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Lemane 1, Pour tout I = Ipy..ip iy € P nous avons a<o(I).

Puisque a<<d(I)<w,, il résulte de ce lemme que lindice «
de Pintervalle arbitraire I iptgiy(a<ey AU Systéme P présente la pro-
Priété o< wy.

Lemme 2. Pouwr que deuw iniervalles différents Ligiynigiacay
Tpipedp-i<py du systéme P présentent la propridié Tigtytyiace) C
CIpista<e, B faut et il suffit que a>p, ir=1{, pour tout A<p.

Lemme 3. Pour que deuw intervalles Tpgy s, cas Ly toa<s),
du systéme P aient un seul point commun, il faut et il suffit qu'il
ewiste un nombre ordinal 6 <min(a,B) tel que iy=7; pour tout 1< é,
ts+ja=1, tazk1s pour tout A vérifiant la relation S<A<a, j,4=js pour
tout A wveérifiant la relation §<Ai<§p.

D’apréds les lemmes 2 et 3, dans tout couple d’intervalles du
systéme P ceux-ci sont disjoint ou n’ont qu’un seul point commun
ou encore I'un d’eux est sous-ensemble de Vautre. Par conséquent,
le systéme P vérifie 'axiome 1. Les axiomes 2-4 sont vérifiés d’apres
la, définition du systéme P; alors, P est une partition. L'ordre de
Pintervalle I=Ty 1, < est égal & son indice g, car tout inter-
valle du systéme P contenant Pintervalle I et différent de I peut
8tre éerit sous la forme 7 Joitedz<gyy OU f<a et dy=j, pour tout A< p
a’aprés le lemme 2. Alors, Pordre de la partition o) est au plus
égal & o, d’aprés le lemme 1.

" Nous avons construit une partition du continu M* d’ordre < wyp;
la similitude de 31 et M* entrafne facilement Pexistence de la par-
tition du continu M d’ordre <w,.
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On the Concepts of Completeness and Interpretation
of Formal Systems. "

By

G. Kreisel (Reading).

Introduction.

1. When in the history of mathematics new methods of proof
or new concepts were introduced, e. g. the duality principle in geo-
metry, complex or continuous variables, doubts often arose about
these methods; that is, doubts whether the methods had the pro-
perties which were expected of them. To resolve these objections
required two pieces of work: stating what conditions the new
methods had to satisfy, and deciding whether they did. These two
problems have often been called the problem of giving foundations
for the new branch of mathematics.

Now, the properties which one.needs in a mathematical sys-
tem, naturally depend on the applications for which the system is
intended, and often one system has many interesting applications,
either in mathematics or outside it a8 a scientific theory. It is there-
fore natural that the problem of foundations should have been
formulated in quite different ways.

2. Hilbert decided that the problem should be formulated as
the consistency problem, that is, the new system should be formal-
ized so that the idea of ,,provability in the system” is made precise,
and it should be established (by suitable methods) that not all
formulae of the system are provable. This decision is readily mo-
tivated by the use of a formal system as a seientific theory (see
e. g. [1], § 6); Hilbert’s special interest in this formulation is per-
haps due to the fact that his first logieal investigations concerned
Euclidean geometry, which is traditionally applied as a theory of
a certain branch of physics. . ‘ .


GUEST


104 G. Kreisel:

The intuitionists and finitists, who have written mostly
on analysis and set theory, demand a particular interpretation of
logical constants and quantifiers; roughly speaking, it should be
very closely related to the one customary for finite decidable sets.

Frege, Russell and others developed the theory of classes
to provide foundations for (pretty diverse) logical systems: and by
this they meant that a model. could be constructed for the system
by terms of the theory of classes (for the notion of “models” and
developments in this spirit see [2]).

3. We shall not list here applications of format systems where
, these various formulations are specially appropriate, It is enough
~ for us that there are mathematicians who operate more freely with
2 given system once foundations of their favourite sort have been
provided for the system. B

4. Our main problem is to discuss a schema for interpreting a given
formal system which covers the formulations just described as special
¢ases '). Quite roughly: the simple idea at the back of the schema
is that we wish to study a given formal system § by getting “in-
formation” about a familiar system F from proofs in ¥, The infor-
mation consists in this: with a formula % of % is associated a class
of formulae (4,,4,,...) of F so that if % is provable in & all (or one
of the) formulae A;, 4, ... can be proved in F, and if 9 is dispro-
vable in § this is not so. No condition is imposed if A is neither
provable nor disprovable in §.

8. A special case is a complete interpretation when 9 can be
proved in § if and only if all (or one of the) formulae A,, 4,,... can

be proved in F. This case is relevant to discussing the axiomatic -

characterization of concepts and completeness (e. g. in the senge
of [3]). This is a generalization of the idea of completeness used
in G5del’s proof [4] of the completeness of the predicate calculus,
where however the conmcept of completeness was not defined for
general formal systems (or, more precisely, for interpretations of
general formal systems since in this sense completeness is not a pro-
perty of the system, but of its intended interpretation).

1) Our schefna is pretty general, and, by suitable specialization, allows
one to m;.xke Precise many demands concerning interpretation. We do not take
% question seriously whether it covers all the things which might in some
circumstances be described as interpretations, - :
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Remark. Both the concept of models and. the general con-
cept of interpretation involve the relation between two systems.
Consistency, decidability, and completeness in the sense of Hilbert-
Post are (internal) properties of the system considered. This fact
gives & clue to the applications of formal systems in which the lat-
ter concepts may be expected to be appropriate criteria: in appli-
cations as a seientific theory the test that a system is right is that
it gives the right classification of the relevant empirical proposi-
tions, and has nothing to do with its relation to other formal 8ys-
tems; or, if a system is complete in the sense that every formula
ig either provable or disprovable, and is extended by new rules of
inference, the same -formulae (of the original system) will be pro-
vable in the original and extended system, provided the latter is
consistent; again the new rules of inference are justified by an in-
ternal property of the (extended) system.

Interpretation.

6. By a formal system we mean a set of rules stating what sym-
bols are to be used, what sequences of symbols are to be ealled
formulae, and what sequences of formulae are to be called proofs.
Throughout we suppose that numbers have been given to sequences
of symbols and that we have a primitive recursive formula &(n)
which holds if and only if # is the number of a formula, thus the
formulae of the system considered are recursively enumerable.
Tf also proofs of a system are recursively enumerable we call the
system formalized.

