On linear functional equations
in locally convex linear topological spaces

by
M. ALTMAN (Warszawa).

In his famous memoir [1]F. Riesz has given what is essentially
an extension to Banach spaces of Fredholm’'s theory of linear equa-
tions. This extension was supplemented by HILDEBRANDT [2]
and SCHAUDER [3]. A generalization of Riesz’s theory for locally
convex linear topological spaces has been given recently by LERAY
[4]. The proof of the “alternative of Fredholm” is based on a theo-
rem on the invariance of the domain. This theorem was established
by Schauder for Banach spaces and generalized by Leray for a wid-
er class of spaces. However, the theorems of Schauder for _the
conjugate space were not obtained by Leray.

The purpose of this paper is to give a simple method of proof
of the Riesz-Schauder theory in the case of locally convex linear to-
pological spaces. This method is based on the above mentioned
theory and permits us to generalize also other theorems concerning
linear completely continunous transformations (see [5]). Finally,
we observe that in order to prove the corresponding theorems it

suffices to assume that the transformation in question iz continuous
in the sense of Heine.

1. Let X be a linear topological locally convex space, i. e. a lin-
ear set on which a topology is imposed in such a fashion that the
postulated operations of addition and multiplieation by real num-
bers are continuous in the topology, moreover, for every neigh-
bourhood U, of the element xeX there exists a convex neighbourhood
B, such that B, CLL, (cf. [6] and [7]). It suffices to give the system
W of neighbourhoods of 0.

The system of neighbourhoods of an arbitrary element x con-
sists of the neighbourhoods of the form U, =245 (SeIW)
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A sequence [x,|CX is convergent if, for every nei.ghbourhoodzﬁll
of 0, there exists a number N such that m,'n>N 1mp}1es &Ly — Ty € h
A sequence {@,|CX is convergent to xeX if there exists an N suc ‘
that n>XN implies x,—xeél; we write x,—r, when n—>oco Or
lim @,=®.

IWNA transformation y=7U(x) of X into X is continuous if?)
lim z,==
n—oo

implies

lim U(x,)=U(x), reX.

n—roQ
A transformation y="U(x) is called linear if U is continuous on
X and has the following property:

U(x+y)=Ulx)+ U(y) for arbitrary z,yeX;

hence U(tz) =tU(z), where ¢ is a real numl?er‘ A tra:nsform:altxon

U is called completely continuous if there emsts. a n(.alghbomhood

1L of 0 sueh that the image U(Sl) is compact in this semse thab
ry infinite subset has a limit point.

8V91§nln; locally convex linear topological. space X the pseudTon(;Jrfl?l

lrly, where B is an arbitrary convex neighbourhood of 0, is defi-

ned for every xeX as follows?):

|zlg=g.1.b. of h>>0 such that xfheB.

Then |zl has the following properties:

10 |zlg=0,

2 x4 yle< [2ls+ Wlss

30 ltx|g= |t| |u|p for any real i. . .

The following classification of locally convex linear topologi-
cal spaces is due to MazUR ([8], D. 199). _

Let ¥ be a linear space and @ an abstract seb such that & =R,.
Tet us further assume that there exists a class of pseudonorms
||y, #ed, such that

1) We consider continuity in the sense of Heine; continuity in the sense
i i tinuity.
f Cauchy is stronger than sequential con , o
° 2) V%e assume also, without loss of generality, the symmetry of B, — V=2,
for an arbitrary neighbourhood of 0. -
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lzls=0 for every Je@®

is equivalent to #=0. Then X is called a (B})-space. X is a locally
convex linear topological space, and the set of all elements xeX
such that [z — o, <& (i=1,2,...,7), where ¢ is a positive number,
constitutes the neighbourhood of x,.

