{‘<z§‘.
ok, . N .
If (41,12) is not a jump in T% there is a jkeJ* with i{‘-:j"mig
’ (&) (&) K ST
Consequently Ai{z < <A2§) and hence

(
N AR <Pjr< 0 Af.
n n 2

y gk ok . .

If (41,42) form a jump in I*, then th=j*eJ* It Py is the firvst
interval of the partition of A, the inequalities 43 - Ajrll? A
s m (n) . : P 1’2
imply ::Ai;z <Ppr< TAQ-;:. It there is no first interval in the par-

cpe * . vpe . .
tition of A, this partition contains an interval ﬁA?r'r) preceding
a8 =

(1) - %) (R
?Afg. In view of AE{3<A;~I=) this gives

)
Ndp<nAS <nal
no Lyl T T

and consequently ii=il=¢ for e
=i1=1y for I<hk—1, {§=if= further, ther
st oxtit an _l:" 1,4 ig=j". .BL’[I‘L].'IGI, ‘UIGIG
>k 80 that ig=i, for I<m—1 .and 2 <™ Tt

<19 .
follows 1 j™ i j } ineqn
) ('j)m.t f((,)nl; song: (7) eJ", '™ <. The inequalities
@ G ® I R
g SAm < Aqun, Ak A,gn =0 and 4 i A,{éﬁ + 0 prove that

(m)
ASK Aim 220, T he i s W w (m
j* Ajm =4=0. Finally, the inequalities A,;,f <Ajkd jn', <.‘,§Zr? prove that

)
ﬂA,(,'r'z < P,~k s < m‘»i(-l‘?,
n 1 1 o 2
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2. Semi-similarities. Consider two ordered sets 4 and B
and a one-to-one correspondence S of 4 onto B, S(4)=B. The
correspondence S will be called a semi-similarity relative to a par-
tition {4;}; of the domain A4 of § if §, restricted to each 4;, forms
2 similarity transforming A; onto an interval S(4,) of B. It is then
clear that {S(A4,;)}r is a partition of B, and that 8§~ is a semi-simi-
larity relative to this partition. Every correspondence S is a semi-
similarity relative to the partition formed by all elements of A
(considered as intervals). § is a similarity if and only if it is a semi-
similarity relative to the partition composed of one interval (which
is =A). If § is a semi-similarity relative to the partition {4}y it
is also o semi-similarity relative to any subdivision of this partition.

For each correspondence S there exists the smallest partition
relative to which § is a semi-similarity. The smallest partition can
be obtained by considering for each « € 4, all intexrvals A’CA such
that aed’, and § is a similarity on A’ transforming it onto an
interval of B. It is easily seen that the union of all these intervals A
is still an interval with the same property; it is the largest of all
intervals 4’. We denote this largest interval by 4,. For two ele-
ments o’ and &'’ of 4, Ay and 4, are either equal or disjoint. The
intervals 4, form the smallest partition relative to which 8 is a semi-
similarity.

Let § be a semi-similarity of 4 onto B relative to the parti-
tion {4,;}; and let T be a semi-similarity of B onto C relative to
the partition {B;};. The correspondence T'S is then a semi-simi-
larity of 4 onto ¢ relative to the partition which has for intervals
all the non-empty intersections 4,8 "(B;). This partition is obtained
from the intersection of the two partitions {S(4)}; and {Bjs by
the transformation S

1f § is a semi-similarity of A onto B relative to the partition
{4i}; then the two partitions, {4r of A and {8(4,)}s of B, induce
two order relations, < and =3, in the set of indices I. The system
{I, <, <] of the set I and its two order relations represents the
type of the semi-similarity § relative to the partition {4} Ifwe
rvefer the intervals of this partition to another set of indices I', this
get ig then in one-to-one correspondence with I. The two parti-
tions of 4 and B also induce in I’ two order relations, < and -3, and
the correspondence between I and I’ is a similarity with respect
to the first order relation as well as to the second. The system
[I’, <,<]1is then also a representation — equivalent to {I, <, ] -
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of the type of 8. If the partition {Aj};is a subdivision of the par-
tition {4;};, the resulting partition {J;}; which is a partition of J
with respect to the order relation < induces, as such, the order
relation < in I. It ig also a partition of J with respect to <3 and
a8 such induces the order relation < in I. Xf {4,}; is the smallest
partition of 4 relative to which § is a semi-similarity, the corres-
ponding type of § has the characteristic property that there exists
no subset I'CI which is a proper interval for both order relations,
and in which the two order relationg coincide.

If the set of indices is enumerable, the semi-gimilarity § rela-
tive to {4,}; will be called of enumerable type. 1f the types of order
of the set of indices in both order relations are real, the semi-simi-
larity 8 will be called of real type.

Let 8 and T be semi-similarities of .4 onto B and of B onto ¢
relative to the partitions {4;}; and {B;},. We know already that
T8 is a semi-similarity of A onto € relative to the partition com-
posed of all non-empty sets A,/S"(B,). It is clear that if § and T
are of enumerable type the same is true for 7'S. We have a similar
result for real types:

Theorem 2.1. If 8 and T are of veal type, TS is also of real type.

Proof. We must prove that the partition of 4 composed of
non-empty sets _A,‘S_i(Bj) and that the partition of ¢ composed
of corresponding sets T'S(487(By)=TS(4,)T(B;) are of real type.
The intervals of both of these partitions are obtained from those
of the intersection {Bj}» of the two partitions of B, {S(4)}; and
{Bj}s, the first by the transformation 8% and the second by 7.
The intersection {Bj}» is a subdivision of each of the partitions
{8(4)}r and {B;}; and by Theorem 1.2 it is of real type.

We prove first that the partition of 4, {S™HB))ls, is of real
type. By Theorem 1.1 (necessity) only an enumerable number of
?;he intervals §(4;) are subdivided in {Bj}r; those which are have
mdlieed partitions of real type. It follows that in the partition
{87(B})}» which is a subdivision of {4:}1, only an enumerable
numper of intervals 4, are subdivided; those which are come from
the intervals §(4;) subdivided in {B}}p. Since 87 is a gimilarity
on the intervals S(4,) the induced partition on the subdivided inter-
vals 4, is of the same type as on the corresponding S(4,), . e. it

i.s real. By the sufficiency in Theorem 1.1, it follows that {S'_‘(B})}J'
18 of real type.
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The proof that the pavtition {T(Bj)}x is of real type proceeds
similarly, § and 8~} being replaced by 7~ and T, and the roles
of the partitions {S(4,)}; and {B;}; being interchanged.

We shall be particularly concerned with auto-semi-similarities,
i. ¢. with semi-similarities of an ordered set A onto itself.

Let S be an auto-semi-similarity (a.-s.-s.) of 4 relative to
the partition {4;};. By an easy induction we obtain from our pre-
vious remarks and theorems the following statements:

Theoreny 2.2. The correspondence 8™, m=1,2,3, ..., {s an 6.-8.-5.
relative to the partition composed of all non-empty sets

0
(2.1) A inel.