Let § be a consistent formal system containing a symbol for
negation; its formulae are denoted by Gothic capitals.

Let F be a formal system, and denote ifis formulae by Roman
capitals; we suppose that from its formulae have been selected
& class of true formulae and a class of false formulae, which are
exclusive, but do not necessarily cover all formulae of F.

Remark. We use the words “true”, “false”, because

(i) what we need is a classification of formulae of ¥, and we
shall sometimes understand by “true” (“false”): provable in F (not
provable in F), or: consistent over F (inconsistént over #), or: when
F containg the symbol of negation, provable in F (disprovable in F
where a formula A is called disprovable if —~A is provable);
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(ii} we often use free variable F, where the analogue to “A(b) is
disprovable” with free variable b, is a term n so that the formula
~7A(n) is provable; the analogue is not that “the formula 2 A(b)
is provable”, mor that “the formula A(b) is not provable” sinece
A () may simply be undecided (in the system 7).

Definition. Let g(n,a) be a computable function of the va-
riables n,a. If g(n,a) is the number of a formula A, of I in some
numbering of expressions in ¥ whenever a is the number of a for-
mula U of § in some numbering of expressions in &, then g(n,a)
is called a disjunctive interpretaiion of & by F, provided

(i) when % is provable in &, there is an 4, which is true,

(ii) when ¥ is disprovable in §, each 4, is false;
and g(n,a) i3 called a conjunciive tnterpretation of § by F, provided

(i) when U is provable in §, each 4, is true,

(i) when 9 is disprovable in &, there is a false A,.

Remark 1. When an interpretation is actually set uyp, g(n,a)
will generally be defined by some simple recursive scheme. We do
not restrict here the type of scheme so that a theorem of the form:
such and such a kind of interpretation is impossible, should be
strong.

Remark 2. We shall usually strengthen conditions (i) and (ii),
and require a computable function D(a,p) so that in the disjunctive
interpretation 4p,, is true when P is the number of a proof of YU
in § (and O(a,p) so that in the conjunctive interpretation Acap
is false when p is the number of a proof of —»9): this may be de-
seribed by saying that from a proof of 9 in ¥ we find a true A4,.

Remark 3. It will sometimes be convenient to say that “proofs
of A in § give information about the clags of formulae 4,,4,,...
of F”, the class being defined by the condition (En)[m:g('nv,“a)].
In language fashionable in the twenties a disjunctive interpretation
would be described by saying “ iy a Partialurteil concerning the
propositions 4,,4,,...” and a conjunctive one by “4,, are particular
cases of . E E

7. There are some (trivial) general results about interpretations:
Theorem 1. Ij § and'F contain the predicate caleulus, we can

get .a conjunctive interpreiation of § by F from a disjunctive one, and
conversely. o v ' o
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‘Without loss of generality we bind the free variables in for-
mulae of § and ¥ by universal guantifiers.

Let the formulae B, B,,... be the formulae associated with —»9
in the given disjunctive interpretation. Then associate with % the
formulae: =B, and —B, and .., This is then a conjunctive inter-
pretation.

Remark. The result does not always hold when ¥ is a free
variable formal system, e. g. it is shown in appendix II of [1] that
arithmetic with quantifiers but even without induction has no con-
junetive interpretation by decidable free variable formulae if any
verifiable formula of arithmetic may be used as an axiom — al-
though it has (several) disjunctive interpretations.

The converse is similarly trivial.

Theorvem 232), If § is formalized (and consistent!) it has in-
terpretations by numerical formulee without variables.

Let n(a) be the number of the formula —~, and let Prov(m,n)
be the recursive relation which holds if and only if m is the number
of a proof in § of the formula with number .

Then the sequence of formulae

Prov(l,a) or Prov(:?,a_) or ..,

. . “the formula 9 is provable in " is a disjunctive interpretation
of oA, and hence, by Theorem 1, the sequence

—=Prov{1,n(«)],

i. e. “the formula U is eonsistent over §” is a conjunctive inter-
pretation.

and —ZProv[2,n(a)], and ...,

Remark. The latter interpretation may also be written as
an interpretation of the formula 2% by the single free variable for-
mula “vProv{n,n(a)] (instead of a sequence) with the free variable n.

8. Theorem 2 shows that a cousistency proof of a formalized
system leads to an interpretation in our sense, by a very familiar
system, namely arithmetic without variables. By an equally slight
argument it is seen that models are also interpretations.

Let & be an axiom system of the predicate caleulus, to which,
possibly, other inference rules are added. If the predicate symbols

%). Already proved in [1], § 16.
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of § are By,...,B; then a model of § in F is a set of predicates
Bi,...,B} of I', B having the same number of free places as By,
and a predicate D*(a) of ' (the domain) so that

When B* is substituted for B in a formula 9% of § to yield
the formula ¥* of F, and ¥ is provable in § then U* can be proved
in F provided its variables are required to satisty D* (are restricted
to the domain D*).

Bemark, If A is the formula
(@) (By) (=) B(a,y,2),

R quantifier free, A* is () (By)(2)R*(2,y,2), and the restriction of
the variables to D* is expressed by

(@) (By) (2) [D*(@) & D*(2) - — D*(y) & B*(w,y,2)];

we denote this formula by A.

It is clear that if 4 of F is associated with 9U of & we have
an interpretation which is both disjunctive and conjunctive because
a single formula of F is associated with each formula of .

Lemark 1. When § is an axiom system of the predicate cal-
culus we get a model for the whole system provided we have
a model (in the gense above) for the axioms of %. This is not ge-
nerally so if § contains other rules of inference, such as the indue-
tion schema.

Remark 2. Models in which a predicate symbol of § is re-
placed by a single predicate of F, are used when one looks on
th(? predicate symbols of § as being (implicitly) defined by its
axioms. If one thinks of them as variables, a conjunctive inter-
?retation is used of all models of § in F: predicates B,...,Bf,
1=1,2,..., with the right number of free places are ordered, and
one agsociates with 9 the conjunction Ay, 4,,... For the pure pre-
dicate caleulus an interesting interpretation is got when F ig the
system consisting of all w-consistent extensions of Zy.

