On functions of finite variation,
depending on a parameter
by
W. ORLICZ (Poznai).

1. Let X be a Banach space, x(v) a function from an interval
a<e<b to X. If A is a subset of [a,b], we shall denote by [v;,4]
any system of real numbers

Dy <y <o Uy
where ;4.
By ¥V, a(v) we shall denote the supremum of the sums

n—1

2 efe(vi) —(e) H

=1

taken for all [v;,A4] and all possible choices of e;=4-1. ¥ z(v) will
be called the variation of x(v) on 4. We will denote by WA 2(v) the

supremum of the sums
n—L

;1 ll# (g 1) — (vl

taken for all [v;,4]; W a(v) will be called the strong variation of
x(v) on A.

If A={a,b], we shall omit the subseript A4 in W, z(v) and
V_az(v).

By essential variation of x(v) we shall understand the infimum
V*z(v) of the variations V  z(v) taken for all subsets A of [a,d]
of measure b—a. W*z(v) will be defined analogously.

It is obvious that there exists a set 4 such that |4|=0—a
and V¥z(0)=V _,x(v).

Every function z(v) for which either ¥V x(v), or W, z(v), or
V*x(v), or W*z(v) is finite will be called of finite variation over A1),

1) L. Gelfand gives in the paper Abstrakte Funkiionen und lineare Ope-

ratoren, Mat. Shornik (1938), p. 235-285, also another, equivalent, definition
of functions of finite variation.
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finite strong variation over A, finite essential variation, and finite
essential strong variation, respectively.
If X is identical with the space of real numbers, we shall write
var‘z(r) for T¥x(r). In this case we shall also denote
sup® w(r)=inf sup x(v).
{di=b—a 4
A set of linear functionals will he called fundamental if for
every reX
sup E r)=|}r]l.
fel, 5=
In the sequel I" will denote a fundamental set of linear funetio-
nals. A sequence [rn} of elements will be said to I-converge to g
if lim &(a,)=E&(x,) for every Zel. If {.r,,} I-converges to x,, then

n—oo
(%) flaolf << T [l
IL—>00
The funetion x(v) will be said to be I-continuous at v, if v,—>7,
implies the I'convergence of x(v,) to x(r,); any function I-conti-
nuous at every » will be called I-continuous.

1.1. If «x(v) is [-continuous, then
Va(v)=V"z(v), We(v)=W- ().

Proof. It suffices to prove for every set 4C[a,b] of mea-
sure b—a, the inequalities V, x(v)=Vir(v) and Wix(v)=Wa(e).
Given any e>0, choose [v;,[a,b]] and g=—--1 so that

—1
V(o) o) — 2} |;
now choose 1ed so that lim ¢’ =r; and P <1P<...<o{?’. Then
n—r00
S ( @) |
D) afue(el) — 2@ H‘<T.4T( ) -
b}

The elements
n—1

Yo=Y ele(e®) —a ()}
i=1

I'-converge to .
n—L
y=2 e:fw(vipn) —2(v)}-

i=1
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Hence by (x)
Tae(e)—e< Yl Um | <V.az(0);
P—o0
£>0 being arbitrary, we get Va(v) <V 42(v)-
The proof that W, z(v)=Wa(v) is similar.
Given any set 4 denote by A™ and A~ respectively the sets
of accumulation points on the right and on the left of the set .A.
1.2. If x(v) is of finite strong variation over A, then for every
ved™ resp. ved™ there exists the limit
lim g, #(w)=a"(v) resp. lim, z(w)=. (),
w—v+ W
and the function x(v) is continuous (relatively to A) in A, exvcept
a denumerable set.
Proof. Suppose, if possible, that there exists a v, in 4 such that
-+, 0,>v, and that lim «(v,) does not exist. We can assume freely
that o

Jlz(v,) — ‘”(”n-{-l)” =>e,

¢ being a positive constant, and that »,>v,>... Then for every ¥
N
WAw(”)>kZI|1W(”k+1) —w(v)l|=eN,

hence W x(v)==oc0, contrarily to our hypothesis.

