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Theorem VIT permits us to prove that some measures are not quasi-
compact. E. g. no proper extension of Lebesgue measure to a o-measure
i3 quasi-compact. In fact, by Theorem III it suffices to prove that no
proper extension of Lebesgue measure to a separable o-measure is com-
pact. By a theorem of Rohlin®) such extensions are not isomorphic
with the Lebesgue measure and consequently are not compact.

5. Cartesian multiplication. Let #, be a o-measure in 2 o-field
M, of subsets of a space X, (where ¢ runs over any set 7' of indices).
In addition to the terminology of C, we call the o-product of {u} the
g-extension of any product of g. :

Theéoremn TIIT. Each o-product y of quasi-compact c-measures {y}
is quasi-compact.

By virtue of Theorem III it suffices to prove that y{( D), is com-
Pact for each denumerable class D C(M);. Obviously there is a family
{D;} of denumerable classes such that

DCM,  (D,;C[Y Dy
t

We denote by L the last field. .

It follows from C6(vii), that ul L is compact, whence, by "Theo-
rems I and 111, the measure p|(D)s is compact, q. e d.

Notice that Theorem VIII can be generalized as follows: Each
produet of guasi-compact o-measures has the quasi-compact s-extension.
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Undecidability of Some Simple Formalized Theories
By

A. Janiczak | (Warszawa)

The aim of this paper?) is to prove the undecidability of the theory
of two equivalence-relations and of some related formalized theories 2).

With the exception of theorems 2 and 3 in section 2, T consider
theories whose logical basis is the functional caleulus of the first order
with identity. Individual variables ay,x,,... are the only variables which
occur in those theories 3).

Negation, conjunction, alternation, implication, and equivalence
will be denoted by the symbols ', -, +, —, <>; the quantifiers by the
symbols (Ez;), (r;). Multiple conjunctions and alternations will be de-
noted by Greek capitals 77 and X. The sign =~ will be used as the symbol
of identity within the theory, whereas == denotes the relation of identity
in the meta-theory.

When describing a formalized theory I shall enumerate its extra-
logical constants and axioms. It is known that those data determine
the theory univoquely. :

§ 1. The theory T, of two equivalence relations. The extra-
logical constants of the theory T; are two functors Ry, R, each with two
arguments. The axioms of T, are as follows:

(1) (ar)a, Roxy,

(2) (ryr) (1 Rody—as Kgury ),

(3) (@ aa) iy Ry o - 20 Ryty =y Rity),
(4)  {w)a By,

(3) () (g Ry vy 00 Ry iy,

1) This paper is a modified version of a paper submitted by the author shortly
before his unexpected death (July 1951) to the faculty of Mathematies of the University
of Warsaw. to obtain a lower scientific grade in Mathematics. The paper was prepared
for print hy A. Mostowski with the assistance of A. Grzegorezyk.

2) For the notion of decidability see Tarski [6], p. 50. Numbers in hrackets
refer to the bibliography at the end of the paper.

3} In the terminology of C‘hurch [1] the theories are hased on the applied func-
tional ealeulus of the first order with identity.


GUEST


132 A. Janiczak:

(6)  (y2ay) (o Byivy -2y Ry vy — vy Ry 1),
(1) (1) (0, == oy < 2y Ry - 2 Ry 3).

The content of these axioms is simply that B, and B, are equi-
valence relations whose common part#) is the identity-relation. '

Theorem 1. T, is an undecidable theory.

We base the proof of this theorem of the results of Tarski and
Mostowski?®). It follows from those results that in order to prove the
undecidability of T, it is sufficient to show that the theory T, of non-
densely ordered rings is consistently interpretable in T,. In other words,
we have to exhibit a self-consistent theory T which is a common exten-
sion of both Ty and T, and which has the following property: each con-
stant of T, possesses in T a definition in terms of the constants of T,.