Re@ark 3. By a finitist (or free variable) model we mean
& model in a free variable forma] system F, whose predicates

?:1:;; éi«;(;idable; Where U* has a computable EBrfillung in F (see
, .
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Remark 4. Recently, somewhat more general definitions of
models have been given by Kemeny [2] and Henkin [3], which
are also interpretations in our sense provided, e. g. in [3], p. 83, 84,
the “models”, ‘“frames”, “assignments” are defined in a formal
system.

We recalled above several simple faets about models because
they constitute the best known method which goes by the name
of “interpreting” a given system §, and because it has been thought
that they provide a satisfactory general schema for making precise
the vague ideas about interpretation. We are using a broader con-
cept of interpretation (where the structures of the formulae U and
their associates A are not necessarily so similar as with models)
briefly for these reasons:

(1) Models are suitable when the system § has logical cate-
gories of “individuals”, “predicates’”, etc., which is not necessary
for an application of § (say, as a scientific theory).

(2) BEven if § has these categories, there is no general reason
for associating like categories in § and F'; for ingtance, in the ver-
gion of quantum theory by Schridinger, observables, which are
presumably called “individuals” in the empirical propositions of the
subject, are associated with differential equations which are not
called individuals in analysis.

(3) Many systems § in use have models only in rather sophi-
sticated systems F and have no finitist models, though they have
& finitist interpretation in our sense.

(4) Lastly, models are only suitable if one wishes to interpret
predicate symbols, and not if one wishes to interpret logical con-
nectives or quantifiers 3).

Finitist Interpretations.

If ¥ ig a free variable formal system whose predicates are
decidable we call an interpretation of § by F finitist (see [1], where
finitist interpretations of number theory are discussed at length).
By Theorem 2 above any consistent formalized § has a finitist
interpretation so that the problem of finitist interpretations is
interesting only for formal systems § whose proofs cannot be re-

%) One very important use of models is in independence proofs. It should
be observed that other interpretations in our semse also lead to indel.lendence
proofs, usually by the application of a diagonal argument like Gddel’s classical case.
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cursively enumerated, e.g. wo-consistent extensions of arithmetic,
[1], §18. ' _ ' '

Some natural questions concerning these interpretations were
not decided in [1]: it seems worth while to restate here the main
results of interpretations of number theory which were found in [1],
and then fill some gaps.

9. If § is the system of arithmetic consisting of a set of veri-
fiable free variable formulae of number theory as axioms and the
predicate caleulus as rules of inference, from Herbrand’s theorem
we get in [1], § 21, an interpretation by the system F, consisting
of the same axioms and the clementary caleulus with free variables
as rules of inference.

10, For the same § we get a disjunctive interpretation by
a system F;, which contains free function variables, in [1], § 24;
with a formula (x)(By)(2) R(z,y,2), R quantifier free, of §, are as-
soeciated formulac R[e,1,/(01)], R[¢, Ds/()2)],... Where 1 are terms of
the predicate caleulus made up of the variable e, function sym-
bols of §, and the function variable f (= functionals of the pre-
dicate calculus): it follows from the firgt e-theorem in [5] that if
(2)(By) (=) R{z,y,2) has been proved in § we can find from the proof
a term 1y so that R[e,1,f(y)] can be proved in Fy; and it is shown
in § 24 of [1] that to any functional 1y of the predicate calculus we
can find a number a, and a function f, so that R[a,1,,7,(1,)] is false
provided (z)(Ey)(z)R(x,y.2) has been disproved in §. This shows
that the sequence R[a,1,,f(9;)],R[@,15/(1s)],... constitutes a dis-
junetive interpretation of the formula (2)(Evy)(2)R(xz,y,2) of § by
the system F;. This interpretation ean be expressed by: there is
a counter example of the predicate caleulus to any Erfillung of
—(x)(By)(2)R(z,y,2). (The generalization to more complicated for-
mulae of § is clear,)

11. For full number theory with induction, Z, of [5], only
one infterpretation is given, in [1], § 39, which is the analogue to
the interpretation described above in §10. Now the functionals
used are ordinal recursive ones of finite order instead of the simpler
functionals of the predicate ealculus.

Remark. All these interpretations remain correct when an
arbitrary set of verifiable free variable formulae of §, not neces-
sarily provable in §, are added to § as axioms (w-consistent ex-
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tensions) and if we mean by “true” in ¥: verifiable. The method
of getting these interpretations is easily adapted o the extensions (e)
of [1], § 18, where any verifiable free variable formula Ala,fola)]
with a computable term f,(a) may be added as an axiom to &; but
there can be no one interpretation for all such extensions sabis-
fying the condition that g(n,a) of § 6 above is computable because
computable functions cannot he enumerated by a computable
funetion.

12. We wish to discuss to what estent the use of function va-
riables is neeessary.

The fact that we used functionals for the interpretation of
full number theory, §11, seemed rather interesting, but is not.
Congider again the formula () (By)(=) B(x,y,2), and observe that
one can enumerate functions of one variable which are zero except
for a finite number of arguments by means of a primitive recursive
funetion y(x; ). If n is substituted for the function variable f(b)
in p, of § 10, the latter reduces to a function H(z; a). Since the value
of an ordinal recursive functional with argument f depends only
on the values of f for a finite number of arguments of f, R[a,1,7(y)}
will be verifiable provided R{e,y(z;a), n(z; (z; a)]} is veritiable
(with the two free variables # and a), and, of course, conversely.
Therefore we get an interpretation of (@) (By)(z)R(»,y,2) by the
sequence:

R{a,Gyw; o), ylw; Fy(w; a)]}
or -
R{a,Dy(r; a), 1lw; Dylw; @)1}, ey
which containg no function variables (cf. §§ 31-33 of [1}).