To prove the second part of 1.2, denote by w(v) the oscillation
relative to the set 4 of x(w) at v; it suffices fo prove that the set
Q. of the points ved for which w(v)>k is finite for every k>0. Sup-
pose that veQy (1=1,2,...,m), 1, <v,<<...<<¥p. Then there exist
vy, v e A such that wvi<<vf<tvi,, and |z@;)—z®))|>%k, and this
implies in turn km<<W 2(v); hence the set @, is finite.

I W*z(v) is finite, we choose a set AC (a,b> of measure b—a
such that W o(v)=W*z(v). The function a*(v) is then defined
everywhere in [a,b); we complete its definition by writing a*(b)
=lim #*(v). Then «*(v) is continuous on the right, x(v)=a*(v),

v>b—
except in a set of measure 0 and Wa*(v)=W*z(v), Va*(v)=V*z(v).
There exists only one function with the above continuity proper-

ties, equivalent fto x(v). The function z*(v) will he called the
reduced function of z(v). :
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2. We shall be concerned now with functions x(r) taking
their values from the space M — this is the space of the functions
r=r(t) defined in [a,b], measurable and essentially bounded, the
norm being defined as |jx)j=sup*ix(t)]. By I' we shall denote the
set of linear functionals of the form

q
1 ’ o(t)dt.

Let D(t,v) be a function defined in [a,a;b,b]. measurable
and bounded for »=const. Hence the formula x(r)=D(:,v) defi-
nes a vector valued function from the interval [a;b] to M.

The sequence [z, of elements of 3 is said to I-converge fo
xy if sup |lg,ll <oo and

n

b
Tl (8) — (1) dE—-0.
a
If the sequence {rn} I-converges to x,, then it is I'-convergent 50 xo.
The Ilimit of x, will be written I-limx,. If for wpe A, w,—70,

n—- 00

r<w, implies -lim x(w,)=1r, then we shall write a,=1-lim, x(v)-
w—rvt

2.1. Suppose V a(v)<oo; then ¥ x(r) is equal to the supre-
mum S of the expressions

n
sup® 3 |D(t,v;)—D(t, via)is
i

i=1

the supremum being taken for all systems [v5, 4]
Proof. Sinee ¥ x(r) is the supremum of the expressions

sup | e [D (1,5 — Dt v 2)]
i i=1

taken for all [v;,4] and g==+1, we have V x(r)<S. On the
other hand choose [v;, 4] so that

§—¢<<sup® 3| D(E,v)—D(E, vl
Pl et

—sup® S e(t) [D{E, 0 — Dt e )],

=1
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where
&(t)=»ign [D(t,0) —D(,v1)]

The vector valued funetion (p(t)z{al(t),...,an(t)} can assume at
most 2" values, hence if B denotes a set of positive measure, then
one value [51,.. . ,5,1] is assumed on a set of positive measure B'C B.
Hence for teB’

Z: 5[ D(t,v;)—D(t, Ui_l)]:',Z:'D(t, o) —D(t,v)],
i= =
which implies
S—2e < sup*| & [D(t,0)— D, v a)l| <Va(o).
i i=1

2.2, If x(v)=D(:,v) and V_ 4a(v)<<oo, then for every ved, except
a denwmerable set, I-lim, x(w)=x(v) exists.
w-vt ‘

Proof. Consider z(v) as a function with values in the space
L. Then

nob

-§1 ke {es) — (vl = ,E]l [1D(t,v;) —D(t,v,_y)| @

b n
=J Z1D0,0) —D(t, )| &< (b —a) V(o).
o

By 1.2 for every ved, except a denumerable set, the limit

lim, #(w)=x(v) exists, and since the function z(v) is bounded on A
w—rvt

as a funetion to M, this implies in turn that I-lim, z(w)=2(v) exists.
w-vt
2.3. Theorem 1. If D(t,v) is measurable in [a,a;b,b] and
2{(v)=D(:,v)e M for every v, then

i

(1) V*r(r) =sup*[var*D(t,v)].
1 v

Proof. Suppose that the left hand side of the formula (1)
is finite. Choose the set 4 so that |A|=b—a, and V., z(v)=Vz*v),

then let R={v;} be a sequence of elements of A, dense in A.
The sets

1
Ey=E {\D(z,u)_p(t,@n)K_}
()] k
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are measurable. The set H of the points (¢,r) for which there exists
a sequence |n,} such that r,—v, 1,>v and

(2) lim D(t,r,,)=D{t,r)

