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‘ 0. Chaque sommet de tout polygone est le‘ point de rencontre de 3
polygones.

I. Les sommets des polygones coincident (dans le méme sens que
dans 1%);

II. Tout polygone a 6 cdtés au plus.

Fixons dans tout polygome un point intérienr arbitraire ct joignous
les points des polygones contigus par des lignes qui me se croisent pas.

Nous parviendrons ainsi b won.réseaun
=

de triangles (pouvant étre curvilignes)
-..

qui satisfait aux conditions 1° ot 2°.
) .’g

Les noeuds défectifs de ce réseau

correspondent aux polygones dont

le nombre de cotés est inférieur & 6.
Convenons, pour le moment, de dire
qu'tn polygone a d défauty lorsqu'il
a 6—d cotés. Dlaprés le théordme
démontré, tout parquetage du plan
par des polygones, satisfaisant oux
conditions 0, I e IL peut avoir au
plus 6 défauts.

En particulier, le plan ne peut
pas #tre recouvert par des pentagones
(conformément aux econditions O,
et I). 11 est cependant intéressant qu'il peut &tre recouvert par des
heptagones, mémes convexes, comme on le voit sur la figure 8.

Fig. 8
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ON THE THEORY OF GRAPHS?)
BY
P. TURAN (BUDAPEST)

Let us consider a finite set of distinet elements Ay, 4,,...,4, and
a g-rolation which holds between some of them. If the g-relation holds, for
insbance between A, and 4,, we denote it by 4,04,. We suppose only thai
this. relation is symmetrieal, ¢. e. with 4,04, also A,g4, holds, and
antireflexive in the sense that 4,04, never holds. We obtain a more
illugtrative representation of the situation representing the elements A,
by different points P, in the three-space and connecting P, and P, by
a line if and only if 4,04, holds. The lines can obviously be chosen 3o
that the only points they can have in common are the points P;.
Antireflexivity means in this representation that no P; is connected
with itself; further, that any two P;-points are connected by one linc
at most. The figure so obtained we call a graph P (in a little more re-
stricted sense than usual), the points P; the vertices, the connecting lines
the edges of the graph. A vertex not connected with any other vertex
can oceur in the graph. By a subgraph of P is meant a graph all of whoge
vertices and edges occur among thoge of the graph P. A graph P is
called complete if all vertices are connected with each other. Having
a graph P, we eall a graph complementary to P and denote it by P it it
consists of all the vertices of P and of all edges not belonging to P. The
order of a graph is the number of its vertices, and the degree of a vertex
P; is the number of edges starting from P;. :

To show the applicability of the results offered by the theory of
graphs we mention first a theorem of B. Marczewski®). According to
that theorem to an arbitrary graph (finite or infinite) eorresponds always
a family of sets, one and only one set to each vertex, so that two verti-
ces are connected by am edge in the graph if and only if the eorrespon-
ding sets have no elements in common. Hence every theorem on graphs
gives at the same time a theorem on families of sets. Another instance
is concerned with Dirichlet’s Schubfachprinzip. If we have a set of (n-+1)
elements each of which has exactly one of n given properties, this prin-

1) Lecture delivered at the Mathematical Institute of the Polish Academy
of Sciences in Warsaw on October 18,1952, and in Wroclaw on Oectober 27, 1952.