18. An interpretation without function variables seemed de-
sirable for this (technical) reason: in [1] it was easy to check con-
dition (ii) for disjunctive interpretations when ¥ was without fune-
tion variables, as in § 9 above: from any A, (written with its va-
riables: An(ay,...,ax)), one could prove A by the predicate calculus,
hence also the formula -

W (Buy) ... (Bey)y 74,2 .. i),

80 that from a proof of = we. get a proof of

A Bay)... (Baoy) 7 A (... W),
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whence, by Hilbert’s first e-theorem in [5], we get terms wy,...ny
80 that Au(ny,..., 1) is false. On the other hand, checking this con-
dition for the interpretations of §10 and particularly of § 11 was
a tough piece of work; for simplicity we describe the proof for three
variables only: we replaced R[a,,f(y)] with an ordinal recursive y by

R{a,9(@; a), uls; lo; o)},
and proved from the latter in Z, the formula
() (By) (=) R(@,y,2)
and hence the implication
(@) (By) (=) B(w,y,2) > (Ba) (Ba)= R{a,y(w; o), n[@; Hlw;a)]};
{the possibility of proving this implication is established effectively
in §§31-33 of [1]), thus from a proof of
7 (#)(By) (2) B(w,y,2)
in Z, we get a proof, still in Z,, of
(13.1) () (Ba) = B{a,9(w; a), n[z; §(w;u)]}.

Now we applied Hilbert’s substitution method, as developed
by Ackermann in [6], to the proot of (13.1), and thereby we found
numbpers ¢ and a so that

B{a,(z; a), 7x; 5(x; )]}

is false: 4. 6. ¢ and the function 7{%; b] with the variable b consti-
tute a counter example to R[a,1),f(y)]

Remark 1. The method of proof is described here rather
more simply than in [1].

Remark 2. The argument described above proves rather
more: we can find a counter example to Rla,y,f(y)], even if
() (By)(z) R(w,y,2) is not provable in Z,, but if one of the for-
mulae associated with it in our interpretation is verifiable, say

7 E[x,9(31),3] where g(b) is a free function variable, % and 3 are
funectionals.

We take for g(b) the function n(w;d) and prove the implication
asg) @7 BE(),n; 5,0)],3@))
— (Ee)(Ba) =7 B{a,5(w; a),n[o; §(w; a)]}
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(1) in the predieate calculus if the functional

: $ % and 3 belong
to the predicate caleulus,

(if) in Z, if they ave ordinal recursive functionals; then we
apply the relevant version of the substitution methoq to the proot
of (13.2), and if the premis is verifiable we find numbers ¥ and q,
as required.

Remark 3. It is rather misleading to contrast the proofs of
conditions (ii) in the interpretation of § 9 and § 10 without recal-
ling that the proof of eondition (i) given in [5] is much harder in
the former than in the latter.

The substitution method is much more complicated for full
number theory than for the predicate caleulus. Tt therefore seems
of interest to see if there is a disjunctive interpretation of full num-
ber theory such that the formula 9 ean be proved from any one
of its associates 4, by the predicate caleulus only. (The interest
derives particularly from remark 2 above,)

Remark 4. Another consequence of interest would follow from
such an interpretation: we could normalize proofs of U into first
a proof of an A,, so to speak the proper number theoretical part
of the proof, and then quantifiers are introduced by the operations
of the predicate caleulus of first order. We shall see in Theorem 3
that this is false for proofs of U in Z,. However such a splitting
up of proofs is possible if we step from 4, to U by the predicate
caloulus of second order. For the proof of this fact consider again
aformula ¥ of the form () (By)(2)R(»,y,2) where 4, is Rla, 9n, [(9a)];
we use the predicate caleculus of second order to which the sym-
bol y,, but no axioms for it have been added. From A, we prove
{already in the predicate calculus of first order) (Hy)R[a,y,f(y)],
and hence, by the predicate caleulus of second order,

(13.3) (1) (By) Blaw,y, f)].
By the predicate caleulus of second order (e. ¢. [5], p. 488),
() (B=2)A(y, =) —~ (Bf) (y) ULy, f(y)]
80 that, setting —> R(a,b,¢) tor A(b,e), we get
(13.4) D By) BLa,y,1(y)] - (By) (2) R(a,y,2).
(13.4) together with (13.3) yields (Hy) (=) R(a,y,2), and hence
(w)(E;u)(z)-R(M,;I/,z)-,

Fundamenta Mathematicae. T. XXXIX. 8
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14. Theorem 3. There is no disjunctive interpretation of Z,
by a formal system F satisfying the following conditions:

its variables are free individual variables,

its predicates are decidable,

its function symbols computable,
and from each A, associated with U, the latter can be proved by the
predicate caleulus of first order.

Remark. We have not attempted to state the theorem in
its best possible form; we know, e. g., that there can be no con-
junctive interpretation, and by examining proofs of the predicate
ealeulus it is clear that if %W can be proved from 4, it can also be
proved from a formula 4; which contains no function symbols
and predicate symbols other than those of A and where 4, is pro-
vable in the predicate calculus from A7; since the function sym-
bols and predicate symbols of Z, are computable so are those of .4;.

For the proof it is convenient to consider an Herbrand inter-
pretation of formulae (z)(By)(2)A(x,y,2) of Z,, by which we mean
a sequence of disjunctions

Alayy(e)a] V Alany(e, ) @51V ... V A[agn(a, 4y, .., Ca—1) ]
where the o are individual variables, vi(a,ay,...,4;—1), 1<i<n are
computable free variable terms whose only variables are a, a;,
1<j<i.

Lemma. There is no Herbrand interpretation of number
theory Z,.

Consider the formula

(14.1) () (By)(2)[¢>y —~ P(y,s)=P(z,u)]

where P(a,b) is the primitive recursive function defined as follows:

(i) prov (a,b) is the primitive recursive function which =0 if
4 is the number of a proof in Zy of the formula with number b, =1
otherwise. Here, and below, some numbering of expressions in Z,,
e. g. of [5], is assumed to be chosen. )

a
(ii) prov, (a,b)z]]lprov (n,b), 4. e. =0 if some integer <a i8
. =

the number of a proof in Z u of the formula with number b. prov, (a,b)
ig also primitive recursive. :
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(iii) P(a,b)=0 if and only if the following conditions are sa-
tisfied:

b is the number of the conjunction A& 4,&...& 4, where
the formula 4; has the number a;, and there exists a sequence
b0,53,... b, mn, where b® is the mimber of the first proof
of Ay, and b ig the first number >5() which is the number of
a proof of 4,4, and:

a=b"  or axpo,

Note that the only numbers <<»® for which P(a,b)=0 are o
which are equal to some bW, 1<j<Cd.