[

is measurable, for we have

H= n AEEHI\‘RNI: )
rel K

=1 k=1
where R,= Blv<v,<v+1/k).
&)

By 2.2 for every ved, except a denumerable set, there exists
2 sequence {vm} such that v,,>v, v~ and I-lim &(ty,)=x(v), hence
there exists a subsequence {vm} such that }im D(t,0n,)=D(¢,v) for

1=00

almost every i. Hence, the set H being meagurable, |H|=(b—a)
By the theorem of Fubini, there is a sef T,C [a,b] of measure b—a
and for every teT, there is a set @;Cla,b] of measure b—a such
that (2) is fulfilled for every ve@.

Given a [tf,R] we have by 2.1

2

wn

(3) D, ") =Dt < Vg x(0) =T 2(0)
b

for almost any t. Hence there is a set N of measure 0 such that (3)
holds for every te(T,—XN) and every [}, R].

Now let tye(To—XN); for [v;,4Q,] we choose [, R] such that
Dty 1§ —>D(ty,2:); hence, by (3),

7

]D(tn:'vi.) —D(ty, )| gvm*(v)a

Mz

=1

var* Dty v) <V x(v),
whence .
sup® var D(t,v)<Va™(v).
t 2

Suppose now that the right hand side in formula (1) is finite.
There is a set T,C[a,b] of measure b—a such that

gup*[var*D(t,v)] = sup var* D(f,v)<loo;
i L i

eT, v
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then for every tel, we veplace the function D (¢,r) by the reduced
funetion D(¢,v). This function is measurable in 7,%[a,b], for
v+h

— 1
Di(t,0)= lim f

B0 R
v

D (t,w)dw.

It te Ty, D(4,0)=D(t,v) for almost any », then since both func-
tions are measurable, there exiqts a set SC[a,b] of measure b—aq
such that veS implies D(#,v)= D(t,») for almost any ¢.

Since feT, implies

var D(t, v)——va,r D(t,»)< sup var* Dit,v),

. teT, v
we have

Dit,v,_y)| < sup var* D(t,v);

n _
2 1D v)—
i=1 teT, »

hence for [v;,S8] we have almost everywhere
21D(t,0) —D(t,v;_3)| < sup var* D(t,v);
=1 teT, v

in virbue of 2.1 this implies immediately

V()< sup*var*D(t ,0).

2.4. In the next theorem the following condition will play
an essentlal role:

fD(t,v)dt:fD(t,u)dt for every w,vela,b].

2.41. This condition implies the I continuity of the function

x{(v)=D(:,»). In fact for
¢
Eo)= 4+ —— [ a(t)dt
Q"pﬁ
P
é(m(v)—x(vu))ziq—_; pj [D(t,0)—D(t, v,) ] dt

j [D(t,0)—D(t,p)1dt,

hence the right hand side tends 130 0 if v—u,.
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The last formula is valid also if D(t,v)e L for vela,b]. This
implies immediately:
If #(v)=D(:,v)e L for ve[a,b] and

(0) sup® ID(t,0)i<k for reS, 18]=b—a,
t

then the inequality (o) is satisfied for every .

If the condition (J) is not satisfied by the funetion D(f,v) bub
by D(t,v)=D(t,v) +h(t), where h(t) is a fixed integrable function,
the above remarks remain valid for the function D(t,v).

2.5. Theorem 2. Under the hypothesis of Theorem 1 suppose,
moreover, that the condition (J) is satisfied, then

(a) Vaz(v)<oo implies the following generalization of the Lip-
schitz condition :

b
(%) (1D, v+h)—D@E, ) di<E R for a—v<h<b—r,

and this holds certainly if K=Vux(v);
(b) If (%) is satisfied, then Va(v)<oo, and Va(v) is the best
constant K in formula (*);
() Va(v)=TV"z(v).
Proof. The statement (¢) holds by the I-continuity of the
function x(v)=D(:,v) and by 1.1.
To prove (a) choose two partitions:
= < Uy << o< Upy=1D
and
=, < Wy < ... <Wp, =D,
and seb u(t)=a; for w;<t<Tupy,, w(t)=>; for u;<t<wy;; then by
the condition (J)

fu HD(t z)dt—r{njla,[Dt Uiy1) — (t,ui)]}dh
whence
fb {mjlb [D(t,w500) — D(t,m)]}d’t
@ L ‘ \
_ afw(t){ 301D 65200 = Dt 1)1