The following abbreviations will be used in the definition of the
theory T:

(8)  J(wa) s (B dnra) [ Byt (Bn 2175 @)+ (@4 ) (otn Ro s > Brga=0ps 1)1,

(9) ‘Ur_w Rii & & (E“rnﬁ ,,)[(-1‘,,1 R; ‘l‘m*"!) : (‘Em—%n Rj‘ ‘1‘,,)],

(10) A@iree o) T[] {(Xatp 5 Lntg) (0 1 Ry nsg) -
0 plasr

o (@) [ Ro Lpp1 > l;(fn F Tap) 1}
—

The formula A(&, ... ¥,4,) is to be read thus: elements
constitute an abstraction-class of R, consisting of » elements.

i1 eeeyLniy

(13) S 2m) ar (@) - T(@0) T (L) (B Ly wr L 25)
3
A @y Tais): []1 (@ -p Boro.04) - (Lng Fyoy) - (s Ry )]
=

{(in order to avoid a possible collision of variables we put in (11)
n=k-1+m). ’

(12) Pl Be) & I (200) - T(50) - (£) (B By 1 .. Tr)

4
A1 Ztg) - Il(xn—rp Ryg i) - (X5 Boo 1) (g By 8m)]
{where n="Fk+14m). ’
We now define the theory T. Its extra-logical constants are Ry, By, 1,
& O, < and its axioms are as follows:
(i} “the axioms (1)-(7) of T,
(ii) the axioms of T, stating that the set I is an algebraic ring

(with respect to the operations @ and () which is ordered by the rela-
tion < in a non-dense type of order;

%) In the semse of {4], *. 23.02.
%) Bee {7] and [3].
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(iii} axioms securing the definability (within T) of the constants
I, %,®, and << in terms of R, and I,; namely

(iify) () I(ory) <> J(@)],

(iifa) () [y 5= 0y B &y +> Sy 215)],

(ilig)  (2y e b5}y == 2y O 25 > P2y 05 05)].

The constant
eguivalence

< possesses in T a definition resulting from the

(13) (o) {@y <ty < (g == ) - { B vy 2y 05 )
[B, =z, 20 5@ @3}
by an elimination of the constant & and © by means of the axioms (iii).

It remains to show that T is self-consistent. This will be done by
exhibiting & model in which the axioms of T are satisfied.

The elements of the model will be points (m,n) of the Cartesian
plane with integral coordinates such that n>0. In the sequel letters
E,l,m,n with or without indices denote arbitrary integers). Abstraction-
classes of a relation R; will be called briefly E;-classes. :

We define the R;-classes of our model as pairs {(2m,n), (2m +1,n)}.
Thus each R,-class contains just two points: onme point with an even
absciss and its right-hand neighbour.

The R,-classes xvill either be infinite or will contain one, five, or
six points.

The infinite R,-classes are sets of the form

{(2m,,0),

Every point (2m, +1,0) constitutes a one-element Rg-class.

It follows from the above definitions that points (2m,0) satisfy
the propositional function J{(x;) and according to (iii;) we shall consider
them as the elements of a ring. Subsequent definitions will be arranged
so that no other point will satisfy the propositional function J{w;).

We now define the R classes containing 5 and 6 elements.

PFirst we remark that every pair of the form {(2m+1,n), (2m,0)>
satisfies the propositional funection x, Ryya,.

We.shall require that for arbitrary k,l,m the equation k=I+m
be true if and only if there exists an Ry-class containing just five points
three of which have the form (2k+1,n,) with n, > 0, and the fourth and
fifth the forms (21--1,n,) and (2m-+1,n,) where ny,ng>0. If this equi-
valence is true, then the triple {(2k,0), (2I,0), (2m,0)> satisfies the pro-
positional function S(x,z,x,) and hence (according to axiom (iil,)) the
propositional function z, = », @ x; if, and only i, k=7+m.