Note also that if 4, can be proved (in Zy) there are arbitrarily
long proofs of 4, so that if the conjunction A& A& ... & Ay, m<n,
can be proved in Z, there exists a sequence bM,... bm satisfying
the conditions above. The sequence is defined uniquely.

P(a,b) is primitive recursive since it can-be defined by ap-
Plying quantifiers restricted to finite sets to a primitive recursive
formula. We need the following definitions:

Mn,®): the exponent of p, in the factorization of  into powers
of primes, p, being the n prime;

n(b): the number of conjuncts of the formula with number 5 H

¥(r,b): for r<n(b), the number of the rt conjunct A,.

Then P(4,b)=0 if and only if either -

at0& (Bn){n<n(b) & a =pe(Bp) (q) () {g<r<n—-Alg,p) < A(r,p) &

o Prov[i(r,p)w(r,b)]=0&z= in,p)}}

(Bp)(@) () fg<r<n(8) >4, p)<
<Ur,p) &DTOVIA(r, ), ¥(r,b)]=0& @ > ALn(b),p]}-
Then,
(14.1) (@) (By) ()& > — Ply, ) = P(z,a)]

can be proved in Z,, since for large y P(y,b)=0 ii the formula
A,&...& 4, (with number b) can be proved in Zy, and P(y,b)=1
if it cannot be proved in Z,. But (14.1) has no Herbrand inter-
pretation, that is, to any disjunction

4 > (a) > P[ny(a),a]=P(a,a)- V...V

(14.2)
@n > Dn (8 Gy, ... @nes) = POn(a, @y, ..., Gnes) a]=Plan , 0)

where the 1 are computable terms, we find numbers ,0ay,...,0, Which
make (14.2) false.

8%
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Remark. To show that the first disjunct of (14.2) is false
requires that (14.1) is not satistied by a computable function 1,(a).
This is already achieved by the formula

(14.3) (®)(By)(2)[#>y — provy(y, o) = provy(z,)]

as shov.vn in appendix I of [1]. But since provi(a,b) is monotone
decreasing for each fixed &, (14.3) has the Herbrand interpretation:

> UL(“) — provy[n,(a), a] = ]’JI‘OVI((ZI, @)V,
@y > @y = Provy(ay, @) = Prov(a,, a)

since if for some a=q, a;=q,, the first disjunet is false, provy(a,,a)=0
and hence a,>a; —prov{a,a)=0.

) The reason why we have to replace (14.3) by (14.1) is that
instead of the monotone convergent sequences provy(n,z) (of 0 and 1),
we want convergent sequences P(n,x) (of 0 and 1)"Which for in-
finitely many # have many long stretches of 7 though P(n,»)—0:
and there must.be no computable estimate, depending on » and
the lengths of the first » stretches, which bounds the length of the
(r+1)® stretch.

We give (metamathematical) instructions for introducing ab-
breviations p(4,0) for certain terms of Z,. These instructions are
intended to be used as follows: we suppose a set of computable
terms y;, 1<<i<n, (of (14.2)) to be given, and we denote represent-
atives of them in Z, by T;; then the terms which we denote by
p(1;8),...,p(n,b) are to be formed according to our rules; in other
words, the recursive definition is to be applied n times only, and
(for our given set of 1;, 1<<i<{n) these terms can be written out
in fu]l. ‘When in the sequel we speak of the number of an expression
which contains the symbols p(i,b) we always mean the number of

the expression (of Z,) which is got when 2(%,b) is replaced by the
definiendum.

Denote

?

l"z{PrOV {91, s(b,b)]} = O}

by p(1,b), and

E{(EP) () (1) [4< < i1 2{q, p)< 4, p) &
_ prov U-(":P); V[",'S'(b1b)]}=0&2=’i(i +1, p)]v
[P{[}i+1£3(.b7b)a P(1,0), ..., p( i b)]1 s(b,b)}=0& ]

2= b,b), b, .. 1
by 410 Dital8(b,0), p(1,B),..., p(i,0)]+1]}
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Remark. Observe that in the numbering of proofs in Z,,
if p(j,b) is the number of a proof, p(j,b)-+1 is not, since all proofs
have even numbers. The need for the somewhat complicated de-
finition of p(¢--1,b) will appear in (iii) below.
Now consider the conjunction

prov,{5;[s(b,b)],»[1,8(b,0)}=1 &
provy{D,[8(8,0),(1,0)1,2(2,8(b,0)]} =1 &

(14.4) :

Drovy{Tals(,b),p(1,0),...,p(n—1,B)],9[n,8(b, )]} =1,

where b is a free variable, §; are terms of Z, representing the com-
putable functions 9, and s(a,b) is the primitive recursive function
whose value is the number of the expression got when the variable
in the expression with number b is replaced by the numeral a. Let p
be the number of (14.4) so that s(p,p) is the number of the formula S
got when b in (14.4) is replaced by p.

We shall show that (14.2) is false if we replace ¢ by s(p,p),
a; by p(‘iyp% 1=<ign.

(i) Observe that & is a correct decidable formula of Z,. The
first conjunct is correct since otherwise

(14.5) provy{D,Ls(p, p)];»[1,8(p,p)]}=0,

that is some integer g, <¥;[s(p,p)], would be the number of a proof
in Z, of the formula with number s[1,s(p,p)], 4. ¢. of

(14.8) provy{pLs(p,p)I,»[L,s(p,p) 1} =1

itself; since both (14.5) and (14.6) are decidable in Z, one of them
can be proved in Z,, and by the consistency of Z, it must be (14.6).
The number of its shortest proof is the value of the expression
p(1,p): >T4[s(p,p)]. Since the expression which we denote by »(1,p)
can be evaluated in Z,, also the second conjunct of & is a decidable
formula of Z,, and it is correct by the argument above. Again

p(2,9) >Dals(p,),2(1,9)]-

Generally, suppose the first i conjuncts of & have been pro-
ved, and the terms p(j,p), <4, have been evaluated. Then p(i,p)
can also be evaluated, and the (4+1)® conjunct can be proved in Zy.