%) E. Szpilrajn-Marczewski, Sur deus propridids des classes d’ensembles,
Fundamenta Mathematicae 33 (1945), p. 303-307, especially p. 305.
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ciple asserts the existence of at leagt two different elements having
a property in common. Let-a point « correspond to each element
and let us comneet two different points if and only if they have
one of the given properties in common (of course mo point is con-
nected with itself). Then the principle asserts the existence of at least
one edge in the corresponding graph. If 7 is an integer and we have
(In+1) elements instead of (n+1), then at least (I41) elements have
a ecommon property, or, in other words, the corresponding graph contains
o complete. subgraph of order (14-1). But perhaps we can draw the same
conclusion also from other agsumptions made upon the graph; hence
we are led to the question of asecertaining the existence of complete
subgraphs of possibly high order from various hypotheses upon the
graph. Speaking a little more generally, the question with which the
lecture is mainly concerned, is the structural problem. By this we mean
the problems which arise when, making various assumptions on the graph
P, we try to deduce structural information about it or about #. Looking
back we must say that perhaps the firgt general result in this divection
is due to Ramsey?). He asgerts that there is an f(%,l) such that if
a graph P has at least f(k,1) vertices, then either P hag a complete sub-
graph of order & or the graph P a complete subgraph of order I. As to
its applicability I only mention that Erdds and Szekeres*) redisco-
vered it when giving the first proof of the geometrical theorem accor-
ding to which there is a ¢(k) such that given g(k) different arbitrary
points on the plane one oan select % out of them so that the arising
k-gon is convex. I found in 1940 the theoremS5) according to which
if a graph of order » contains ‘“foo many” edges then it containg a com-
plete subgraph of “high” order. The problem can also be formnlated as
an extremum problem: given the integers (3<)k<n, how can we find
the maximum number M (n,%) of edges in a graph of order » without
complete subgraphs of order %? The exact solufion of this problem
is as follows:

‘We define the integers ¢ and r uniquely by

(1) n=(b—1)i+r a<r<k—1).
Then the required maximum number M(n,k) of the edges iz
k—2 r
2 — (n2—? . :

(2) 2(k—1)(” T)+<2)

5) F. P. Ramsey, Collected papers, p. 82-111.

4 P. Erdos and G, Szekeres, A combinatorial problem in geometry, Com-
positio Mathematica 2 (19335), p. 463-470.

5) P. Tur4an, Matem. éz Physikai Lapok 48 (1941), p. 436-452.
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Further, the following question arises: by which fypes of graphs
can this maximum value (2) be realised or what is the structure of the
extremum graphs? I showed that, apart from isomorphisms, the following
graph — subsequently called D(n,k) — is the only extremal graph.
‘We split up the vertices in (k—1) classes, each of the first » contains (i-+41)
vertices, each of the remaining classes only # vertices, and any fwo
pairs of vertices of different classes are connected by an edge, but no
two pairs of vertices of the same class are so connected. We can immedia-
tely see that D(n,%k) does not contain a ecomplete subgraph of order &.
For if it did, then aceording to Dirichlet’s principle at least one of the
clagses would contain two of its vertices which cannot be connected
according to the definition of D(n,k) by an edge. As the late D. Konig
remarked, the graph D(n,k) can be formed numbering the vertices by
1,2,...,n and connecting those and only those by an edge which are
incongruent mod (k—1). Graphs with such property that their vertices
can be divided into two classes so that all such and only such pairs of
vertices are connected by an edge which belong to different clagses, have
been the object of many investigations®). As D. Kénig remarked in
a conversation, a formal generalisation of this concept, replacing fwo
classes by another number of classes, was proposed already by Sainf-
-Lagiie, who did not name a single property of that type of graphs.
Thus the property formulated. above is the first property of the graphs
of Saint-Lagiie-type.

Tn 1947 P. Brdos went a great deal further concerning the above
mentioned theorem of Ramsey. We consider the graph Din,[Vn]+2)
according to the former definition (where [z] denctes the integral part
of ). Then it can be observed that neither D(n,[)/n]+2)nor D (n, [y/n] +2)
contains a complete subgraph of order [y/n]+ 2. That D(n,[)/n]+2) does
not contain such a subgraph, follows simply from the fact that it is the
sum of []/ n] +1 separate complete graphs G;, each. of order d; satisfying
the inequality

g

2 -

A<t | —— <1+ [Vn].