Studia Mathematica. T. XIIT. 15
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1:1 Mi—1
f fo (1) dt = 2|bi‘(‘wi+1“'wi)§
a i=1
sup® Ju(f)|=max |a].
If Ve(r)<oo, then

n—L

b
fur(t)]\ > a,[D(E,uy0)— D, )]}dt

j=1

< sup” [u(t)[V.l’,‘(l?)j)lw(t)\(lt,
and by (4)

[ m—1

f lZ by [D(t,w;y) — D(t,wi)]}dt

[
<sup® [u(®)| Ve (v f|u )] dts
this being valid for every simple function, it results the inequality

fIJEIbf[D(t,wi+1)—D(t,wi)

a i=

dt < Vi(v) f[w )| dt.
Choosing w(t) in an appropriate manner we get

b

[ D, v-+h)—D(t,v)]dt <|h| V(v)

a

for a—v<{h<<b—v. Hence (a) is proved.
To prove (b) suppose that (x) is satisfied; then the expression
on the left hand side of (4) is not greater than

E [ o)t sup*luo)]

a
whence
n—1

b
f”’(t){ 2 [D(t;“ﬂl)—p(t;uﬂj}dt

i=1

<K sup*lu(t)] [ ()| a,

[
1]
~1

On junctions of jinite variation.

and this inequality is valid for every integrable function w(f). Hence

n—1

sup® IZ a;[D(t,1;00)— Dt )1 < K sup®lu(t); =K max |a;.

Choosing a;=g=+1 we get (b) and K>=Vr(r).

Remark 1. In the statement (b) of Theorem 2 we can replace
the hypothesis that D(:,v)e M by the hypothesis that D(:,v)eL
and that D(:,a)e M; then x(v)e M for every vel[a,b]. This follows
ifrom the a.pplication of the inequality at the end of the
proof above.

As corollary of Theorems 1 and 2 we get

Theorem 3. Under the hypotheses of Theorem 2 the following
conditions are equivalent:

Ta(v)<eo,

b
[1D@,v+1)— D, )| dE <Kk for a—r<h<b—0,

sup*var*D{f,v)< oo
t v

Remark 2. In order to deduce the first two of the inequa-
lities in Theorem 3 from
sup*var* D(t,v)< oo,
14 v
it suffices to suppose D(t,v)e L for ve(a,b], D(t,a)e M for these
hypotheses enable us to repeat the arguments of 2.3. Hence
it follows that in a set S of measure b—a the inequality

nguaUi)“D(tari-:—l)i<('
i=1
is satisfied for arbitrary [vs,S].
Choosing .68 put D(t,0)=D(t,v)—D(t,v,). If veS then
sup®|D(¢,v)]<C, whence by 2.41 this inequality is satisfizd for
every ¢. It follows that

sup” [D(t, 1)< O+ Sltlp* [D(ta)=Cy
£
sup® | D(t, 0| O+,

whence x(v)e M for every o.
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3. Applications. Now we prove
Theorem 4. Let f(t) be a real valued function integrable in [0,D]
and of period b. Then the following conditions are equivalent:

var” f(t) <oo,
b
T+ —f@ <K iR for [R|<D.
0

The smallest constant K in this formuda is equal o
var® f(8)+|f*(0) — £ (b —0)l,
where 1*(x) denotes the reduced function of f(x) in [0,0] the varia-
tion being taken over [0,b]%).

To prove this put D(¢,v)=Ft+v)—f(t) for 0<i<<h, O0CoCh.
Then z=wx(v)=D(:,v)eL and x(0)=D(:,0)=0¢M. The condition
(J) is satisfied.

It may easily be verified that if Vz(r) <oo, then var® f(v) < oo,
and conversely, the formula

V*a(v)=Va(v)=sup® var* D(t,v)
. t »
=gup” var® [f(t-+v)—F(t)]=sup”* var* f(t+v),
12 ? i L’
is valid if var® f(v)<oo in virtue of (c¢) of Theorem 2, for in this
case D(:,v)ed if ve [0,b].
If ¢ is a poinb of continuity for f(¢), then

Vir* Ht-+v)=var® f(v) +-f*(0) —f*(b—0),

whence the same results almost everywhere. Since, moreover,

. b 4
ofiD(t,vah)—D(t,v)Jdt= S+ R)—f(2)] &2,
0
for —v<h<Cb—v, the theorem results from Theorem 2 and
Remark 1.