Sk(44,),
LD Sy,

11

The correspondence 8™, m=1,2,3,..., is an a.-s.-s. reletive to the
partition composed of all non-empty intersections

m
O8%(Ay,), ixel.

(2.1)
k=1

Theorem 2.3. If the a.-5.-5. 8 is of enumerable or of real type,
then, for any integer m, the same is true of S™. )

A partition {4}}, relative to which § is an a.-s.-3. will be cal-
led an inwvarient partition if the partition {8(4}}, is equivalent
to {4}};. This means that each interval S(4)) is equal to some inter-
val Ay. Generally the order relations induced in the set J by the
partitions {47}, and {S(4))}; will be different, and may be of dif-
ferent types. If {47}, is an invariant partition for S, then it is also
an invariant partition for each S™, m=0, 1, 4-2,... For each one-
to-one correspondence S of 4 onto 4 there exists an invariant par-
tition which is that one all of whose intervals are improper. How-
ever, for a given a.-s.-s. there will exist in general a smaller invariant
partition. We have the following theorem.

Theorvem 2.4, Let 8 be an a.-s.-s. of A relative to the parti-
tion {A;};. The class of all non-empty intersections

oo
(2.2) 0 54(dy),

k=—0c0

ikEI,

forms an invaerient partition for S.
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Proof. We first prove that each non-empty inbersection of
type (2.2) is an interval. In fact, if (2.2) is not empty, each of the
finite intersections

m
(2.3) O SHAy), m=1,2,3,...

k=—m
is non-empty. Applying the transformation 8™ to the intersection,
we obtain the set

o 0 o
(2.4) 0 Sk(dy,y,)-

J==2m

This is an interval of the partition of Theorem 2.2 with m
replaced by 2m-+1; 8" is an a.-s-s. rvelative to this partition
which is clearly a subdivision of the partition corresponding to 8™,
By applying the transformation 8™ to (2.4) we obtain an interval;
hence (2.3) is an interval. The set (2.2) being a non-empty inter-
section of the intervals (2.8) it must also be an interval.

If we take the union of the intervals (2.2) for all admissible
systems {7}, —co<k<-oaq, (i. ¢. those systems for which (2.2) &=0)
we obtain, clearly, the same result as when we take the union of
all intersections (2.2), empty or non-empty. This gives

U B o =1 U s - & A
SR, ) = SE(A, )= SH U 4, ) = Ry
oD = U SK= B SO ) = B 4.

k=—00

) Hence‘(2.2) is a partition of 4. To prove that it is an inva-
viant partition for §, consider a non-empty set of form (2.2) cor-
responding to a system {ix}. We have then

0:}:8(&:1;5”*(11,1‘\)r—ligmﬁ'k%(fl,k):kzr_\m;S'k(A,h_l)
which means that the interval corresponding to {4} is transformed
by § onto the interval corresponding t0 {1y}

Theorem R.5. If 8 is of real type relative to {A;}r then it is
also of rveal type relative to the invariant partition of Theorem 2.4.
. Proof. The invariant partition of Theorem 2.4 is clearly the
mtex:seetion of the partitions corresponding to 8%, m=41, 42, ..,
a8 given in Theorem 2.2. From Theorem 2.3 it follows that all these
partitions are of real type. Hence by Theorem 1.2 the invariant
partition is of real type which proves the theorem.
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3. General problem. Our general problem concerning types
of order may be stated as follows: Consider a set of indices I and
two order relations < and -< in this set. The set I ordered by these
relations will be denoted by I~ and I3. We aseribe to each iel
a type of order ¢ and the problem is one’of finding necessary and
sufficient conditions for g; so that the following equation holds:
(3.1) D a= Y o

1eI< 1e1s

A system {q;}, 7 eI, satisfying (3.1) will be called a solution
of (3.1) of type [I, <,<2|. This will be an essentisl solution if all
the a's are ==0. It is still an open question for which types [I, <,<]
there exists an essential solution (3.1). A trivial solution with all
a;=0 always exists. A solution {o;} with some «/s vanishing will
be called parly trivial. If, for such a solution, I’ denotes the set
of all s such that a,==0, then the system {e;}, i ¢ I’ forms an es-
sential solution of type [I', <, <<].

From now on we shall be concerned only with essential solu-
tions of type [I, <, <.

Suppose that we have an essential solution of (3.1) of type
[I, <,<3]. Let a be the type of order equal to the two members of

(3.1) and let 4 be an ordered set of type a. Since a= 3 ay= 3 ay,

te1< el
there exist two partitions {d4,}; and {4;}; of 4 such that 4;and Af

have the type of order «; and the order relations induced in I by
these two partitions are precisely < and <. A, and A; being of
the same type, we can choose a similarity S; transforming 4; onto 47.
The transformation S of 4 onto 4 which, on each A;, coincides
with §; is clearly a one-to-one correspondence which is an a.-s.-s.
relative to the partition {4};. We see, therefore, that each system
{a;} solving equation (3.1) leads to an a.-s.-s. of type [I, <,<3].
Conversely, if we have an a.-s.-s. of any ordered set 4 of type
1, <, <] relative to a partition {4,;, then the types of order «;
of the intervals 4, form a solution of equation (3.1). This shows
that the general essential solution of (3.1) is given by the most
general a.-s.-s. of type [I, <,<<]. This statement should not be
considered as a soluticn of our problem; it is rather an interpre-
tation of the problem in terms of anto-semi-similarities.

The developments of the previous sections allow ns to go
further towards the solution of the problem in the case when the
type [I, <, <] is real (i. ¢. when both orders in I are of real type).
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Theorem 3.1, Lot the type (I, <, <] be real, and et X be an
arbitrary set of real numbers admitting an a.-s.-s. T of type [I, <, <]
relative to some partition {X;}y. Consider now an arbilrary function
v(&) satisfying the following conditions 1° (&) is defined for £e X

and has for values types of order; 2° p(5) does not vanish identically
on any interval X;; 3° y(&)=y(&) for oll &, & for which there exists

an indeger m=0, 1, 42, .. such that fo==T"(&). Then the types
of order
(3.2) w==p(E), iel,

§eX;

give an cssential solution of (3.1) of type |1, <, <2} and represent
the most general essential solution of this lype.

Proof. 1) We prove first that the a’s given by (3.2) form
an essential solution of (3.1). In fact we have

Yu=3 Xyl&= FpL07 =3 n17"€)
i< ier< e Xy SeX feX
=y Iy =3

2l = 3 a.
113 $eT(X)

1€15 neX; 1e1%

In these equalities we have used property 29 of y(&) by writing

=1 —1 y

YTT T E)=p(T7&). Also, we used the fact that the transtormation
§=T(n) is a similarity for e X,.

2) Let {a;} be an essential solution of (3.1). We prove that
the a/s are representable in the form (3.2).