< +[W+1] +[Vn]
That D(n,[}/n]+2) cannot contain a complete subgraph of order V]2,
had been proved before (even that D(n,k) does not contain a complete
subgraph of order k). I had conjectured for a while that the graph
D(n,[yn]+2) is the oxtremum graph of the problem, and hence every
graph P of order n or its complementary graph P econtains a complete

*) See the hook of D. Konig, Theoric der endlichen und wnendlichen Graphen,
Leipzig 1936.
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subgraph of order “about 1/ . Now denoting by h(n) the maximum
integer 7 such that in every graph P of order » or in its complementary
graph P there is a complete subgraph of order I, Erdos”) showed that
for n>64

2

(3) hn)< @logn,
i, ¢. the order of h(n) is much less than expected. His proof iy purely
an existence proof; the construction of an explicit example “nearly”
realising the egtimation (3) would be of interest (P111). The oxact so-
lution of the corresponding extremum problem seems to be very difficult.

Starting from a topological problem Erdés and A. H. Stone?) came
in 1946 to amnother quegtion of structural type. They asked whether
or not a graph B having “not too many” edges always containg ‘“many”’
subgraphs, all of “‘comparatively high’ order so that vertices belonging
to different subgraphs are not connected in R by edges. They proved
indeed that there iy anm my=n4(r,e) such that in an arbitrary graph E
of order #>>n, whose number m of edges satisfies the inequality

(4) ' m< (E(%—ES - a) e

there are always r subgraphs R, without common. vertices, each of order
d,, satisfying the inequality

{5) d, =V log, 10,

where log,_; means the (r—1)-times iterated logarithm, aud having such
property that no two vertices taken from different R,-subgraphs are
connected in B by an edge. Here the complete solution of the correspon-
ding extremum problem has not been achieved (P112) so far, though the
factor 2(r—1) cannot be replaced by a greator number,

A theorem of the same type as my result mentioned above was
found in 1947 by K. Zarankiewicz®). He also tried to ascertain tho
existonce of a complete subgraph of possibly high degree, by fixing not
the number of edges, but another number associated with the graph,
which may be called the connection mumber of the graph. By this he
means the greatest integer ! with such property that each vertex of

") P. Exd6s, Some remarks on the theory of graphs, Bulletin of the American
Mathematical Society 53 (1947), p. 202-294.

®) P. Erdds and A. H. Stone, On the strusture of linear graphs, Bulletin
of the American Mathematical Society 52 (1946), p. 1087-1091.

°) K. Zarankiewicz, Sur les relations symétriques dans Vensemble fini, Col-
loquium Mathematicum 1 (1947), p. 10-14.
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the graph is a starting point of at least I edges. He proved that if the
connection number I of a graph of order = satisfies the inequality

(6) l>iin,

then it contains a complete subgraph of order k, and this is not true
any more if

k—
b—

|8

(7) (£ n.

=

Since both Zarankiewicz’s results and my own give criteria for
the existence of a complete subgraph of order k, it is natural to try to
compare those two criteria, called in the sequel, vespectively, criterion
I and criterion IL. On one hand it is clear that criterion IT can be ful-
filled without the fulfilment of Zarankiewicz’s criterion I, since one
can easily construct 2 graph of order n having one more adges as required
in (2) and one vertex of which is the starting point of only one.edge's.
On the other hand we show that if criterion I is fulfilled then so is ori-
terion IT, consequently criterion IT is of wider applicability than eriterion I.
In order to prove the second part of our assertion we remark that if every
vertex is the starting-point of I edges at least, then the total-number
m of edges of a graph of order = is obviously such thab

nl

(8) WL??’

i.e. if Zarankiowicz’s condition (6) is satisfied then
k—2 n?

M > e,

k-1 2

If we can show that

k—2 n? k—2

7
1T g H(z)’

then our statement follows from my above-mentioned theorem. Bufb
this is equivalent to

r -2 k2
P i or r—1< =1
(2) < 2(k—1) fo-—1

which ig¢ indeed true owing to (1). Thus our criterion includes that of
Zarankiewicz.
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The above remarks raise an interesting extremal problem. What
is the minimum number of edges in a graph of order » if all vertices

have a degree not less than 7, where of course
(9 1+1<n.