Mazur ([8], p. 199) and v. NEUMANN (independently of each
other) have shown that every locally convex linear topological
space is isomorphic to a certain (B})-space. Thus, a sequence |z,|C %
is convergent to an element reX if .

lim|x, —al,=0 for every Je®.
Nn->occ
‘Let U be a linear completely continuous transformation and &
the neighbourhood of 0 such that the image U (&) is compact. Then
there exists a neighbourhood B of 0 such that BCE, where B
is defined by the inequalities {‘F|"¢<’S (t=1,2,...,m). We define the
pseudonorm |r|= sup [#ls,- Then the image of any for this pseudo-
i
norm bounded set is compact. Hence we have the following

Lemma. If U is a linear completely continuous transformation,
there exists for every de® o number M, such that U ()]s < My ||

Proof. The set U(xf|z]) is compact. Tf |20 there exists
a number M, such that |U(z),/lz] < My; hence |U(z)], < My[2|. The
condition |rj=0 implies that |lz|=0 for every i Since the set
2U(z) is compact, we have |A||U(x)|; < -+ oo. Since 1 is arbitrary,
it is necessary that |U(z)|,=0 for every de®.

On the basis of lemma 1 we construet an auxiliary Banach
space as follows:
. Let U be a linear completely continuous transformation. hav-
ing its domain and range in ¥ and |x| the above chosen pseudo-
norm. We divide the space X into classes and we say that x; and =,
belong to the same class r, if |v,—a,)=0. The set @ of all elements
xeX such that |x|=0 constitutes the zero class. Thus we have ob-
tained @ (B*)-space X* with the norm [t]=]|x|, where xerCX. De-
note by X’ the completion of X*. ¥’ is a Banach space.

The transformation y=U(x) defines in the space X* a trans-
formation y=8(z), where yey, zer. We shall show that 8 is 2 com-
pletely continuous transformation. Tf {gn} is an arbitrary sequence

icm

On the linear functional equations. 197

from X* such that |r,] < M, where J is a constant, then for wx,er,
the sequence {U(.rn)} is eompaect. Lef {sn} be a sequence of positive
numbers such that ¢,—0 as n—oo. Since the sequence {U(;r,,)} is
compact, there exists an element y,e X such that each of the neigh-
bourhoods defined by the condition r—y,i<Ce, (=1,2,...) con-
tains infinitely many elements of the sequence {U(;rn)}, whengce it
follows that the sequence {ﬁ(.l_‘n)} containg & subsequence conver-
gent to 1., where y,en,.

The transformation ¢ can be extended over the whole space X'
and its range is contained in ¥*. In fact, if ¢ is an arbitrary element
of ¥’, then there exists a sequence |r,]CX* such that r,—r for
n—oo. Thus the sequence {Sl(gn)} is compact and eonvergent in the
space X*; hence there exists an element 1y € X* such that

n—>00

lim S‘[(gn) =1,

and consequently 1= El(z).

Theorem 1. If U is a linear completely continuous transfor-
mation, then the range of the transformation T'(x) =x—U(x) is closed.

Proof. Consider the transformation T(r)=r—%(r) defined
on X’. By a theorem of Rimsz ([1], Satz 5) its range is closed. If
p e X* is a limit point of the range of the transformation T then there
exists an element fe X’ such that T() =1 — U(r)=1. Since (z)e X",
also reX*. Thus the range of the transformation T with its domain
restricted to X* is closed in ¥*. The homomorphism x-—1, where
zerCX, reX*, is continuous; this imples that the range of T
is closed. .

Theorem 2. If U is a linear completely continuous transfor-
mation, then the solutions of the equalion x— U(x)=0 form an Eucli-
dean space.

Proof. Consider the equation 1—&(r)=0 corresponding to
the equation x— U(z) =0, where zer. By a theorem of Riesz ([1],
Satz 1) the set of solutions constitubes a linear space of finite di-
mension contained in X*. Let #;,2,,.:.,%, be linearly independent
solutions of the equation z—U(z)=0. If z;61;, then Ij,Ls,...,In
are linearly independent solutions of the equation £—(r)="0.