As Defore, let us construct an ordered set 4 and an a.-s.-f.
S of 4 of type [I, <, 3] relative to a partition {4,)}; with 4; of
the type of order ¢, Consider for § the corresponding invariant
partition as determined in Theorem 2.4. From Theorem 2.5 it fol-
lows that this invariant partition is of real type. Hence we may
flenote. it by {44}x with X being a set of real numbers. Since {44}z
Is an invariant partition for S, there exists for each £e¢ X a uni-
quely determined &=7'(¢) e X such that S(ds)=dp. Cleaxly T is
a one-to-one correspondence of X onto X. Further, since {Aix
Is a subdivision of {A;}; we may consider the corresponding '[5&11‘1'.i~
tion {X{}, of X: & X, providing A} is contained in A;. It is clear
that T' 18 an a.-s.-8. of X relative to {X,};. The order relation in-
duced in I by the partition {X}; is the same as the one induced
by {.A;}{, t.e. it is “<”. The partition { T(Xp)}; can be obtained by
considering {At}y as a subdivision of {§(4)};; hence it induces
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in I the order relation “<’. This proves that the a.-s.-s. T is of

type [I, <, <3| relative to {X;};. We now define y(£) = type of

order of A} Since A, =§Z},'r A%, formula (3.2) follows immediately.
€4y

Concerning the properties of the function y(£), 1° is true by defi-
nition and 2° results from (3.2), already proved, since all the as
are ==0. Property 3° results from the fact that § is a similarity on
each A% and that S(4p)=Arg. It follows that y(£)==y(T(£), and
by an immediate induction, y(&)=y(T™(&)) for any integer m, which
proves property 3°.

Remark on Theorein 3.1, The theorem would solve our
problem completely for the case of a real type [I, <, <] if we knew
all the sets X of real numbers admitting a.-s.-8.’s of this type, and
if for any such set X we knew all its a.-s.-s.’s of this type. It would
even be sufficient to know some such sets X and some of the cor-
responding a.-s.-s.’s if it could be proved that they allow a repre-
sentation of all the solutions of (3.1). In the next section we solve
our problem in this way for the simplest case of type [1, <,<3]
with I composed of two elements 0 and 1, the order relations being
0<1 and 1-20.

4. The case of ¢y}, =a¢,+a, Theorem 3.1 gives the most
general solation of this equation in the following form.

Let X be a set of real numbers, X=2X,+X, a partition of X,
T an a.-s.-8. of X relative to this partition, so that T is a similarity
on X, and X; and T(X,;)<7T(X,). We can then write

(4.1) X=X+ X, =T(X)+T(Xy).

Since the set of all real numbers is similar to the open interval
0<é<1, we can further suppose

(4.2) 0<X<1.

If then y(&) satisfies conditions 1°, 29, and 3° of Theorem 3.1,
the types
(4.3) ay=37(&),

feXy

8= Z y(€)
feX,
form a solution of our problem.
Rather than to determine all suitable sets X and all their
a.-8.-8.’8 T of the required type, we shall transform the represen-
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tation (4.3) into the form given in Theorem I of the Introduction
where (besides the exceptional cases (b)) the types ay and ¢ are
represented by formulas only slightly different from (4.3) with
X, and X, being open intervals of the real axis.

In order to achieve this transformation we introduce the B¢

ang-
Iation R(&)=£-1 on the real axis and define

el
2 RMX).

m—oo

(4.4) V=

Ao view of (4.2), (4.4) represents a partition of ¥ and for each
fe X there exists a unique integer m such that &e R™(X) or such
that B77(£) ¢ X=X+ X, = T(\;) + T( o).

Clearly the translation R restricted to X forms an auto-simi-
larity of X. We now define a transformation U as follows:
(4.3) If EeR™Xy),  UE=R"MrR=™¢).

It iy clear that U is a one-valued transformation of into
itgelf. An immediate verification shows that I7 possesses an inverse
U™ given by

(__Lb) [f U_l(E)ﬁ:Rm—i T—l /l’¥m(f).

Se EMI(X),

Hence U is a one-to-one auto-correspondence of Y. We prove now

(4.7) U is an auto-similarity of .
o o fach, if (6,6)CK, then &=h"(&), f=E™(&), e Xy,
$2¢.Xy,. Suppose & <&; then either my<m, or my=m, and E<£5.
In the first case U(&)=R™MI(£}) and U(g,)=E"+ 4 T(&) there
may be doubt only if m, Tl =my+ig, 4. 6. if §; =1, {,=0 and My 4L =m,.
But then T(£)) e T(X,), T(£) e T(X,) and T(X,)<T(X,) which proves
U(&)<U(&,). In the second cage my=my and £3<£2, hence i<,
The only doubt arises here if ty=i,. But then, since 7 is a similarity
on X, we get T(£3)<T(&) and again, U(&)<T(L,).

We prove next
(4.8)

In fact, if

UR=RU.

SeR™(XY),  R(E) R (X,

U(R(E)):If"'+l+iTR_m_l(R(§))=]\’m+l+lTR_m(f)::1{( Ue)).
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It follows from (4.8) that the group of similarities generated
by B and U is an abelian group and all of its similarities have the
form U*RL

Consider now for k>0 the partition of X composed of all

b
non-empty intersections N T (Xy,), i,=0,1 (relative to this par-

m=0
tition 7* is an a.-s.-s.). We prove

k—1
(4.9)  For k=1,2,..., if £¢NT"(Xy,), UHE=Rirtich—+i17Hg).

This is obtained by an easy induction from k—1 to % by
using (4.5). Similarl_y, by using (4.6), we obtain

—k
For k=—1,—2,..., if e NT™X, ),
(4.9") ) o m=l
UH(&) =R gy,
From (4.9) and (4.9') we obtain
If feX URYE) e X, then
and O k(E+1)<h2.

and URRI£)=TH(£)

(4.10)

In fact, for k>0, & must belong to some intersection

=1 ) ]
N I7™X, ) and in view of (4.9) we have l=— (fy-+i+...+1x_y)

Gl—gok—l—l<k, 0<h(E+1) k2 For k<0 we get I=1i;+...+ig,
E<E+1<0, 0<h(k+1) <k N

We shall consider the class St of all proper initial intervals
of ¥ (%. 6. of all those which are neither empty nor = X). This
class is an ordered set with the natural ordg}' relation C. We denote
by O the initial interval formed by all e X with £<0. Obviously,
E and U become auto-similarities on the class 9 and generate an
abelian group of such auto-similarities. We have then

(4.11) R(O)—O=2X,
U R(@O)—O=X,, R(O)—U"'RO)=1X,
U(O)—@=T(X,),  R(6O)—TU(6)=T(X,).

’

(4.11")

Corresponding to the interval X of X we have the subelass €N,
the interval of the ordered class 9, composed of all initial inter-
vals 4 of X satisfying

(4.12) C0CAS$ RO
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Similarly to (4.4) we have

~ oo
N= 3 L"N).

m==—co

(4.13)

Consequently, to each Ae T there corresponds u unique in-
teger m such that R™"(A)eN. Further, by use of property (4.10)
we obtain

Tor A e %t and for each integer k there enists o unigque integer 1

(1) ueh that TRRILA) e R 1 satisfies 0<h(l41)< k2

We shall distinguish two principal cases. The first is the one
where there exists an initial interval 4 «Jt and two integers %, !
with |k{4|1|>0, so that UERL A)=A — in other words, when there
exists an invariant A for some UZR. The second case iy the one
where there iz no such A, k¥ and 1. We consider first the

Case I. For some UR!, |k|4|I[>0, there cwists a Aedt with
TRRY A)=A.

