icm

Projections in Abstract Sets

By

E. Marczewski (Wrocław) and C. Ryll-Nardzewski (Warszawa)

1. Problems and results. Let X and Y be two fixed abstract sets. For every subset Z of the Cartesian product $X \times Y$ let us denote by P(Z) the *projection* of Z on X; in other terms $x \in P(Z)$ if and only if there exists $y \in Y$ such that $(x, y) \in Z$.

The operation P is absolutely additive:

(1)
$$P\left(\sum_{t} Z_{t}\right) = \sum_{t} P(Z_{t})$$

but it is not multiplicate. We have

(2)
$$\mathbf{P}\left(\prod_{t} Z_{t}\right) \subset \prod_{t} \mathbf{P}(Z_{t}),$$

while the converse inclusion is true only under some additional assumptions, e. g. in the fundamental lemma (Section 2) and in the following obvious proposition:

(3) If $A_j \subset X$, $B_j \subset Y$ and $B_1 B_2 \dots \neq 0$, then $P[(A_1 \times B_1)(A_2 \times B_2) \dots] = A_1 A_2 \dots$

For every class Q of sets let us denote respectively

by	Q_s	Q_d	Q_{σ}	$oldsymbol{Q}_{\delta}$
the class of all sets of the form	$Q_1+Q_2+\ldots+Q_n$	$Q_1Q_2Q_n$	$Q_1 + Q_2 +$	Q_1Q_2

where n=1,2,... and $Q_i \in Q$.

Let E denote a class of subsets of X, F a class of subsets of Y, and H the class of all sets $E \times F$, where $E \in E$ and $F \in F$.

It follows easily from (1) and (3) that

If
$$0 \neq Z \epsilon$$
 | H | H_s | H_d | H_σ | H_b | $H_{sd} = H_{ds}$ | H_{ds} | $H_{d\sigma}$ | then $P(Z) \epsilon$ | E | E_s | E_d | E_σ | E_b | $E_{sd} = E_{ds}$ | E_{hs} | $H_{d\sigma}$

Thus the following problem arises: what can be said of the projection of a set $Z \in \mathcal{H}_{s\delta}$? The answer is simple: nothing in general. If X = Y = the unit interval, if E is the class of all closed subintervals of X and if F is the class of all subsets of Y, then for every $A \subset X$ there is a set $C \in \mathcal{H}_{s\delta}$ such that P(C) = A.

In fact, denoting by D the diagonal, i.e. the set of points (x,x), where $x \in X$, and setting

$$C(A\times A)\cdot D, \qquad I_m^n=\left\langle \frac{m-1}{n},\frac{m}{n}\right\rangle \quad \text{ for } \quad m=1,2,\ldots,n; \quad n=1,2,\ldots$$
 and

$$C_n = [I_1^n \times (AI_1^n)] + [I_2^n \times (AI_2^n)] + ... + [I_n^n \times (AI_n^n)]$$

we obtain

$$C_n \in \mathcal{H}_s$$
, $C = C_1 C_2 \dots \in \mathcal{H}_{so}$, $P(C) = A$.

The purpose of this paper 1) is to prove that, nevertheless, under some assumptions relating to F, the projections of sets belonging to H_{vb} , H_{ab} , etc. belong to some classes determined by the class E only.

The notion which plays an essential role in what follows is that of a compact class of sets 2). A class F is compact, if, for every sequence $F_n \\epsilon F$, we have $F_1 F_2 ... \\neq 0$ whenever $F_1 F_2 ... F_n \\neq 0$ for n=1,2,... Consequently a multiplicative class F (i. e. such that $F_d = F$) is compact if and only if every descending sequence of non-void sets $F_n \\epsilon F$ has a non-void product.

Next, denote by Q_A the class of all sets of the form $\Sigma Q_{k_1}Q_{k_1k_2...}$, where $Q_{k_1k_2...k_n} \in Q$ and the summation extends over all infinite sequence $k_1, k_2, ...$ of natural numbers. It is well known that this operation, termed operation (A), has the following properties ³):

$$Q_A \supset Q_\sigma + Q_\delta, \qquad Q_{AA} = Q_A.$$

The result of this paper is

Theorem. If the class F is compact, then

	1	Π'	II
if $0 \neq Z \epsilon$	$oldsymbol{H}_{s\delta}$	$H_{\sigma\delta}$	H_{A}
then $P(Z)\epsilon$	$oldsymbol{E_{s\delta}}$	E_A	E_A

Presented to the Polish Mathematical Society, Wroclaw Section, on April 1, 1952.