In fact, suppose that there exist numbers A1yAsy.ney Ay, such that
Ay Aol 4 .on + AL, =0. Then we have |A2, -+ A +... + Ay =0-
By lemma 1 we obtain U(4x + Agio + ... - A,x,)=0. Since a linear
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combination of solutions is also a solution, we have Ay, 4 4w, + ...

4 2,0,=0 and A =1,=...=41,=0. Hence it follows also that the
condition |ty 4 Pty ... -+ Bu,] =0, where pBi,f,...,5, are arbi-
trary numbers and a,%,,...,%, — arbitrary solutions of fhe equa-

tion x—U(x)=0, implies px, + otz + ... + B,2,=0.
Theorem 2'. The solutions of the equation T™(x)=0 for any
positive integer n form an Buclidean space.

Proof. The solutions of the equation I*(z)=6 have the re-
quired property and the same is true for the equation I™(x)=0.

Denote by &, the set of solutions of the equation T™(a)=0
(n=1,2,...). We prove now

Theorem 3. There exists a positive integer v such that G,=@G,
for n>v and G,#G, for n<» (or, equivalenily, T™(x)=0 implies
T"(x)=0 for n>v, and for n<<v there exists an element = such that
T () =0, but T*(x)#£0).

Proof. By a theorem of Rrimsz ([1], Satz 2) there exists a po-
sitive integer » such that 6,=G, for n>» and G, 6, for n<y,
where by ®, we denote the set of all solutions of the equation
F(r)=0. If T"*'(x)=0 then () =0 and T(r)=0, where wer.
Hence |I%(x)]=0 and T"“(m):T”(ac)—UT”(w):T"(w):O. On the
other hand, if 7"(z)=0 implies 7"(z)="0 and if we assume that
(1) =0, then for zer we have [T (z)|=0. If y=T"}(z), then
I™y)=y for an arbitrary m. We have T"*'(z)—y=0, hence
T2 —y)=0, where z—yet. This implies T"(x—y)=0 and
L) =0.

Theorem 4. If the equation T(x)=y has a solution for any

yeX, then it has only one solution, i. e. the equation x— U (x)=0 has
the only solution z=0.

Proof. This follows from theorem 3.

We denote by L, the range of the transformation 7% Since
the range of the transformation 7™ is closed, so is I,

e
Theorem 5. There exisis a positive integer v such that for n>>y
L.ner and for n<<v Ly.,3 L,. The number v coincides with that de-
fined in theorem 3.
Proof. %in-ce Tr=(I—-8U"=I—HU(nl—...) and the range of
the transformation & is contained in X*, I"(r)eX* implies reX*.
Denote by £, the range of ™ Let » be the number defined in theo-
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rem 3; from a theorem of Rimsz ([1], Satz 6) it follows that £,=%,
for n>7. Let x be an arbitrary element belonging to X and rere¥’;
there exists an element peX’ such that T(r)=T"(p). T(r)eX’,
hence neXx*. If yey, then I"(x)=T"(y)+ 2, where |z|]=0, and we
obtain I™(y) + 2 =T"(y 4 2). Since # is an arbitrary element of X,
we have L,=I,. On the other hand, if Ly.1= Ly, then for any x
there exists an element y such that T™(x) =T (y). This implies
I™(p) =T (y), where xeg, yey, for any reX”. Since X* is dense
in %’ and the range of " is closed, we have £,, ., =2,, and the theo-
rem is proved.

b is called a regular value of U if the equation x—hU(x)=0
has only the solution z= 0, otherwise & is called a proper or charac-
teristic value of U. The set of all proper values of U forms the
so-called spectrum. Obviously, if h is a regular value of U, then h is
also a regular value of &: if g, is a solution of the equation f—
hél(z)=0,thent,e X* and there exists an x, e £, such that 2, — h U (4,) = 0;
hence z,=0 and f,= 0. Conversely, if t —hil(z) =06 implies £ =0,
then if there exists an element zeX such that x —hU(x) =0, then
ze0; by lemma 1 U(z)=0 and thus »=0. The transformations
U and ¢ have the same spectrum.