(2mq, 1), (2m4,2);-..}-

*

8} 22 stands for z, @ x,.
3
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A similar requirement will be imposed upon the R,-classes contai-
ning six elements: the equation k=1-m has to be equivalent to the exis-
tence of an R;-class containing 4 distinet points of the form (2k+1 1)
with n, >0, one point of the form (21+1,n,) with »,>>0 and one of the
form (2m+1,n,) with n;>0. Assuming that this equivalence is true,
we find immediately that the triple <{(2k,0), (21,0), (2m,0)> satisfies the
propositional function P(z,2.xs) and hence (according to axiom (iii,))
the propositional function x,=a, Qw, if, and only if, k=1-m.

It is easy to see how the above requirements are to be met: we
arrange in an infinite sequence

Ioy=1, +my, ky==1,-m,, kg =1l34+ my,...

all the true equations of the form k=1I1- m or k=1.m. Now we take
5 distinet points of the form

(2R, +1,07), (2 +1,07), (2ky+1,07"), (21 + 1,2}, (2m,+ 1,0Y)

(where »',n"”,...,nY are >0) and unite them into one R,-class. Then
we take. 6 other points .

(2ka+1,4"); (2ha+1,97), (20, +1,¢"), (2ky -+ 1,4™Y), (2L +1,¢Y), (2m, -+ 1,¢1)

(where ¢',9",...,g"* are >0) and unite them into one E,-class. Continuing
this process, we obtain R,-classes as required.

It is evident that suitably selecting points used in the above process
we can include every point of the form (2j+1,n), where n=0, into an
Eq-class containing 5 or 6 elements. Points (2%,0) are then the only ones
which satisfy the propositional function J(z,).

In this way, we obtain a ring C of points (2k,0) which is isomorphic
to the ring €, of integers. The isomorphic mapping of (!, onto ¢ is effec-
tuated by the function f(k)=(2k,0).

It follows that axioms (ii) are true of the model (under the assump-
tion that the less-than relation < has been defined by (13)). Axioms
(i) and (iii) are also true. Hence the consistency of T is proved and Theo-
rem 1 is demonstrated.

§ 2. Corollaries to Theorem 1. First we remark that the role
of identity -+ is not essential for the validity of Theorem 1.

Let T, be a theory based on the functional caleulus of the first
order without identity and containing just two extra-logical terms R,
and R,. Let (1)-(6) be axioms of T,.

Define . by the formula (7). It is then easy to see that provable
theorems of T, and provable theorems of T, are identical. Since the de-
fined term -~ can be eliminated, we obtain the following

Theorem 2. Theory T, is undecidable.

Iz
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From this we obtain a result concerning the monadic functional
calculus of the 2-nd order (i.e. one in which only variables for indivi-
duals, classes of individuals, and classes of such classes are allowed).

It is well known that the monadic functional calculus of the 1-st
order is decidable?). Skolem?®) has shown that the caleulus remains
decidable even if quantification of class-variables is introduced into
the gystem.

We now enlarge thix system and introduce monadic variables of
the next higher type (no quantification of these variables being allowed).

Let us call § the resulting system.

Theorem 3, The system S is undecidable.

Proof. Let @ and @, be two variables of the type of a class of
classes and X a variable of the type of a class. We let an expression o
of 8 correspond to every expression a of the theory T, replacing in «
every atomic expression @, Rz, by \

(BX)[O;(X) X(m)- X(ra)].

Let C be the conjunction of the axioms of T, and K the class of
all theorems of & having the form ("—7 where « is an expression of T,.

We shall show that the class A is undecidable. Indeed, if « is prov-
able in Ty, then C—u is provable within the fuinctional caleulus, and
hence ('—% is provable in S. Conversely, if « is not provable in T,, then
C—a is not provable in the functional caleulus, and hence by Godel’s
completness theorem °) there is a model for the conjunction C-a’. Since
C is true of the model, R, and R, are interpreted in the model as two
equivalence relations. These relations define two decompositions of the
class of elements of the model into mutually disjoint sets. We now let
the class of sets of the first decomposition correspond to @, and the
class of sets of the second correspond to @;, and obtain a model for the
conjunction ("-q'. Hence ("->7g is not provable in S.