*) G. H. Hardy and J. E. Littlewood, Some properties of fractional

z‘r_mgmls I, Math. Zeitschr. 27 (1928), p. 599, Theorem 24. These authors do not
give a precise value of the constant XK.
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Let {g;(t)} be an orthonormal system in [a,b], complete in L*
and composed of bounded functions. The sequence {/.L} is said
to be a multiplicaior of the class (M, M), if

being the Fourier development of an arbitrary function of I7,

glliam(i)
is a development of a funection y(t)e M. As the function y(i) de-
pends on w=.r(t), we may write y(i)=U(xr,1). It is known that the
operation U(x,f) is linear from M to M 3).
The series

ig; ('i[yqoi(t)dt)Ss

eonverges uniformly in [a,b]. Indeed, for every u this series, being
the series of squares of coefficients of the characteristic function
of [a,u], converges by the identity of Parseval to the continuous
function u-—a. The series, consisting of positive continuous func-
tions, eonverges to a continuous function, hence it must converge
uniformly by the theorem of Dini.

Suppose now the sequence {4} to be bounded. Then the series

o t D
ZZif‘Pi(T)de%(T)dT:D(fyl‘) :
i=1 a a
must converge uniformly in [a,a;b,b], and its sum D(t,v) is con-

tinuous in both variables.
Note further that the series

is uniformly convergent in [a,b]. Putting

i
w(v)=124 f‘r‘-;(T) dr,
a

3)- See >\V. Orlicz, Beitrige 2ur Theorie der Orthogonalreihen I, Studia
Mathematica 1 (1929), p. 1-39.
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the series
2 w0 gilt)
i=1

becomes the Fourier series of a funetion G(¢,v) such that G(:,v)e L?
and the sums

21 f(0) @i(t)

converge asymptotically in [a,a;0,b] to G(t,v), which implies
the measurability of G(t,v) in [a,a;b,0]. We easily observe that
for vela,b]
i

D(t,v)=[G(z,v)dr,
- a
(5)

Dl(t;v)':G(tyD)a

- for almost every ¢ and arbitrary v, and almost everywhere in the
interval [a,a;b,b], the funetions on both sides being measu-
rable.

Theorem 5. Let the system [(pi(t)} be complete in L2 Then the
sequence {Ai} is a multiplicator of the class (M, M) if and only if the
following conditions are satisfied :

(I) the sequence |A;} is bounded;

(ITa) sup*var® D;(t,v) < oo,
14 v

or the equivalent inequality

b

(IIb)  [|Di(t, o+ Ry =Di(t, o) @ <K R} for a—h<o<b—h.
g .
The equivalence of (IIa) and (IIb) is to be understood as follows:
(1) implies the existence of Di(t,v) almost everywhere for vela,b]. We
extend the definition of Di(t,v) to a function defined in [a,a;b,b]
setting Dj(t,v)=0 for those (t,v) for which the partial derivative
does not exist. This function appears in the conditions (II:%) and (ILb).

Proof. Necessity. For every e=u(t)e i

b . b s
| [ U@ nedn=| 2 fewe ) <ULl ats
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if, in particular, x(t)= sign ¢;(t), then

14 <UL,
and (I) is satisfied.
Since the functions u(r) are by hypothesis the Fourier coef-

. ficients of a bounded function, the eompleteness of the system {'ri(i)}

implies G(:,v)e M. Let
A=< < V=0

be a partition [a,b], and let z(v)=g for 1<TU<Tiiy, g==1,
then

n—1
{6) Ulz,t)= ._Z‘lei(G(ty l"i+l)—G(is l‘i)}:
whence ||U(z,:)|| < Ulllell =1T|, and the function y(v)=D;(:,v) from
the interval [a,b] to M has a finite variation. Since the deriva-
tive Dj(t,v) extended as in Theorem 5 is meagurable in [a,a;0,b]
and fulfils the condition (J), the conditions (Ila) and (ITh) follow
from Theorem 3.