Here we must have k==0; otherwise, k=0, R!(.1)==/; hence
7=0 which is contrary to the condition |k|+4-]l|>0. Further, we
have U "R (A)=A. Thus, if for some k<0 there exists an I and
a A such that UrRYA)=A, the same is true also for —k. For each &
and each A there exists at most one I such that UkR!{(A)=; other-
wise if there existed another one, I, we would have R~ (A)=A
which is impossible.

Consider now the smallest positive % for which there exisis
an integer ! and a A e such that URRYA)=A. This value of &k
will be denoted as k,. There may be many A’s and Vs satisfying
UkRYA)=A. If A is invariant for TkR! then the same is also true
of R7™(A): UBRYR™(A))=R™(U™RY(A))=R™™(A). Therefore we
can always suppose that the invariant A is in %. It follows from
(4.14) that the corresponding integer I can take only one of the
ko+1 values 1=0,—1,...,—Fk,.

Consider now for each of these integers ! (for which there
exists an invariant A) the class of all AD9 satisfying UbRHA)==A.
Clearly the intersection of all these A’s is again an initial interval
of X satisfying the same equation. It is the smallest A’ ¢f all such A’s.
We take the smallest initial interval among the A%; it ecorresponds
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to some I, 0ly<<ky, and will be denoted by Ay A, has the
property

(4.15) UhRh(dg)=1,  OCA, S R(O)
and there is no /A with @C 4C=A°’ UERYA)= | where 0<k<E,.

‘We now prove two lemmas.

Lemma 1. There exists o unique couple of integers (ky,l,) such
that 0k, <hy—1, koly—Rydy=1 and such that all the initial intervals
UrRYAy) figure in their order im the sequence

{U™R™(Ay)}, —oo<m<oo,

U("l—l)k: R(m~1)h(‘10) g U’"k‘Rm"(Ao).

Proof. For any %k we can find a % with 0 <k <k,—1
such that for some integer m, k=mk,+%. Hence UER!(Ay)=
=T R U™ R A)=U¥ R™™"(4,). If we suppose that this initial
interval lies in N, I—ml, can take only one value determined by %*
(see (4.14)). Consequently there are at most %k, such initial infer-
vals in 9 corresponding to the %’ in the range 0<<k'<<ky—1. On
the other hand, to each %’ in this range there corresponds an I
such that U¥RU(A,)eMN. Two such initial intervals must be dis-
tinct, otherwise for 0<<k'<%”<k,—1 and the corresponding ¥’
and U we would have U¥RV(A,)=U¥R"(A,), UF'~¥ RV (A,)=A,,
which is contrary to the definition of k, since 0<k"—k'<ky—1.
Hence there are exactly %, such initial intervals in %. The first of
these is A4, (by 4.15)). In R(9t) there are also k, initial intervals
UtRY(A,) which are obtained by applying the similarity R to those
in N; R(4,) is clearly the smallest among those in RE(9N). Among
all the U¥RYA,) which are 2./10, there must be then a well deter-

mined smallest one; this one will be in %t if k,>2, or =R(4,)CE(N)
if ky=1. We denote the smallest one by UkRAi(Ay), 0<E<hp—1.
‘We have, therefore, 4, g Uk RA(.A4,) and there is no UXR!(A,) lying
strictly between these two. By applying the similarity [ m=Dk Rn—0k,
—oco<m<oo, we get UWDRRITUL 4 g U™ R™(A,). No other
UkRY(A,) can lie between these two initial intervals. It follows
that Uk—DkRE—(A) S B(O) and UkmRi(4,) containy E(6)
and is the first among UXR!(A,) which contains E(®), Hence
R(Ay) = Ul Rioh (£1) = Riok—hh Tk R () = Rhbhile( ) and thus
kg, — Tl =1.

Fundamenta Mathematicae. T, XXXIX. 6
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Tor any couple of integers (k,I) we can then write (in view of
Egly— Kulg=1) To=(Togl— Il) oy (ks — Feal) oy 1= (Togl— el Iy - (el — Ty
which gives O¥R{Ag)= U™ R™(A,) with m=lol— Tkl This finishes
the proof of the lemma.

Lemma 2. With the notations of Lemma 1, the formule

:\‘_’ — :{“o [ljm}z‘lel(/lo)'— U(m‘l)kxj‘,’(m-1)ll(J,lo)]

=00

(4.16)

determines a partition of XA corresponding partition of 9t s gilven
by the intervals of i, U™V ROV Sg A CU™R™(A,),
—oco<m<oo. If UKRYO) belongs to the m-th interval of this partition,
then those amd only those U¥RY(O) belong to the same interval for
which there ewists an integer n such that £’=k+nk0, V=1l+4nly. The
index m of the interval of the partition of N to which U*RY(O) belongs
is givem by m=lkol—kl,.

Proof. From Lemma 1 it follows that all the intervals of
(4.16) are mutually disjoint. On the other hand since U "R™"(,)

is g@ E}i R(0)C UkkREL Ag) = R(A,), it follows, by applying the
similarity R", that U@ DhRmhDl ) g=hpn=h(,,) g; ,R'"(@)EF'
g RmH (@) C gtk pentORd 4y it (4 Consequently each in-

terval B™(X)=E™"(@)— R™(®) is contained in the union of inter-
vals of (4.16) for indices m’ with mky<m’'<(m+1)k, In view of
(4.4) the intervals of (4.16) cover the whole of X and hence form
a partition of X. The partition of X clearly induces the partition
of § given in the Lemma.

Consider now U*R!(@). There is a unique system of integers
m, n solving the equations k==mk, +nk,, l=mi, 4-nl,. These integers

are given by m=lksl— kl,, 1=Kkl k1. In view of U™ R“"(Ao)g@c,»lo,
we obtain U‘""'"’*R""‘”"(Ag)g U*R'(0) CU™R™ A,). Thus TR}
belonl}gs to the interval-with index m=kyl—%kl, of the partition
of . On the other hand, U¥ R'(®) belongs to the same interval
if and only if m’ =kgl'— k'ly=kol— kl,. This means ke(l'— 1) =lo(k'—k)-
Since %k, and 1, are relatively prime. (in view of k,l,— kly=1), the
last equation is equivalent to the existence of an integer n such
that k'— k=nk, and I'—l=nl, which finishes the proof of the Lemma.
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Case I is divided infto two subeases depending on whether
k=1 or ky>1.