We have thus proved that « is provable in T, if and only if (—a
is in K. It follows that if S were decidable, we should have a method
allowing us to decide whether an arbitrary expression of T, is provable
or unprovable in T,. Since this contradicts Theorem 2, the proof of
Theorem 3 iz complete.

§ 3. The theory of one equivalence-relation. The following
problem is suggested by Theorems 1 and 2. Is the theory of one equi-
valence relation decidable?

7) Cf. e. g. Chureh [1], p. 94.

£} 5]

*) 121
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‘We denote this theory by T, It is based on the functional calculus
of the first order with identity and has just one extra-logical term R,.
The axioms of Ty are (1)-(3).

It can be shown that the theory Ty is decidable. To save place we
restrict ourselves to formulating the pertinent definitions and lemmata.
The proofs of those lemmata is essentially a routine matter.

We introduce the following abbreviations:

{14) B(0/n,ax) & (B Lyr1eee Lrsn) [{xp = )’
k+1<p<lak+n
k-+n
Il (2, Rya)]20)
p=k+1 -

{(there are at least n elements bearing the relation R, to xy),
(15) B(1/n,xs) & B(0/nax)- B'(0jn-+1,:2)
{there are exactly » elements bearing the relation R, to ),
(16) AOfm, i'n) ot (Boy.rm)l || (i, Romg)- [] Bliim,ax,)),
1<p<qgm p=1
(17) A(Ljm, i/n) ac A0fm, iin)- A(Ljm -1, djn),
(13) A(L)0, ¢/n)ar A(0/1, i/n).
The intuitive Co;ltellt of expressions A(iym, j/n) is as follows: there

exist at least m (if i =0) [eractly m (if i=1)] abstraction-classes of R, each
of which contains at least n elements (if j=0) [eractly n_elements (if § =1)].

(19)  E(0jn) 3 (B 2y...xn) (@ 3y)- X [T == 3y)]
<plgn

(there exist at least n elements).

(20) E(1/n)& E(0/n)-E'(0/n +1)

{there exist exactly »n elements).

Finally we set
V aF A(0/1, 0/1).

V is evidently provable in T,.

Expressions (14)-(15) are said to be of type B, expressions (16)-(18)
of type A, and expressions (19)-(20) — of type E.

Alternations of conjunctions whose terms are of types 4, are called
expressions of type AA. Alternations of conjunctions whose terms are
of types A or E, are called expressions of lypes AE.

*) Ui n=0, we assume that B(0/n, x,) is a void expression .1, i. e. such that

@4 N=0¢. 1= for any .
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Lemma 1. Let @ be an expression of the theory T, built up from
atomic propositional functions ;= x;, xRya;, and from expressions of
type B by means of propositional connectives - ,-, and '. Then the expres-
sion (Ex)® is equivalent to an erpression y which is an aliernation of oon-.
junction of atomic expressions and of erpressions of types B,d,E. The
variables free in y are the same as in (Br)®. The expression y can be found
explicitly if @ is erplicitly given.

Lemma 2. Every sentence @ of Ty involving no free variables is
equivalent fo an expression y of type AA; the expression v can be found
explicitly once @ is explicitly given ).

Definition. Expressions A(iy/n,, j,/k) and A(iy/n,, ]gjk ) are disjoini
if either k, <<k, and j,=1 or &k, >k and j,=1.

Lemma 3. An expression @ of type AA is equivalent to an alier-
nation y of conjunciions of mutually disjoint expressions of type A. The
alternation yp can be found explicitly once @ is explicitly given.

Lemma 4. A conjunction of mutually disjoint expressions of type 4
is refutable in the theory. T, if and only if it is identical with

-1
=[] A{1/0,1/r)- A(1/0, 0/m)
r=1 :

or differs from F,, by the order of terms.
From lemmas 1-1 we easily obtain

Theorem £, The theory T, is decidable 2).