Observe first that under our conditions there is a sequence
b, j<i, with b=s(p,p), which satisfies the conditions in the de-
finition of P(a,b).
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Observe also that the i*h conjunct of & states that

5:'['5‘(%13)129(1; p); yp(7"—15p)]

is less than the least number of g proof of the formula with

number »[4,s(p,p)], and is therefore certainly less than b®
Now, it ‘ '

(14-7) P{ﬁl[s('prp)y p(li’p)ﬂ "'!p(i_l)p)]: ‘9(33’ p)}‘l“"' 0:

p(i,p)="5@ by the least number definition of p(7,b) above, If

is false ten

p('i,p)=r_)1[8(p,p),p(l,p),...,p(i—l,P)H—l.
S.lélce ‘P(a,b) is primitive recursive, the condition (14.7) can be de-
cided in Z,,, and hence p(4,p) can be evaluated. Note that in either case
p(i,p) >51[8(p1p))p(17'p)7*"72’(7;"'1:13)]'

Thus the (i+1)® conjunct of & i i k
8 a decidable formul
by the argument above it is correct. i of Zp, and

Hence © itself is correct.
(Su) P{I)I[s(pyp)]) .S‘(p,p)}:l, P[p(l: P),S(P;P)]: 0.
nce even the first conjunet of & cann ¢ :
with anso ov iy ot be proved by a proof

P{51[3(P;D)],3(P:P)}=l-
Since p(1,p)= 230,

Plp(1,p),s(p,p)]=0.

(i) P[p(i+1,p),5(p,p)]=0 if and only if

(14-8) P{ﬁi-!-l[‘?(p;p)yp(l)p); ""p(i:p)]; S(p,p)}=i= 0.

If (14.8) holds, by the definition
of
If (14.8) is false, "

-

i1,b), p(i++1,p)=he+,

I—)H-l[s(pyp)yp(lrp)y"'717(1:)4))]=b(j)’ for some ]<7'
and then ’
Pli+1,p)=bU41.

Thus p(i+1,p)

< b i
80 that and is not the number of g proof at all

Plp(i+1,p),s(p,p)]=1.
Now consider (14.2).
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Let a=s(p,p), a,=p(L,p):
p(1,9) >u[s(p, )],
P{p,[s(p,0)],8(p,9)} =+ Pp(1,p),5(p,p)].
Generally, let a=p(j,p), 1<j<n. Then
p(4,p) >Nls(p,p), P(L,p);.-,0(1—1,p)]

and by (ii)

by (i), and

PEHLs(p,P),P(1,P), -, P —1,0)],5(p, )} = PLp(3,P), 5(P,P)]
by (iii).

Thus, putting

6’4—'_‘——3(}3,)3), ¢Z1=p(i,p),

yields a counter example to the whole disjunetion (14.2).

This proves the Liemma.

To prove the theorem, comsider a sequence of free variable

formulae Ay(y,..,@ny), -y Ax(y, .., Gny) associated with . I¢ A could
be proved by the predicate calculus from each 4, say Ag,

(14’9) Q[V(E%),---,(E(‘Ink)_7A(?/17~--;ynk)

could be proved in the predicate caleulus, and by Herbrand’s theo-
rem we should get a Herbrand interpretation of (14.9).

Take for % the formula (14.1). By condition (i) of § 6 one A
should be verifiable since 9 is provable in Z,, so that from an Her-
brand interpretation of (14.9) we should get one for (14.1) itself,
which is false.

1<ig<n,

Completeness.

15. The definitions by Hilbert and Post of the concept of
completeness of a formal system § make it an internal prqurty«
of the system: in one form § is called complete if any formula of §
can either be proved or disproved in § (provided § contains a sym-
bol of negation), and in the more general form & is called compl.ete
if the system § becomes inconsistent when a formula of & 1;71110.11
is not provable in § is added to § as an axiom; this definition 18
suitable either if § does mot contain the symbol of nega)ti-or.x or,
roughly speaking, contains free vapiables (like the propositional
caleulus). :

These definitions are a rather sophisticated development .of
2 much vaguer notion of completeness, whieh is eoncerned with
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the complete characterization of some notion by a formal system.
Thus the propositional calculus was called complete because, on
the one hand, the idea of truth of any formula of this calculus could
be defined by truth tables, and, on the other hand, it could be
shown that all identically true formulae and only such formulae
could be proved in the (usual) propositional caleulus. Similarly the
predicate calculus was intended to characterize the notion of logical
truth or validity, in the (vague) sense that those and only those
formulae (of the first order predicate caleulus) are valid which are
“true in any domain”: and Goédel’s proof which he called proof of
the completeness of the predicate caloulus, consisted in showing that

(1) if a formula is provable in the predicate caleulus it is valid
in number theory Z, extended by verifiable free variable formulae,
and

(i) if it is not so provable, it is false in a certain w-consistent
extension of Z,. (It is well known that the predicate ealeulus is
not complete in the sense of Hilbert-Post.) On the other hand num-
ber theory was intended to characterize the notion of verifiability,
where the formula A(b) is called verifiable it A(n) is correct for
every recursive term n, and Godel showed in [7] that this was
not achieved by any formalized system in the sense that in any
consistent such system there is a primitive recursive formula A(b)
so that A(n) is correct for each n without A(b) being provable in
the system. This was called a proof of incompleteness.

In each case a formula of the system considered was asso-
ciated with a class of formulae (of the same system or other Sy8-
tems) and the formula was intended to be provable if and only
if each formula of the class was correet (in some preseribed sense).
From this point of view completeness of a system is not an internal
property of the system. (We observe that also Henkin on com-
pleteness in the theory of types associates completeness of a formal
system with a certain intended class of interpretations in [3], p. 81.)

Remark. To stress this fact we shall not speak of the com-
pleteness of a formal system, but of the completeness of a certain
interpretation of the formal system. The reason why one often
speaks of the completeness of the first order predicate calculus is,
no doubt, that many logicians intended this formal system to have
just that interpretation whose completeness Godel established: in
other words, completeness of the intended interpretation.
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16, From this point of view it is natural to call a disjunctive
interpretation complete if the formula A of § can be proved in F
when some 4, is true, and to call a conjunctive interpretation com-
plete if the formula U of § can be proved in ¥ when each 4, is true.

Remark 1, We might equally well say in the conjunctive
case, it % is not provable in §, we find an n so that 4, is not true.

Remark 2. If F is a subsystem of §§, and “true” means: & pro-
vable in F, a sufficient condition for completeness of a disjunctive
interpretation is that % can be proved from A, in &, for each n.