Theorem 6. If h is a regular value of U, then the transforma-
tion & —hU(x) is a one-to-one mapping of X onto itself and its in-
verse i3 continuous, i. e. the mapping is a homeomorphism.

Proof. & is also a regular value of &. The mapping r—hE)
is by a theorem of Riesz ([1], Satz 7) a homeomorphism of X'. If
yen eX* and I, is a solution of the equation r—hil(r)=D, then there
exists an @, ef, such that s, —hTU () =y. Suppose &, —hU(z,)—>0,
when n—oco. Then |, —hU(%,)] >0, hence also |£n — B (L) = 0.
Since the transformation £ — h8l(z) has a continuons inverse, [£,|—0
and also |z,|—0; hence, by lemma 1, U(2,)—0 and consequently
&Iy —> 0.

The element zeX is called a null-element if it is a solution of
the equation 7”(z)=10. The element ¥ of the form y=1"(x), where
zeX is called a kernel-element. )

Theorem 7. Every element of X can be represented as the sum
of a null-clement and a kernel-element in only one manner.

Proof. This results from theorems 3-5 in exactly the same
way as in the case of Banach spaces and’ it can be obtained directly
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from the corresponding theorem of Rimsz ([1], Satz 8) as follows:
Let x be any element of X and xer, then r=r'-r’, where r'e®,,
"€, Sinee T*(r')=0 and reX*, we have r',1"eX*. If z'ep’
then I”(z")=y and [y|=0, v=(2'—y) + (2 —u'+y), I*(@'—y)="T"(2")
—~I"(y)=T"(x")—y=0, whence &'—ye@,. Since x—ax'+yer”’ and
I"=="(w), where weX*, then if wew we have 7T°(w)et”, hence
z—a&'+y=T"(w) + @, where |W|=0 and r—a'+y=T(w+w)e L,.
The condition ®,2,=0 implies G, L,=0.

Theorem 3. There exists a unique linear transformation T,
which maps every kernel-element into itself amd every null-element
into 0. T® maps every element of X into a kernel-element and I — T

maps every element into a null-clement. Moreover, TO' =T and
UrO=107,

Proof. For every element z¢X we have, by theorem 7, x=ux'
+ (# — '), where & is a kernel-element and z—=’ is a null-element.

Denote by 7 the mapping z—x". It is obvious that T (z'y— z’
if &' is a kernel-element, T7®(z)"=0 if #" is a null-element, and
for every z¢ X, T(z) is a kernel-element and I(z) — T(z) is a null-
element. Since @, is of finite dimension and G,-L,=0, for z,eX,
w;e gan W‘rgte Ly = a -+ Agay + ...+ 2l + a, where the elements
Z1,&5,-..,0 form a base in G, and z, ¢ L, . Suppose that x,—>0, when
n—>o0, and put »,={A1|+|23|+...+|A%. We shall show that P> 0.

Suppose that there exists a number f and a subsequence {nk} such
that r,,>8; then

1 .

;;(z?hw‘;+zz‘*w2+...+ Tpray + 3, ) —>0.
) It follows that A7*/r,,—9, when k— oo, for 1=1,2,...,p; other-

"w;lse there would exist a number B’ and an index 4, such that

A fra,>8" for infinitely many elements of the sequence {nk] and

we eo_uld choose a subsequence {ﬁk} of indices sueh that the sequen-

ees 2%/ r;, would be convergent and il T—>A, 70, which gives

1 - - _

— (e + 232+ .+ ) >, £ 0,

ng

where z,e@,.

This.wmlld imply 2%, [ rp,——z, and #ye L, which is impossible.
We obtain A7*/7,,—0 when k- oo, but then
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A A2 A Y

L™

— 0.

The obtained contradiction shows that r,— 0, henee A¥xf - 2'xs
...+ Ay —0 and also x,~0. Thus the continuity of the transfor-
mation 7 is proved.