Subcase I'. ky=1. It follows from (4.14) that I,=0 or =—1.
From Lemma 1 we obtain k=0, L=1, and 0CA,$ R(6)CR(4,).
We. canuot have @=/1,since this would mean @="0( o), or O= UR™Y o),
which would be in contradiction to (4.11). For the same reason,
noC one of the U*RYO)=dA,. Therefore we have two possibilities:
0S4, S UT'RO) or U—‘R(@)g 4,SR(6). In the first case 0 S 4,=
=UR’°(AO)§UR’*’U"R(@p:R’ﬂ“{@;, which gives l,=0. In the se-

cond case R(0).1,=UR.1,)2 UR* U R(0) = R*"(0) which gives
ly=—1. ‘

Consider the case l,=0. Since .1,C R(6)S R(.1,) =T EL{_1,) by
Lemma 2, all the initial intervals UZR(0) also satisfy AOE U™R(O)
C . _ C e . B
#R(;ln). Similarly, R l(‘ln)g D"(@)g‘lo for all m. Further, from
0% U(®), it follows that U™(@) CU™(@) and Umr(0) S U™ R(O)
_for —oo<m<oo. Consequently for m=0,1,2,... we obtain a strietly
mg]fa,smg sequence U™(0)CA, and a strietly decreasing sequence
_U R(@?DAO. Therefore the union of the increasing sequence and
Intersection of the decreasing sequence are two initial intervals A’

and A" such that A4’CA,CA’ (in fact we have A'=4,). Consider
then the following partition of X, (compare (4.11%)):

Yo= 3 [0"(0)—0™(@)] + (1" — &) + 3 [U"R(O)~ T R(&)].

m=—o00

By virtue of Theorem 3.1 we can then write

11) o= T HO=3 S oo+ 5 7O+ 3 5 e

teXy m=0 ieXy FeAr—A m=—c0 feXoy

We put here X, =U"""(0)—U"(0) and X4=U"R(0)—U"'R(6).
The similarity U™ E™ transforms R(@)— U 'R(0)=X, into Xi.
If follows from (4.10) that for yeX,, U™HE™(5)=1"H(). By
using property 3° of y(£) (see Theorem 3.1) we obtain

2 8 = ZAT™R () = 3 9T () = 3 y(n)=a,

gsxl’ll nexXy neXy neXy

6%
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In the same way (we note that for m<—1, the similarity U™

transforms X, onto X7,) we obtain 3 p(&)= 3 y(n)=r. From
ge Xy, nexy
(4.17) we further obtain i

ag=uym -+ Z &)+ ot

e A—2

which is a representation of the form (b) of the Introduction.
In the case l;=—1, by a similar argument we obtain the

partition of X,

_Xl _ 5 [U—I"_I,R"'VH(@) __U——m ﬁlll(@)»l_l“(/J‘//__A./)_+‘

m=1

0
+ 2 [meRm—H(@) . UH'"+1H’"((”))].

Mme=—00

Here we arrive at the formula

w=gw+ 3 Y(€)+ag0*

feArr—4
which is again a representation of type (Db).

Subcase I'". k,>=2. In the present case UkRh(.ly)eN. By
virtue of (4.14) we have 0k 1<k, In view of kol—kl,=1,
and k,>2, neither of the two equalities ky-+l,=0 or ky--l=1k, i8
possible. Hence we have the strict inequality 0<ky-+ly<F,.

Applying Lemma 2 to the initial intervals ®, U R(®) and
R(0), we find that they lie in three intervals of §t of the form

Al G LY SFA CU™R™h(4,), for m=0, ky+ly, and ks
Consequently we have the sequence of inclusions:

U R (@) C UMk R™( A,) S‘E petIL Rl gy for any integer m,

in addition to the inclusions:

oD, et () ; U= R(©)C Ut folhettly g )

DR REDR 1) § R(O) CTMMRM(Ay).
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We introduce the notation:
Y= T R (L) — U™ R™(6), for m=+Ty+1,
y}era: [ ol R(ho";'ln)ll(‘ 1o)— Ut R(0),

v __ prlmDE (w1 mky h
Yi=U RN O)— U™ R™(1,) for all m exeept
. m=ky+l—1 or =k,—1,
y};o+lo-;1: vt R(6)— U(ko-i-la—i)kx R(k,-i»lo——l)l,( ,10)’

Irgo_'l =R(O)— U(ba‘l)klR(ko—l)lx(‘jo)‘
With these notations we can write

o _ koIt
X=UT'RO)—60= "3 [Tn+T})
m=0
L=RO—-T RO = S [¥,o17
1 (0) = m:—ka-Ho[l m+ X m]
lt_ is clear Pha,t Y= l”“"‘fd""‘(l”l) for all m except m=ky+1,.
F”lj this exceptional value of m we have Y+, =U""R(Y}) which
is immediately }*eriﬁed by using the relations koly—Tyly=1 and
Uk R4(:1g)=.1,. Similarly we have Y.,= U’"”‘R”‘"(Ya’) except for
m=ky-Il,— 1, ke—1. In these exceptional cases it is immediately
seen that Yy, =U"""R™(Tp) and Yy, =U"RR—H(yy).
By an argument similar to the onme used in Subcage I’ we
obtain now

Ryt
= 3] 2O+ X O] =[ 38+ Y(EV M ko+1),
m=0 feY,, e Y;;l fe Y6 H3 Y'g
hy—1
a= X [ IO+ 3 @ =[ I nO+ 3 ne)(—1).
me=ktl, Se¥o, €Y fe¥ sevgy

Hence we can write ag=0(k¢-+1ly), uy=(—1,) which means that
ay and a; are of the type (a) of the introduction. They can be re-
presintecll in the form (1) of Theorem I of the Introduction by taking
& fot1ly

0=

i y0=0;, ¥1==0, and ’(£)==0 for all & which are not of the
form m--mgé, for any integers m and m,, where ivi

; =gr. ¢. d "
of ky+1, and %,. " 8 e

Case I1. There exist no invariant initial intervals for any UrR!
when k& and 1 are not both 0. '
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In the present case we can prove the following lemmas:

Lemma 3, Tor any integers k and 1, not both 0, the sequence
of initial intervals T™*R™(0), m=0,1,2,... is & strictly increasing or
decreasing sequence depending on whether @CUXRY (@) or @DULRYG).

In the first case O U™ R™(@)=X; in the second O U™ R™(@)==0.
0

m== m=0
Proof. Since in the present case we cannot have @=UkRY@)
there are only two possibilities: either @iU"R'(@) or G)EU"R‘(G)).
In the first case, applying the similarity U

mkpm! we obtain

Umk.le( @) g U(m—{-l)k .R(m—H)l(@), ’)7'&:0, 1, 2’ oy

which shows that U™ R™(@) form a strictly increasing sequence.

It U U™R™() were +X, it would be a proper initial interval A.
m==0

We would then have

. Uk.Rl(A)z G U(m+l)kR(m+1)l(@)= G UmkvaI(@) =/17

m=0 m=()
and A4 would be an invariant initial interval for U*R! which is
impossible.
In the second case we prove similarly that the sequence
{U™* R™(©)} is strictly decreasing and if O U™R™(©) were not =0
m=0
it would be an invariant initial interval for U%RL
We now define the real number 5, Consider, for any positive
integer %, the unique integer 1<{0 for which

(4.18) OCURYO) § R(O).