17, Trivially, if § is consistent and complete in the sense of
Hilbert-Post, the interpretation of U: “the system § is consistent
when the formula % is added to the axioms of §” is complete in
our sense. If each formula of § is either provable or disprovable
both interpretations of Theorem 2 are complete.

Concerning the interpretations of number theory in [1].

(a) Consider first the interpretation of a formalized system §
by F, mentioned in § 9. Denote the formulae of F, associated with
the formula % of § by 4,4, 4, ..., and recall that

(i} F, is a subsystem of &,
and

(ii) each .4, implies A in §F.

Thus if some 4, has been proved in F, it can also be proved
in §, and % can be proved in §. Thus the interpretation satisfies
the condition imposed on complete disjunctive interpretations in
§ 16. (Note that the argument just given is a special case of re-
mark 2 in §16.) By “true in F;” we mean here: provable in F,.

Our argument applies also if by § we mean a formal system
of arithmetic consisting of the predicate calculus as rules of in-
ference, and any verifiable free variable formula of ¥ as an axiom
(4. e. the so-called w-consistent extensions of §); and by F, we mean
the system consisting of the elementary calculus with free variables
as rules of inference, and any verifiable formula of ' as an axiom.
Here we mean by “true in F,”: verifiable in F\.

(b) Next consider the interpretation of & by #y in § 10 ahove.
Denote the formulae of ¥, now associated with % by A¥, 43, .43, ...
It is shown in [3], p. 150-151, that A; implies 4, (of (a) above) in
the elementary calculus with free funetion and individual variables,
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and if A} can be proved in F;, 4; can be proved in F,. Now the
argument given above shows that the interpretation of § by F,
is complete.

(¢) Finally, consider the interpretation of full number theory,
as described in § 11 and § 12: by full number theory 3 we mean
the system Z, to which are added symbols for ordinal recursive
functions of finite order, and all its w-consistent extensions. There,
with the formula A

wl Eyi)y 'v,. (Ez/,,)A(wl,...,a;,,yl,...,y,,)
is associated the sequence
Alafy (99); s 1 (0P, 92 ) 0P, ., 9P] (§11)
or the sequence A®, i. e,
A{“ﬂz[%n(” 5 @), .. ;’7,,[‘”71)1 (%5 @), ... ,.0(;-) 1("”7 )]I)(r) (3 a); 1r) a;?a)}
(§12)

where the y are ordinal recursive functionals, and the y(w; a) are
ordinal recursive functions of finite order. Also, by §§ 31-33 of [1],
for each r, A® implies U in the full number theory described. Since
AW® ig a free variable formula of the (non formalized) number theory
3 considered, A® is an axiom of 3 provided it is verifiable, so
that, if A is verifiable, A can be proved in 3. Thus, if we call A®
“true” when it is verifiable, our interpretation of 3 is complete.

It is probable that the interpretation in question is complete
if the number theory considered is the system Z, itself, and if we
call A® “true” when it is provable in the (formalized) system
of [1], §38.

18. When one considered interpretations by models it was
natural to define completeness by models. Again it seems, however
suitable models may be for formulating completeness in cerbain
cases (e. g. validity of logical formulae), they are not suitable for
a general definition of completeness, the reasons being much the
same as those of § 7. In addition, when we consider the problem
of finding a complete axiomatic characterization for a notion (4. e.
a class of formulae of some given system as illustrated in § 15)
models are not suitable because the formulae of the class may not
have the form of models of some one formula; e. g. the notion of
counter example in [1].
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19. The obvious problem of whether every (consistent) system
has a complete disjunctive and conjunective interpretation is trivial
unless the system F is suitably restricted.

Remark. For any formalized system the disjunctive inter-
pretation of Theorem 2 ig complete.

There are some interesting unsolved problems in this connec-
tion, but generally the interesting problem is to decide whether an
intended interpretation of a given formal system is complete.

20. We conclude with a curious isolated result on complete
conjunctive interpretations of certain consistent formalized systems
of numbers theory by models defined in w-consistent extensions
of Z,. The method applies also to w-inconsistent systems of number
theory.

Remark. The interest, if any, of these models is that they
are defined very simply from Godel’s arithmetization (cf. first sen-
tence of the footnote in [5], p. 206), and, like the Skolem model
in cases discussed in [8], they are non standard models, which have
been mentioned in the literature recently. Also, the method applies
apparently only if the logical connectives are just & and v, in
particular, if the symbol of negation has been eliminated.

We describe these models without much formal detail, and, to
fix ideas, we consider a certain number theory Z, which is got from
the system Z, described in [5], p. 324, as follows:

(i) The function symbols +1, 4, X and the constant 0 of Z
are eliminated by predieate symbols: N(a,b), a is suceessor of &;
8(a,b,c), ¢ is the sum of ¢ and b; P(a,b,c), ¢ is the product of a
and b; Z(a), a is zero; also the axioms of Z are modified appro-
priately. Universal and existential quantifiers and e-terms and the
s-formula, [5], p. 13, are used, but no formulae with free variables.

Remark 1. By [6] the system Z, is consistent.

Remark 2. The elimination of function symbols and free
variables is usual with models (ef. [4]).

(ii) We suppose expressions of Z, have been numbered, and
since the terms of Z; can be recursively enumerated there is a com-

putable function j(n) so that the value of j;(n) is the number of
the nt term of Z,; actually j;(n) can be defined by a primitive re-
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cursive definition. Further we have a substitution function sy(nym,p, a)
which is the number of the expression of Z, got by substituting
in the expression A of Z; with number « the terms with numbers
Jy(m), ji(m), §5(p) for the free variables by, by, by in AL

Remark. We substitute the n' mi® pt term and not the
numerals n,m,p, as in the substitution funetion in Theorem 3; also
they are not the terms with numbers n,m,p.

(iii) We denote by Provy(a,p,q) the primitive recursive formula
which holds if and only if either =0 or & is not the number of
a formula of Z,, and p is the number of a proof in Z; of the for-
muly Q with number ¢, or if @ is the number of a formula of Z,
p is the number of & proof by Z, from U of Q. The value of the pri-
mitive recursive funection e,(a) is the number of the formula =%,
and, finally, #(n) is the expression B{ueProvy[0,2,e(n)]}, where
B(0)=T1, B(n+1)=0.