Arguing as in the case of Banach spaces we can prove the other
statements of the theorem.

Theorem 9. The transformation U can be decomposed in one
and only one way into two components: U=U,~+T,, where

10 U, is a linear transformation, which maps all null-elements
into 0 and U, maps all kernel-elements into 0;

20 U, coincides with U for kernel-elements and U, coincides
with U for null-elements ;

3"  For any x, Uy(z) is a kernel-element and U,(x) a null-element ;
U, and U, are ortogonal, i. e. U,U,=U,U,=0; U, and U, are com-
pletely eontinuous.

Proof. Putting U,=TOU=UT® and U,=(I—-T™U=U{I—T")
we obviously have U,-+U,=U. We shall show that the transfor-
mations U, and U, are complefely econtinuous; everything else
can be proved in exactly the same way as in the case of Banach
space ([1], Satz 10).

By theorem 8 we have 7®(z)=z'eL, and (I—T0)(x)=2"¢G,,
hence r=t'+1", where z'et’, z"¢1’, vet, t'eL,, 1" 6,. By a lemma
of Rimsz ([1], Hilfssatz 6) there exist numbers M;, M, such that
)< M, x| and [g|"<<M, |t]; hence follows [o'|<CM, jx] and lo]" <M, |2].
Thus the transformations U;=UT® and U,=U(I-—T") map the
neighbourhood of 0, defined by the condition |zj<e, into compact
sets.

Theorem 10. The transformation Ty=I1—U; has an inverse,
i. e. there exists a transformation Ty such that TyT7 L= T, =1. The
equations T™(x)=0 and T5(x)=0, where T,—1I1—T, have {he same
solutions. The equations T™(x)=y and Ty(x)=y with the same right-
hand sides esther both have solutions or both have no solutions.

Proof. The theorem results from theorems 6 and 7 in the
same manner as in the case of Banach spaces ([1], Satz 11).

Theorem 11. The proper values of U have no finite limit points.
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Proof. This follows from a theorem of Riesz ([1], Satz 12)
for the linear completely continunous transformation 8 defined in
the Banach space X’ and from the fact that U and ¥ have the same
spectruni.

Theorem 12. All the values of the parameter h=1 are regular
values of the transformation U, defined in theorem 9.

Proof. In accordance with the decomposition »=a"+ 4",
where x'eL,, r"¢@, we obtain the following decomposition for the
space X': if wer, x’er’ then r'ef,, r"¢®, and we set r=1'41".
The transformation IO(r)=1’, corresponding to the transforma-
tion TO(x)=x', is defined by the homomorphism x—t, where xeg.
In an analogous way we obtain the transformations IOU=$[,
and (I—3 Y =4,, corresponding to the transformations 7O U=U,
and (I—T9)U="U, and identical with those defined in theorems
& and 9 for the Banach space X’ on the basis of the corresponding
theorems of Riesz.

Suppose now that £ —hl,(r) =0 implies t=0. Hence it follows
that if there exists an element weX such that z—hUy(z)=0, then
we have ref and also =0, since U,(x)=0.

On the other hand, if x—hU,(z)=0 implies 2= 0 and if reX’
is an element such that t— hél,(r)=0, then there exists an element
ret such that #— hU,(x) =0; hence £ =0 and r=0. Thus we have
established that the transformations U, and &, have the same
regular values. But by a theorem of Riesz ([1], Satz 13) the
assertion is true for &, and therefore also for U,.

2. We shall denote by X the set of all linear functionals X
defined on X%.
A sequence of linear functionals (Xn} is said to be strongly con-

vergent o a linear functional XeX it it is uniformly convergent in
a certain neighbourhood O of 0, i. e.

sup |X,(x)—X(x)]—=0 when n->ooc.
zel

A set M of linear functionals is said to be bounded if there exists

a neighbourhood O of 0 and a constant M such that |X(z)| <M
for all XeM, xeO.