Denote by I, the interval of the real axis:

—1+1

(4.19) -

—1
Iy: - SE<

We shall show that all the intervals I, have a non-empty
intersection. This is equivalent to the fact that any two intervals I,
and Ty have a non-empty intersection. This can be proved if we
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show that for any % and &', the left end-point of I is smaller than
the right end-point of Ij:

—1l  —U+1
{4.20) + <=

where I’ is the integer corresponding to %'.

‘We prove (4.20) in the following way: From the first inclusion
in (4.18) it follows, by Lemma 3, that U™ R™(@) is an increasing
sequence. Hence @C U¥*E¥1(@). The second inclusion can be trans-
formed into U'*R‘—l(@)g@. Hence the sequence {U™ R™™Y%@)}
is strictly decreasing and U’“R"’(‘—”(@)g@. The two inclusions
80 obtained can be written as follows:

R (@)CU¥0)C R¥HY @),
Similarly we obtain
EH@)cu () REIHY (@),

1t tollows that R—“"(@)ng”‘“"Jf"(@ ) and hence —k'I<<k(—I'+1),
which gives formula (4.20).

Since the interval I is of diameter % the intersection of all I,
is composed of one point only which we shall denote by 7,.

We prove now the following property:

{4.21) 0<ny<l, mn, is an trrational number.

In fact, from (4.18) and (4.14) it follows that 0<{k(k-++1)<A?

—1+1
k

and consequently ng—z-—l <1and 0<:k—l <1. Since%gnﬂg

for all k=1,2,... it follows that 0y, <1.

Suppose now that 7, is rational, ’70=£ with p and ¢ integers,
920, ¢=1. Consider then, for an arbitrary positive integer m, the
integer k=mg and the corresponding integer ! such that (4.18)

holds. We have then ——l<£<:l—ﬂ
mg q

mq
either =—1 or =—1--1. This means that ;—’ is either equal to the

. It follows that mp is

left or to the right end of the interval I,,. Furthermore, -g— must
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be on the same side of I, for all values of m; this follows from
the strict inequality in (4.20) applied to k=mq and k'=m'q.

Suppose first that gls the left end of I,q. Then I=—mp and
(4.18) takes the form

OCU™R™™(6) ¢ R(O) for all m=1,2,3,.

which, is in contradietion to Lemma 3.
If we suppose that 2 g equal to the right end of Img we geb
l=—*mvp+1 and (4.18) gives

OCU™R™(6)S R(O)

R™6)CU™R™™(0) S ©

which is again in contradietion to Lemma 3. Thus, property (4.21)
is proved.

Consider now on the real axis the set @ of all real numbers
of the form kn,+! with & and I arbitrary integers. Since 7, is ir-
rational, each # ¢ has a unique representation #=Zkns+1, and we
can therefore define -

(4.22) A(n)=U*RY0).

It is clear that A(z) is a one-to-one correspondence between
the set 2 and the set of all initial intervals UXRY®).
‘We prove now

(4.23) A(n) is @ similarity.

To prove this take n=kyjg+l, Ne=Nksno+ls such that 7 <n,.
Putting k=Fk,—%, we shall then consider three cases.
1) k=0. The inequality 7,<, now gives §,<l, and therefore

A(m)=UkRh(®) g Ru=1 Uk RU(©)=A(n,).

2) k>0. Consider the corresponding 1 for which (4.18) holds.

By the definition of 7, we have 77 < ;7[,<———1 this means that

k

0<km,+l<1 Since: g <7y gives kyy+(l—14)>0, it follows that
~—l =1 Oonsequently, by (4.18), ©@ CU*RYO)CU*RE"4(@) and

hence UhR’a(@) UkR4(O). This inclugion can be replaced by g

sinée Tez— k0. Thus we obtain: again A(n,)S A(ny).

icm

A(PTRM () =U"ER™H (@)= U™ R™(A(n)).

Types of Order Satisfying o, oy =o, -+ x, ‘ 89
3) k<0. Consider ¥'=—% and the corresponding I’ such that
6CU*R"(0) ¢ R(O)

r .
‘We have now 7 << —Tl, i.e. —1l<ky,—l'<0. Together
with the inequality kn,+(ly—1)>0, this gives I,—I,>—1'-+1. The
inclusion 7 *R? (O)C R(0) now gives @ U*R~+(0)CU*R"(6)
and hence we again obtain A(zy,) _(5_1(%).

T

It is well known that the set Q is everywhere dense on the
real axis; hence every real number £ is completely determined by
the corresponding Dedekind cut of Q. For each real number & we
now define two initial intervals of &, .1/(£) and A" (§):

(4.24) A'(E)= U Ay, AME) = 0O Ay).
neL nel
7<é 7>
We have immediately
(4.25) For Eef, _1'(5CAE)CA(E).

We prove further

(4.26) If &<y, -1(51)C1"(51) A'(E,)CA"(&,).

Here the first and third mclusxons are obvious from definition
(£.24). To prove the second we use the fact that @ is everywhere
dense on the real axis and choose two real numbers 7y and 7, in 2
such that & <9, <,<&,. Then by (4.23) and the definition (4.24)
we get .

A& CAlm) § A(m) CA'(8,)

which proves the second inclusion of (4.26).

Besides the translation R, R(&)=&-1, we consider on the real
axis the translation P, P(£)=&-+n,. Clearly, P™R™"(&)=E&+mpy4-n
for any integers m and n. It is easy to show that
(4.27) For A(P"R™M () =U"R"(A(n))-

In fact, if p=kyy+1 then P"R"(y)=(m-+k)y,+(n-+1) and

7€,

We have further

For any real & .I'(P"R"(&))=U"R"(A'(E),

(4.28)
A(PTRN(E) = U RY(A"(£)).
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Clearly the set of all numbers # ¢ 2 satisfying <& (or 5 >¢)
is transformed by the translation P™E" onto the set of all num-
bers u' e satisfying #'<P™R"(£) (or »'>P"R"(£)). It follows by
definition (4.24)

AP RNE) = O Aln) = U AP"E ().
nes ne

o PR <t

By using (4.27) we thus obtain the first equality of (4.28).
Similarly we obtain the second equality.
‘We now prove

(4.29)

Y= 3
U —caShon

[A7(&)—A'(£)].

This eqummon means that all non-empty intervals [A"(&)—A'(£)]
of the set X form a partition of X with the set of indices & ordered
in the natural order of real numbers.

We remark first that from (4.26) we have, for & <§,
[A"(&)—A'(&)1<[A"(£5)—A'(&)] if both these intervals are non-
empty (if one of them is empty the mequahty has no meaning).
It remains to be proved that every point teX belongs to some
interval [A"(&)—A'(8)].