Now suppose the condition (I) to be satisfied. If, moreover,
the condition (ITb) is satisfied, we can apply the Remark 1. By
Theorem 2(b) the inequality Vi(v)<oo holds, and by Theorem
2(e¢) and Theorem 1 the condition (ITa) is satisfied. Now suppose
the condition (Ila) to be satisfied. Since D'(t,a)=0, we can apply
the Remark 2 to the function Dy(f,v), whence in virtue of Theorem 3
the condition (IID) is satisfied. Thus the conditions (IIa) and (ITh)
are equivalent.

Tf x(v)=a; for t;<v<tyyp, then

n—1

UG, )|=] > a5 Gt iy ) — GHE, 03)}

A7)
<l VG, o) =l VDi(:, 0)-
Here T*Dj(:,v)=TDy:,v)<o0.
Now, z(t) being an arbitrary bounded measurable funection,
choose a sequence uxr,(t) of step-functions converging to x(t) and
such that [jr,| <ilzll; then

b b .
fon('f)‘l“iﬁ)dT:f Uz, t)g(r)dr for i=1,2,...
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Since (7) implies
U (2, 8)] il VD2 0),

for almost every ¢ there existy a subsequence {.v,,,{} and a fune-

tion U(x,7)e M such that
b b
U, 7) g (v)de— [ Uz, t)gs(t) dv for j§=1,2,...
a a

Sinee &, (1) (t), Wwe get

b b b
/'.}f;z’rm(f)qzj(r)(h»/'lj Ja(z)g(r)dx :f Uz, 7)p(v)dr,
@ @ a

i e

b b
2, fo(2)g, () de=] U, gy (x) .

(Regu par la Rédaction le 10. 8. 1952)

OBOBU[EHHE OJHOII TEOPEMbI MA3VPA-O0P.III94
3 TEOPIH CYMMHPOBAHIA

M. AabpTMan (Bapmasa).

TIyers maHa 10OCTIETOBATENTBHOCTD QYHKIMIL {an(t)} ONpeNenéHHbIX
HA HEKOTOpPOM MHO;ecTBe unced 7. IJrofi MOCIENOBATENLHOCTH
MOKHO IIOCTaBUTL B COOTBETCTBHE HEKOTOPHIH, TAaK HA3LIBAEMBLIT
ROHMUHYAAbHOI, METON, CYMMHPOBAHHA NOCIENOBATENLHOCTEH uicel
cnegyomum 06pasom.

Ilycrs t, npenenbhad Touxa MHOmectsa T, a .r:[&k} KaKas
HUOYNb IOCIENOBATENLHOCTE uHced KEcam pAmsl

o~

Z ak(t) EI:
k=0

CXOJATCA NaA modoro tel OTAMYHOrO OT f,,, NPIYEM HX CYMMBI
-
Ayx) ‘—;2 ax(t)x
et

CTPEMATCA K npefeny, é=A(r) =4, (#),.t 1, T0 OyaeM TOBOPHUTS,
UT0 TOCTEeROBATENBHOCTE ©={£'] cysmupyemes KOHMUHYATBHBIM
Mmemodom A K HTOMY Ipemely.

YacTHBIM CIydaeM KOHTHHYAJIbHBIX METOXOB ABIAIOTCA METONEBI
CYMMHPOBAHH, 3a)aBaeMbic GECKOHEYHBIMH MATPHUAMH, eCiIH Ha-
npuMep B KauectBe 1' BO3BMEM MHOMKECTBO HATYPAIBHBIX UHCEI.

KoHTHHYaNBHEL MeTON A HA3HBAETCA NEPMAHEHMHBIM, €CIH OH
CYMMHDPYET BCAKYI0 CXOOANYIOCA MOCIELOBATEIBHOCT K TOMY iKe
npegenry, K KOTOPOMY OHA CXORMICH.

Ima Toro, 9ro0B KOHTHHYAJbHEIA MeETOX ObLI IEePMAHEHTHHIM,
HEOGXONAMO M JOCTATOYHO BHIIONHEHHE CIeRyIOIUX TPEX YCIIoBHil,
AHATIOTHYHAIX YCIOBHAM, HaIaraeMsM Ha MaTpumel Tammimna

1° a,(f) =0, worma t—>t, (n=1,2,..).
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