If U is a linear transformation defined on i-£ then the transfor-
mation X=U(Y) defined by the formula X(z)=

U(x) is said
to be the adjoint of U.
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A transformation defined on X is said to be completely contin-
uous if it maps any bounded set into a compact one.
A set MCX is said to be compact if any infinite part of M
containg a sequence strongly convergent to some element of X
Theorem 13. If y=U(x) is a linear completely continuous
transformation then so is the adjoint X=T(Y) and ils range belongs
to the conjugate space of X'.
Proof. Let {¥,} be a hounded sequence of linear functionals,
i.e.
sup | ¥ (y)| < M,
yel
where O is a neighbourhood of 0. There exists a neighbourhood O,
of 0 defined by the inequalifies |yl <Ce, 1Ylpg<<ess .., [¥lpp<& such
that O,CO. We define the pseudonorm:

[yh= sup |yl
I<igk

The set of all elements y sueh that |y!,<Ce, belongs to O, and
hereby
M ,
sup | Yu(y)l<—=M".

<1 &
‘We have

[ X ()= T U (@) < sup [ X ()] [T (@)1
W<t
By lemma 1 there exists a constant M, such that |U(x) 1) < M, |2
Finally we obtain
) sup | X, (2)|< Sup 1)l M-
i1 Wi, <1

From (1) follows the linearity of the adjoint transformation.

By a well known theorem, for any linear functional the inequality

1Y)V sup (lylge--5 1915

where N is a constant and # a positive integer, is true. From this
fact and from (1) it follows that the range of the adjoint transfor-
mation X=U(Y) belongs to the conjugate space of X'. If we con-
sider the range of the transformation y=U(x) as & space with the
pseudonorm |y|;, then we see that the transformation U defined on
X with the pseudonorm |z| is completely continuous; hence it fol-
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lows that its range is separable for the pseudonorm |y|,. Thus by
use of the diagonal method we can choose a subsequence ¥}
convergent for every y of the range of U. We have

lim Y, Ulx) = hm X, ().
From (1) we infer that
lim X, (x)= X(z)

t-+00
is a linear functional for the pseudonorm |z| and hence also on X’.
Let {x;}C¥ be a sequence such that

1
legl=1, X () = L) | 2 5 sup | X (2) — Xy, ()]
< ey

Suppose that there exists a positive number 1 such that
(2) sup | X (@) — X, (2)] >1

zi<1

for every ¢, then we have
|1im 7, U () — ¥, U (2)] 2

10 <

A

[

S.ince l;]=1, there exists an element y, and a sequence of indiees
{i} such that '

lim | U(a,)— ol = 0.

Now let ¢ be an arbitrary positive number; there exists an index %, v

such that for k>%, we have
Wo—Ulz)i<e
and
|Yik(.l/0)‘—’}im Y (mo)l <e.
— 00
For k>k, we have

1 %5, U (g, —hhm Y Ul )< M'e+e+ Me,

which is incompatible with condition (2), since & is arbitrary. Thus
the sequence {X,} is uniformly convergent in the neighbourhood

O, defined by the inequality |z|<1 to the li i
) inear funct
this completes the proof. erional X and
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Theorem 14. If the equation ¥Y=X—TU(X), where U is a line-
ar completely continuous transformation having its domain and range
in %X, has a solution for any YeX, then the equation X —U(X)=0 has
only the solution X=0.

Proof. Since, by theorem 13, T(X)eX' for every XeX and
X8(1r)=XTU(x) for wer, XeX’, we have U (X)=U(X) for XeX'.
Further, the equation Y=X —if(X) has for any YeX’' a solution
belonging also to X'. By a theorem of ScHAUDER [3] & is a com-
pletely continuous transformation, hence by a theorem of RIEsz
([1], Satz 3) the equation X —ﬁ()j)=0 has only the solution
X=0; therefore X —T(X)=0 implies X=0.