In fact consider the decomposition Q=0Q'-4-Q" where £’ is
the set of all #eQ such that £ ¢4(n), and 2’ is the set of all 50
for which feA(n). It is clear from (4.23) that Q' is an initial inter-
val and Q' a final interval of Q. Consequently they form a Dede-
kind cut in 2 and we have the following three possibilities: 1) there
is a last element n’ eQ’, 2) there is a first element %" 2", 3) there
exists a unique real number £ such that Q'< &<’

By applying (4.24) and (4.25) we obtain in each of these cases:

1) £ e A" (n')—A(n)CA" () —A'(r),

2) L eAy")—A'(n")CA (")~ A'(n""),

3) £ ed™(8)—A'(8), ..
which shows that in every case ¢ belongs to some interval of the
xight side of (4.29) which finishes the proof of this formula.

We now introduce the number £y=1—z, ¢ 2. We have
{4.30) A(0)=

6, A&)=UTR(6), A(1)=R(6).

By using (4.11') and the decomposition (4.29) we can now
“write

icm
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Xo=2A(&)—A4 ( )“‘I A"(0)—4(0)]+
(431) [A”—, — A ()L A — (&),
, Xy =A(1)— [/1 (Eo)—ll 50]+
(4319 .g: [A"(&)—A(O1+[ A1) —A'(1)].
From (4.3) we obtain
(4.32) ap= ZV(C = 3 yO+ ¥ 2 O+ 3 v,

teX, 5 AM(0)—A®D)

(4.32°) o= 3 y(¢)= )+

LeX, Se AM(E)—Algy)

Ly
FeA(g)—A1E,)

YO+ X w0

5<EL Se A (E)—A1(H Te A()—A’(1)

0<E<E, Sed(f)—ar(s)

We now introduce the following notations:

o= 3 v, vi= ¥ w0
Se A" (Go)—A(5) LeA(5)—A! (o)
Y= 3 yQ) for 0<é<l.

LeA7(E—A'(@)

We shall prove the following properties.

(£34) For e, 0<n<l, 5 pll)=y,
EeAr(r)—Aln)

(4.34") For e, 0<y<l, > D=y
Sed(n)—A'(n)

(4.34") For 50, 0<n<l, y'(n)=v,+,.

We prove first (4.34). For 0<<n<1, 4"(5)—A(n)CX (see (4.31)
and (4.31")). Let n=Fkn,+1. Then n=PH1R~1(£)). Hence by (4.27)
and (4.28) [A"(n)—A(n)]= U1 RHA" (&) —A(&)].

By an argument used in Subcase I’, applying (4.10) and pro-
perty 3° of Theorem 3.1, we obtain

W= X TR RIAREY)
Sed")—A(n) e A" (E)—A (&)
= 3 )=
Ee A (E)—A(&)

) =yy-
Ve —ae

The proof of (4.34') is similar. Formula (4.34"') is a conse-
quence of (4.34) and (4.34') since

Yim= 3 = 3 20O+ 3 0.

EeAr(n)—A(n) Sed(m)—A'(m) Ledr(n—Am)
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We prove further

For any real numbers & and & such that 0 <& <&<1 and
S—he, Y (E)=y"(&).

In fact, under the hypothesis of (4.35) &— &=my,4-n for
some integers m and n and A"(&)—A"(£)CX for i=1,2. Conse-
quently £,=P™R"&), A"(E)—A"(&)=UTR"[A"(&)—A"(&)] and by
the same argument as ahove we have

(4.35)

Vig)= 3 yll)= 3 )=y
se.l(E) V(D) Fre 17(E) 118
By using (4.33), (4.34), and (4£.34") we oblain from (4.32)
and (4.32):

0LECEs o

! 7”(5)’{'7;1 “1:76‘}‘ S 7’(5)‘{")’;7
“E<t
which is formula (1) of Theorem I of the Introduction.
Property 1° of this theorem is clearly given by (4.35) and
property 2° by (4.34'). Thus the theorem is completely proved.

5. Concluding remarks.

Remark 1. The multiplicity of represeniations in Theorem I.

In general, the same couple of solutions a, and ¢, of the equa-
tion ay+a;=0;+0, may have several representations of the same
" type as well as representations of different types. To some extent,
an extreme case of such multiplicity of representations can be
shown by the example ay=a,==a where « is the type of order of
the half-open interval 0<{&<1. In fact we have here a==am with
any natural number m which gives an infinite number of repre-
sentations of type (a) of the Introduction. Further, a=aw-4 04 aw*
with 8=1, or §=a-1 which gives two different representations of
type (b). Finally, we can write

e=yot 3 YO +Fri=re+ 3 v(E) 4
0Es, &<E

for any irrational & by choosing

Yy=1 or =al1

- , ;=0 or =q,

y(&)=1 for E¢Q.

Yi(n=yity, for yeQ,

icm

- form (a) or (b), and hence are representable only in form (1)
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This gives infinitely many representations of type (1) of Theo-
rem I with different values of &; for the same value of &, it gives
four different representations.

Remark 2. Representability of solutions ag,e, in different forms.

* As mentioned in the Introduction, A. Tarski proved that if
one of the solutions a,,a, i3 enumerable or of dispersed type, then
they may always be represented in one of the forms (a) or (b). This
result can be obtained as an immediate corollary of Theorem I and
of the following statement which can be proved without great
difficulty:

Let uy and ay be representable in the form (1) of Theorem I.

1° If & is drrational and y'(£)=y for all eweept an at most

enumerable set of &s, then ay=aq,.

20 If &, is rational, §0=£, with p and q rel. prime, then thers
exists a type of order d such that ay=0p, u,=0d(qg— p).

As mentioned in the Introduction, A. Lindenbaum constructed
solutions ¢, and @, which cannot be represented in either of the

Since Lindenbaum’s example was not published it is of interest
to indicate briefly how such solutions aga, ecan be constructed.
We choose them of form (1) with Yo=v;=0 and & irrational:

gy= 3 »'(£).

§<g<t

s= 3 7'(§),

0E<8
The y(£) are chosen in such a way that for &—&, ¢ 2 no pro-
per interval of a set of type (&) can be similar to an interval of
& set of type p'(&,). For instance, we can choose the types of order
v'(§) for each equivalence class of &s mod. Q among the types of
order 29 (in Cantor's notation, wj being the inverse type of the
initial ordinal number w,), for 0<v<w,, Where 8,=c. ’
The y'(&) being so fixed, consider a set 4 of type ag+¢ and

the corresponding partitions ‘

A=dy+dy, Ay= 3 [(E), A= 3 I'(§), with I'(8) of type y'(é).

<E<, £oE<t
We may also write

A= D} 1)

with I'(&,)=0.
06<1
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We first prove that if K’ and K’ are two intervals of 4 andif a
similarity § transforms K’ onto K'', S(K')=XK", then either K'CI'(&")
for some & and K''CI'(§') with &"—&' €2, or K’zzK&—};’/%;ﬂF(s)—}K{
with Kj= final interval of I'(8'), Ki = initial interval of I'(z'),
0 < <v'<1, and similarly K= 1’},’—|—0 <}£§’< I'(§)+-K7 and the simi-

17, %l

larity S must satisfy S(Ko)=Kg, S(K1)=KY1, S(I'(&))=1"a(§)) for
B’ <f<t, where o is a similarity of the closed interval [0',]
onto [8",7""]. Further, o(f)—¢&eQ for all ¢ in 0'<é<7’. Since o(&)
must be a continuous function in the open interval (6’,7') the range
of o(£)—¢& is connected, and since it is C£ it must be reduced to
one point # ¢ Q. Hence ¢(£)=£&4n and o i3 a translation by a num-
ber 75 € Q.