²) Cf. E. Marczewski, On compact measures, Fundamenta Mathematicae 49 (1953), p. 113-124, especially p. 115.

³⁾ Cf. F. Hausdorff, Mengenlehre, Berlin-Leipzig 1935, p. 90-93.

Notice that the implication II' (which is an easy consequence of II and (4)) cannot be strengthened. Indeed, in case E=F=the class of all closed subintervals of the unit interval I, the projections of all sets belonging to $H_{a\bar{b}}$ constitute the class of all analytical subsets of I, or, in other words, the whole class E_A .

The theorem will be applied in a forthcoming paper on measures in product spaces.

2. Fundamental lemma. For $Z \subset X \times Y$ and $x \in X$ denote by $S_x(Z)$ the vertical section of Z corresponding to x; in other terms, $y \in S_x(Z)$ if and only if $(x,y) \in Z$. We shall prove that

If $Z_1 \supset Z_2 \supset ...$, where $Z_j \subset X \times Y$ for j = 1, 2, ..., and if for every $x \in X$ the sequence $S_x(Z_j)$ forms a compact class, then $P(Z_1Z_2...) = P(Z_1) \cdot P(Z_2) \cdot ...$

In virtue of (2), it suffices to prove that

$$\mathrm{P}(Z_1Z_2\dots)\supset\mathrm{P}(Z_1)\cdot\mathrm{P}(Z_2)\cdot\dots$$

Let $x \in P(Z_1) \cdot P(Z_2) \cdot ...$ Consequently the sets

$$S_x(Z_1) \supset S_x(Z_2) \supset ...$$

are non-void and, since they form a compact class, there is an y such that

$$y \in S_x(Z_1) \cdot S_x(Z_2) \cdot ...$$

or, in other words, $(x,y) \in Z_1 Z_2 \dots$ whence $x \in P(Z_1 Z_2 \dots)$, q. e. d.

3. The operation (A). For any system of sets $\mathfrak{Z} = \{Z_{k_1k_2...k_n}\}$ where $(k_1,k_2,...,k_n)$ runs over the set of all finite sequences of natural numbers let us set

$$\mathbf{A}(3) = \sum_{(k_j)} Z_{k_1} Z_{k_1 k_2} \dots,$$

where the summation extends over all infinite sequences $\{k_j\}$.

For every class Q of sets, Q_A is by definition the class of all sets A(3), where 3 runs over all systems of sets belonging to Q.

A system $\{Z_{k_1k_2...k_n}\}$ of sets will be called monotone, if we always have

$$Z_{k_1k_2...k_nk_{n+1}} \subset Z_{k_1k_2...k_n}$$
.

The following lemma is essential for projection properties:

If $0 \neq Z \in Q_A$, then there exists a monotone system $\mathfrak{Z} = \{Z_{k_1k_2...k_n}\}$ of non-void sets belonging to Q_d such that $Z = A(\mathfrak{Z})$.

I shall outline the proof of this lemma.

Since $Z \in Q_A$, there is a system $\mathfrak{A} = \{A_{k_1 k_2 \dots k_n}\}$ of sets belonging to Q such that $Z = A(\mathfrak{A})$.

Let us set

$$B_{k_1k_2...k_n} = A_{k_1} A_{k_1k_2}...A_{k_1k_2...k_n};$$

obviously $\mathfrak{B}=\{B_{k_1k_2...k_n}\}$ is a monotone system of sets belonging to Q_d and we have $Z=A(\mathfrak{B})$.

Next, denote by M the set of all infinite sequences $\{k_j\}$ of natural numbers such that

$$(5) B_{k_1}B_{k_1k_2}B_{k_1k_2k_3}...\neq 0.$$

Hence

$$Z = \sum_{\langle k_i \rangle \in M} B_{k_1} B_{k_1 k_2} \dots,$$

where the summation extends only over sequences $\{k_j\}$ belonging to M. By a suitable new numeration of the sets, $B_{k_1k_2...k_n}$ appearing in this sum, namely by repeating some sets satisfying (5), we obtain the required system β .

4. Proof of Theorem. I. Suppose $0 \neq Z \in H_{s\sigma}$. Thus we may write $Z = Z_1 Z_2 ...$, where $Z_1 \supset Z_2 \supset ...$ and $Z_j \in H_{ds}$, whence for every $x \in X$ we have

$$S_x(Z_j) \in F_{ds}$$
 or $S_x(Z_j) = 0$.