Theorem 15. If the eqiation X —T(X)=0, where U is a lin-
ear completely continuous transformation having its domain and
range in X has only the solution X =0, then the equation ¥ =X — 0(x)
has a solution for any TeX.

Proof. As follows from the condition given in the theorem,
the equation X —$(X)=0, where XeX’, has only the solution X'=0.

Using the well known theorem for the Banach space X’ we
find that the equation r—&((z)=0 has only the solution t=06. This
implies that the equation #— U(x)=0 also has only the solution x=0.
According to Theorem 6 the transformation y=z—"U(x) is a one-t0-
one maping of the space X onto itself having a continuons inverse.

Theorem 16. If T is a linear completely continous transfor-
mation having dts domain and romge in X, then the equations
2+ U(z)=0 and X —T(X)=0 have the same number of linear in-
dependent solutions.

Proof. It is easy to see that the equations 2—U(x)=0 and
r—U(r)=0 have the same number of linearly independent solu-
tions. The equations X—T(X)=0 and X—H(X)=0 have the
game golutions. By a theorem of ScHAUDER [3] the equations
1 —U(r)=0 and X—Q(X)zo have the same number of linearly
independent solutions and hence follows the above assertion.

Theorem 17. The linear completely continuous iramsformation
U and its adjoint U have the same spectrim.
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Proof. The transformations U and & have the same spectrum
and this holds also for U and &L

Thus, given a system of equations x—hU (z)=y and X—hU(X)
=Y, we can judge one of them from the behaviour of the other.

Theorem 18. The set of all regular values of U is an open set.

Proof. This follows from the fact that U and ¢ have the same
spectrum.

Theorem 19. If a—hU(@)=0 and X—h'U(X)=
then X(z)=

Proof. X(x)=hXU(»)
we have X(r)=

If U is a linear completely continuous transformation, then
we can state for the equations

0 (h#0'),

=hU(X)(z). Hence X(2)=hX(#)/h’ and

(1) 5—hU(x)= X—wU(X)=0

the generalization of Fredholms theorems for infegral equations
as follows:

Theorem 20. (a) The equations (I) have the same number d(h)
of linearly independent solutions.

(b) If d(h)=0, then the assertion of Theorem 6 holds.

() If d(h)>0 and (), (X} (i=1,...,d(k)) are linearly inde-
pendent solutions of the equations (I), then the equation 2—hU(x)=y
has a solution for any y satisfying the condition X;(y) =0 (i=1,2...d(h}),
and the equation X -71,U(X)__Y has a solutwn fm any Y satysf Ying
the condition ¥(x)=0 (i=1,2,...,d(h)).

Proof. (c) Suppose that Ye‘.‘f satisfies the condition ¥ (z;)=0
(zzl,...,d(h)).

There exist pseudonorms lw],gk (k=1,...,n) and a number N
such that

Y (@) <N sup g, -

I€k<gn
We define the pseudonorm
]y = sup(|z|, |'73|e31 yer e [ ®ls,)
for which we can repeat the same reasoning as for the psendonorm |x|.

) Denote: by %I the corresponding quotient space and by %
its completion. We define the transformation y==EI'(r) eorresponding

icm
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to the transformation y=TU(x), where wereX;, yepe¥;. Let ©O1
be the neighbourhood defined by the inequality |z};<e. Since the
condition |s},< e implies |z|<e, then U(D,) is a eompact seh. By
lemma 1, established for the psendonorm |xf;, the transformation a
is eompletely continuous and ean be extended over the whole %;.

We have Ye¥, and ¥(m)=Y(5), xen (i= d(h)) Denote
by B’ uhe set of all solutions of the equation x—hﬁ’( y="0,; then it
is easy to see thab {t} (i=1,2,...,d(R)) is a base in &', whence by
a theorem of SCHAUDER [3] there exists a linear functional X
such that Y=X— 2[ (X). Obviously, Xe%, and for zereX; we have

U (1)=XU(w)= U(X)(z), hence ¥=X— U(X) and the theorem
is proved
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