If a, and « were representable in form (a) we would have

ag=0m, a;=0n with m and n natural numbers. There would then
mtn

exist a decomposition A= 3} K® in disjoint similar intervals. This
=1

would mean that there exists a partition of [0,1] into m+n inter-
vals by numbers 0=x@<xW<.. <xmtd=1 g0 that

EO=RP+ X I(E+EP.
AN Eon®

Furthermore there would exist numbers 7,eQ such that
[#6-D, %0] is translated by 5, onto [x®,»+9]. This gives n=
= — (D= 20D — 20, 50 that 5 =n,=..=17,,, =7 and
(m-En)n=1. Sinee n==Ekn,+1, we get (m+n)k=0 and (m-+n)l=1,
which is impossible since (m4-n)>2.

If ¢y and a; were representable in form (b), say ay=agm-0+ugm™,
we would have a sequence of consecutive disjoint similar intervals K @,
1=0,1,2,... with K®=4,. This would lead to an increasing infi-
nite sequence 0=xO<x<. . <1 with w@— D=yt 40—y ¢ O
which is impossible.

The example could be constructed in a more general way
without the simplifying assumption that Yo=7:=0. We could have
accepted non-zero types of order ¥y and ¥y (or one of them non-
zero) restricted by the condition that a set of type v}, i=0,1, does
not contain s proper interval similar to an interval of a set of type
¥1—; DOT With an interval of a set of type p'(£) for £¢0.

icm
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The solutions ¢,,0, Which we have constructed above POssess
the interesting property that not only are they representable only
in the form (1) but their representation in this form ig unique. For
any of the other forms of representation we can construet solu-
tions which are representable only in this form and whose repre-
sentation in this form is unique. Here we should consider as proper
representations of form (1) only those with &, irrational (since re-
presentation (1) with &, rational is equivalent to a representation of
type (a)). To construet such solutions for type (a) we choose
& non-enumerable type of order ¢ such that a set of this type has
no two similar proper intervals (unless they are equal) 3). Then the
solutions ay=dm and a,=4én for any natural m and » do not admit
of any other representation of form (a) nor of any representation
of the two other forms. For the form (b) we take two types of or-
der a, and 46, both =0 and =1 such that the corresponding sets
have no similar proper intervals. Then a, and oy =agm-+0-+a,0*
admit of no other representation.

We shall make one further remark concerning the solutions
of form (1). It is clear that if this form is a proper representation
(with &, irrational) and if the type a, has a first element, then y==0
and a set of type y, has a first element. Similarly, if a, has a last
element then p;#0 and has a last element. The converse of this
remark is not true; «, may be without a first and/or last element
without having a representation of type (1) with ¥,="0 and/or y;=0.
For example, we can consider the above constructed solutions,
taking ;<= 04y, with y; without a first element and y; without
last element. Since the representaticn of these solutions is unique,

the converse is proven not true.

Remark 3. Partially ordered sets. The considerations of this
Paper may be extended to partially ordered (p.-ordered) sets. The

.notion of interval is defined here in the same way as for ordered

gets. As a partition of a p.-ordered set 4, we can in general con-
sider any decomposition of 4 in mutually digjoint intervals. How-
ever, such a partition {4,}; is not of much use for our purposes if
it does not induce a partial order relation in I such that we may

write A= 3 4, with the usual definition of partial order in the
iel

union of p.-ordered sefs under a p.-ordered set of indices. We have

3) Such types can be constructed.
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this property if and only if for any two different intervals 4; and 4,
of the partition the relation x<y for any wed; and any ye 4,
implies that 4;<4y. In this case we shall call {4;}; a p.-ordered
partition. If the partial order induced in I is an order relation we
shall call it an ordered partition. The type of a p.-ordered partition
is the partial order type induced in the set of indices. Hence a par-
tition of real type is always ordered, but an enumerable p.-ordered
partition may not be an ordered partition.

‘With these remarks in mind it is easy to extend the notions
and theorems of the present paper to partially ordered sets. Since
we consider mostly partitions of real type this extension will deal
essentially only with ordered partitions of p.-ordered sets.

- We add finally that following a communication by A. Tarski,
the congiderations and results of the present paper con be extended
to types of general relations. The main additional tool used in this
extension is a theorem proved by A. Tarski and Bjarni Jénson (as
yet not published) that every relations-type admits of a unique
ordered partition into indecomposable relations-types (a relations-
type £ is called indecompogsable if é=a--# implies a=0 or f=0).
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Sur la représentation des ensembles ordonnés.
Par

Miroslav Novotny (Brno).

M. W. Sierpinski a prouvél) le théordme suivant: » étans.
un nombre ordinal queleongue, tout ensemble ordonné de puis-
sance 8, est semblable & un ensemble de suites transfinies de type w,,
formées de nombres 0 et 1 et ordonnées d’aprés le principe de pre-
midres différences. Pour les continus ordonnés, M. J. Novak a éta-
bli?) le résultat suivant: Soit ¢ un continu ordenné dont la sépa-
rabilité soit égale & m(C). Il existe un nombre ordinal ¢ de puis-
sance au plus égale & m(C), tel que C est semblable & un ensemble
de suites transfinies de type <(¢ formées de nombres 0 et 1 et or-
données d’aprés le principe de premiéres différences. Il a posé le
probléme, §’1 est possible de poser ¢ égal au nombre ordinal initial
de puissance m(C). Le théoréme 1 du travail présent donne une
réponse affirmative.

M. J. Novik a prouvé?) le théoréme suivant: Soit P.un con-
tinu ordonné; P un systéme disjoint d’intervalles fermés et de sous-
ensembles de P composés d’un seul point. Supposons que $P pos-
séde au moins deux éléments et qu’on ait UP=P. Dans ces hypo-
théses, P est un continu ordonné.

Dans le théoréme 2, j’ai établi ce résultat inverse: Tout con-
tinu ordonné est semblable & un systdme M d’intervalles fermés
et de sous-ensembles composés d’un seul point d’un certain continu
ordonné V., , ce systéme vérifiant la relation UH=V,,.

Enfin, M. Novak a défini%) un systéme P d’intervalles fer-
més du continu ordonné ¢ jouissant de certaines propriétés qu’il

1) W. Sierpinski, Sur une propridté des ensembles ordonnés, Fundamenta
Mathematicae 34 (1949), p. 56.

%) J. Novak, On Partition of an Ordered Continuum, Fundamenta Mathe-
maticae 39 (1952).

3) J. Novik, On some Ordered Continua of Power 8% Containing o Dense
Subset of Power %, Czechoslovak Mathematical Journal 76 (1951), 63-79.
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