Remark. t,(n) is not computable, but can be “evaluated” in
the informal system consisting of w-consistent extensions of Zy:
t(n)=0 if N, the formula with number =, is inconsistent over Z,,

L(n)=1 if M iy consistent, since Z, does not contain formulae with
free variables.

(iv) Positive formulae of Z, arve prenex formulae of Z, which
neither contain the e-symbol so that its quantifiers are universal
and existential variables, nor the symbol of negation.

Any such
formula can be written as

(20.1) (%1) .- (B1ny) (BYyy) ... (BY1my) - (@nt) ... (Fna (EYnt)... (EYum,)

[(Bu_v VBlkt)&v (Bplv RERV Bpkp)]

where B are unnegated prime formulsae, i. e. the predicate symbols

of 20 (i), =, < whose arguments are the variables ay, 1<i<n,
1<K, Yrsy 1<r<n, 1K<,

Remark. Any formula of Z, without the e-symbol is equi-
valent over Z; to a positive formula of Z,: first write it in prenex
form (20.1), when the B may also be negated prime formulae; then
replace —za="> by a<bVb<a; —a<bh by a=bVb<a; “=N(a,b) by
(B2)[N{2,b) &~z =a]; similarly with the other predicates of 20 (i)
lastly transform the resulting formula into its prenex form.

’
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Theorem 4. Given o positive formula U of Zy, denote by A
the jormule obtained when the predicate

(m) =7 Provy {nt,(n),m,e[s(iy, £, %, /)1

of Zy is substituted for the predicate F(wl,m‘z,w{,) in U, where t?w ;fot;mz:izi.
F(by, by bs) Ras the number [ in our numbering, a,n.d ass.ocu.»te e
sultli-,ng’seque)wc with Az this is then a complete conjunctive z'r%teip:eti—
tion of (positive formulae of) Zy by 3, the system of w-consistent é
tensions of Zy.

Remark 1. We use predicates with three arguments because
no predicate of Z; has more.

Remark 2. “Troe” means: provable in some w-consistent ex-
tension of Z,. We do not attempt to give a detailed proof of the
theorem.

Remark 3. As in remark 1, §8, we have‘to check for eacl;
positive formula of Z; that our predicates constitute a .model, and
not only for the axioms of Z; because Z; is not an axiom system
of the predicate ealculus.

Temma 1. If the formula U, say (20.1), is proved in Z;, each
of our models 4, is a true formula (of 3)- ‘ -

Observe that —»9 cannot he proved in Z; from any formula.

ich i sistent over Z;. _

Whld}*)llfm?ii?tfemm A the1 existential quazntiﬁers. by e—expresslor&,
as described e. g. in [1], § 24, denoting the resulting fr)ymuladt;:i* er(;
The quantifiers yy are replaced by e-terms §y(&y, .«”"/Li'ii]): and ]x‘
are primitive recursive functions ¥y(ay, “op @iny) SO t‘hatr W '(u‘xi:‘ baﬂ;ﬂ;
are the terms with numbers jy(ay);-.,fi(@mn)y DijFry -2 ¥in) BAS THE

ber Yii(@qzgee-s Fingl- N .
num Shléys;[néan' bel proved in Z;, so can 9, and hence ez?c,htoé t;:;
disjunctions ﬁuv...vl'?,-k,. whatever terms of Z; .are substt}t;lhe Jor
the all variables ,...,%nn,. Hence by the consistency o e bym
tem Z,, ~7§,~1 &--'&_’gﬂq cannot be proved in .;.Zl from aEy formlil?.f%
+which is consistent over Z;, s0 that either ~7By, or 7Bg Or ... 7Bu,;
cannot be proved from N in Z.

This proves the lemma.
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LBemark 1. For any n» the model is formalized by a free
variable formula. In particular the model has a primitive recursive
Erfullung Yaul gy ooy Cing)y ooy Lnampy (g, ++yCnn,) though even a proved for-
mula (20.1) in general has no computable Erfillung. The reason is
that the formal Erfiillung of 9 by e-terms provides a primitive re-
éursive Erfillung for the model by the order of these c-terms in
our numbering.

Note that a rather similar phenomenon is found with the
Skolem model, e. g. [8], end of § 1.

Remark 2. Our definition of a model breaks down if applied
to the predicate calculus: thus the formula F:

(@)[=Fy(a) V> Fy(a)]

is certainly consistent over the Predicate calculus, but neither —~F,(a).

nor ~7Fy(a) can be proved from § by the predicate calculus. Sup-
pose f; is the number of the formula Fi(b), sy(m,n) the number of
the formula got by substituting the mt term of the predicate cal-
culus for the free variable b in the formula 9t of the predicate cal-
culus with number n, e,(n) is the number of =N, and Prov,(m,n}
holds if and only if m is the number of a proof of M from §F by the
predicate calculus. Then the analogue to our lemma would be to
substitute (m) = Prov, {m,e,[s(-, 10} for Fy(-) so that § becomes

(m){(E-m) Prov, {m, e,[sq(x,f()1} V (Bm) Prov, {m, eol $o(i2, ]‘2)]}}
which is false. '
Similarly the predicates
(Bm)Prov, [m,s(-,f)]
do not provide a model: consider (z)[Fy(x)\ Fy(x)].

Lemma 2. If %A, (20.1), cannot be proved in Zy, there is an n
80 that An can be disproved in some w-comsistent emtension of Z,.

Remark. The argument is rather uninformative and does not

compute the number n, as is to be expected from a completeness
proof of this sort.

If A cannot be proved in Zy, one of the djsju.nets ﬁuv,..vf}'ﬂ'
cannot be proved in Z;, and the formula —~ 5, &... &731,, is con-
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sistent over Z,; let its number be m. Then from it can be proved
B j ula 4, is falsce (z.e.
in Z, each =By, 1<<j<k;, and hence the form n ]
can ll)e disproveci in the extension of Z, by the free variable formula
~>Prov, [0, m,e(n)].
The two lemmata together prove the theorem.

Remark, The proof applies readily to syst?ms Whi(}}.l are
extensions of Z, by consistent, but not necessarily w-consistent

formulae of Z.
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