Since F is compact by hypothesis, the class F_{ds} is also compact 4), and by the fundamental lemma

$$P(Z) = P(Z_1) \cdot P(Z_2) \cdot \dots \cdot \epsilon E_{ds\delta} = E_{s\delta}, \quad q. e. d.$$

II. Suppose $0 \neq Z \in H_A$. By lemma 3 there is a system 3 of non-void sets 5)

$$Z_{k_1k_2...k_n} = E_{k_1k_2...k_n} \times F_{k_1k_2...k_n}$$

such that

$$\begin{split} E_{k_1k_2...k_n} \epsilon \ E_d, & F_{k_1k_2...k_n} \epsilon \ F_d, \\ E_{k_1k_2...k_nk_{n+1}} \subset E_{k_1k_2...k_n}, & F_{k_1k_2...k_nk_{n+1}} \subset F_{k_1k_2...k_n}, \\ Z = & \mathbf{A}(\mathfrak{Z}). \end{split}$$

Since, for every sequence $(k_1, k_2, ..., k_n)$ we have

$$\mathbf{S}_x(Z_{k_1k_2\dots k_n}) = F_{k_1k_2\dots k_n} \qquad \text{or} \qquad \mathbf{S}_x(Z_{k_1k_2\dots k_n}) = 0,$$

⁴⁾ Cf. E. Marczewski, l. c. 2), theorems 2 (ii) and 2 (iii).

⁵⁾ The second part of the lemma (i. e. the statement that $Z_{k_1k_2...k_n}$ are non-void) is superflows in the case when the empty set belongs to E. Then it suffices to consider a monotone system 3, such that the sets $E_{k_1k_2...k_n}$ and $F_{k_1k_2...k_n}$ are both void or both non-void.

E. Marczewski and C. Ryll-Nardzewski.

for every $x \in X$ all the sections $S_x(Z_{k_1k_2...k_n})$ form a compact class. Thus, for every infinite sequence $(k_1,k_2,...)$, we may apply the fundamental lemma to the sequence of sets $Z_{k_1} \supset Z_{k_1k_2} \supset ...$ Since $P(A \times B) = A$ whenever B is non-void, we obtain

$$\mathbf{P}(Z) = \sum_{\langle k_i \rangle} \mathbf{P}(Z_{k_1} Z_{k_1 k_2} ...) = \sum_{\langle k_i \rangle} E_{k_1} E_{k_1 k_2} ... \epsilon \ E_{dA} = E_A \,, \quad \text{ q. e. d.}$$

Note. The assumption in II of the compactness of F may be replaced by the following: there is a compact class F^* such that $F \subset F_A^*$. In fact, if H^* denotes the class of all sets $E \times F$ where $E \in E$ and $F \in F^*$, then it is easily seen that $H_A^* \supset H$, whence, by (4), $H_A^* = H_A$. Thus we reduce the generalized form of II from the original one, applied to the classes E, F^* and H^* .

Instytut Matematyczny Universytetu Wrocławskiego Mathematical Institute of the Wrocław University

164

Remarks on the Compactness and non Direct Products of Measures *)

By

E. Marczewski (Wrocław) and C. Ryll-Nardzewski (Warszawa)

Introduction. The direct product of two normalized measures u in X and r in Y, i. e. the measure λ in $X \times Y$ such that

(1)
$$\lambda(A \times B) = \mu(A) \cdot \nu(B),$$

has many regularity properties, e. g.

I. If u and v are countably additive, so is λ^{1}).

II. If μ , ν and λ are σ -measures, then

$$\lambda_i(E \times Y) = u_i(E)$$
 for $E \subset X$

(where, for every measure μ , the symbol μ_i denotes the inner measure induced by μ) ²).

In sections 1 and 2 of this paper we deal with the same propositions for non-direct products, i.e. when the condition (1) is replaced by the weaker ones:

(2)
$$\lambda(A \times Y) = \mu(A), \qquad \lambda(X \times B) = \nu(B).$$

It turns out that the propositions I and II for the nondirect products remain true under the additional assumption that the measure v is compact, and that they are false in general.

Sections 3 and 4 are further contributions to the study of compact measures. It is known that the minimal σ -extension of a compact measure is also compact. Here we show that the converse of this theorem is not true.

We apply theorems on compact measures proved in the paper: Marczewski [3] (quoted below as C), and theorems on projections proved in the paper: Marczewski and Ryll-Nardzewski [4] (quoted as P).

2) This follows e.g. from the abstract Fubini theorem. See ibidem. .

^{*)} Presented to the Polish Mathematical Society, Wrocław Sect., on April 1, 1952.

¹⁾ This follows e. g. from the existence of the direct σ -product of any two σ -measures, see e. g. Halmos [2], p. 144, Theorem B.