§ 4. Undecidability of some other theories. Let T, be
a theory whose extra-logical terms are R, and F and which is based on
axioms (1)-(3) and the following 4 axioms:

(y) (Bo) (0 Frs),

(03} (Eiry) (2, F'xp),

(ry ) [(#y Fore) - (2 Firg) — (0 7+ i53)],

(s 23} [(a Fity) - (23 Firy) — (0, = 3)].

T, can be termed a theory of one equivalence relation and one
one-one relation.

Theorem 3. The theory T, is undecidable.

The proof is similar to that of Theorem 1. We have only to replace
the R;-classes used in the proof of Theorem 1 by pairs of points satis-
fying the propositional function (2yFz,)-(x,Fy).

1) Lemmata 1 and 2 are proved by means of a method known as the , ehmma—
tion of quantifiers”. Cf. Tarski [6], p. 15.
) I was informed by Professor Tarski that the same result has been found

independently by F. B. Thompson.
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Theorem. 6. The theory Ty of one one-one relation and of one func-
tion (one-many velation) is undecidable **).

This results from the fact that the theory T, of non-densely or-
dered rings is consistently interpretable in T;. Let us write the one-one
- relation in the form g, -+ F(xz,) and the one-many relation in the form
2, == f(x,). To define a theory T’ which is a common extension of T; and T,
we add to T; the constants of Ty, and the axioms (ii), (iii) from p. 2,
where the propositional funections J{(x,), S(xx,2,%m), and P(we,2,,) are
defined as follows:

J@) T (B Car1e Tnrr) ] A Batp ™ Tntg)" [f(@atn) = @al}
1<p<g<7

Sy 1y 8) & J{@k) T (21) T (L} - (B B Tppa)

SIS

{ ﬁu [{(@nsp) = Fa] - (Tas-5) [( [(@nys) = Ta) > 3 | @nts = Tuiy)]
it

k-1
I

: 1_7 [ == H(F (@) [0~ F(F(@na))]-[m = H P (@)},

P(0101,50) T (@0) T () (T(@). (B s5) 1j0 [/ (#0s0) = 2]

3 3
(Bt} [(/(@nts = 20) EO (Tnt6 = Zntp)]- Ha e - f(F(wnsp)]
P= p=
[ 7 (B (@0 1a))] [0 = H(F(2y5))]}
(In the last two formulae we put n==k-+1-+m).
As in section 1, it is sufficient to establish the consisteney of T'.
To this end we eonsider the same model as in the proof of Theorem 1,
and define a one-one relation Fy and a function f,:
Po((2k,n))=(2k+1,n),
Fo((2k+1,n))=(2k,n);

fol(kyn))=(I,m) if and only if (I,m) is in the same Ry-class as (k,n) and

has the smallest possible ordinate (if there are many such points then (I,m) -

is defined as that one which has the smallest possible absciss).

It is then easy to show that the following interpretation of the
propositional functions I(,), @k =81 & B, Tk ™= B O Gy T = f(@1), @ - Flay)
yields a model of the theory T':

I(x,): @, is a point of the form (2p,0);

Lye=" By @ Tm? Lk, %1, L, are points of the forms (2p,0), (24,0), (2r,0)
and p=q-+r;

¥} We omit the axioms of this theory. They are unambiguously determined

by the name we nave given to the theory. A similar remark applies to theories mentioned
in preblems on p. 139.
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L2 (O Tm? TLxy 1,0 are points of the forms (2p,0), (2¢,0), (27,0)
and p=gq-7;

= flm): xr,x are points (p,q), (r,s) such that (p,q)=71,((r,5));

axy ".'F(.z:,): Tr,x are points (p,q). (r,s) such that (p,q)=Fy((r,s)).

Theorem 6 is thus demonstrated.

We conclude with some open problems:

1. Is the theory of one function (one-many relation) decidable?
2. Is the theory of one ordering relation decidable?
3. Is the theory of & distinct one-one relations decidahle?
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