Denoting this minimum number by m(n,l) we shall show that

n+1
(10) m(n,l)= [ﬁg—] .
The inequality
In—+1
m(n, )= [ nj— ],

follows immediately from (8); hence the whole difficulty lies in exhibit-
ing graphs of the required type for which equality can be attained
(10). Contrarily to the above mentioned extremal problem we cannot
list here at a given couple (n,l) all types of extremal graphs; the
determipation of those seems to be a difficult problem in general. Bust
even the existence of extremal graphs with (10) is trivial only in the
case of n=0mod(141); then for the graph consisting of n/(I-+1) distinct
complete (I+4-1)-gons the equality is attained in (10). ]

For I=1 it is trivial that equality can be attained in (10) in the case
of even g if and only if the graph consists of #/2 separate edges; when
n 18 odd, the only type of extremal graphs is given by the vertices

. Py,Py,..., P,
and edges

(1) (PiPa)y (PaPy), ooy (PucsPug); PaoaPuls); (PaoaP)-

Now let I=2, Then m(n,2)=n can obviously be attained if and only
if all verfices are of degree 2. We fix an extremal graph. Starting from
an edge P,P, we can choose a notation P,P,, P,P,,... which covers all
edges of our extremal graph. If P, ,P, is the first for which P,=P;,
1<{j<v, then owing to the above remark we have P,=P,, i. ¢. the edges
form a ‘“‘circle”. If we repeat this argument, the graph is split into
“circles” without common edges and vertices, and, conversely, every
such graph is evidently an exfremal graph. Hence in the case of I=1
and 1=2 we know all extremal graphs, and while the type of them is
uniquely determined for I=1, in the case of =2 there are many different
types of exfremal graphs. If »—1>>1>3, we have no complete view
upon all extremal graphs and we must be gatisfied with exhibiting
some extremal graphs to each (n,l)-couple. This can be done in various
ways; one, which is simpler than my original procf, is due to T, Varga

~ iom®
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and runs as follows. First, let # be even, n=2n;. Let the points

Py, Ps;...,P, be on the periphery of a circle and form the polygons

(PyP,Py...P, Py),

(P PsPy...Py), (PyPyPs...P,),
(PyPyP;...Py), (PyPsPs...P,), (P3P;P,...Py),
(PiPy, --.Py);, (PyPyyy-Py), ooy (Puyeye-e Poya),
(PyPpypiP1)y  (PoPuyePo)y ooy (PpPonPu),

where of course not all polygons have the same number of edges. The
union 8, of polygons of the »-th row form a graph of order n where no
two edges overlap and where the degree of each vertex is 2 for
1<r<n, and 1 for v=mn,. We may call 8i,...,8, _, graphs of the
first kind and 8, of the second kind. It is also evident that 8, and 8,
have no common edge if us». If I iz even, I=20', then 2I'=I<n—1,
V'<nf2, 1. e. superposing any I’ out of the graphs 8, of the first kind we
get extremal graphs for the couple (n,l). If 1==21""4-1, then taking §,,
and any 1" out of the S, graphs of the first kind we again get extremal
graphs for the couple (n,l). In both cages the degree of all vertices is I.
If n is 0dd, n=2n,--1, then we retain the S,-graphs of the first kind butb
replace the former graph of the second kind by the graph §’ of order n
congisting of n,--1 edges,

PPy PoPyy ooy PoniPons PamPunsns

where all vertices are of degree 1 except Py, which is of degree 2. The
fact that no two §, and §, have common edges if u*v, is no longer
true, since S8’ is contained in S;; but evidently, apart from this exception,
for ws£», 8, and 8, have no common edges. Thus in the superposition
we have to take care of graphs §, and §'. If 1 is even, I=21’, then the
superposition of any I’ graphs of the first kind yields extremal graphs.
Finally, if 1=21'+41, then 2V4+1<n—1=2n,,1<n,—1, i.e. the super-
position of any I out of the graphs

85,85, 0.05 8y

and & gives extremal graphs, and thus the proof is finished. The
degree of all vertices is again I if I is even; there is, however, a single
vertex of order I-+-1 if 7 is odd.

Now let us mention some unsolved problems of this theory. In the
group-theoretical investigations of G. Szekeres first occured an inte-
Testing restriction on a graph, namely that it P,,P,,P, are three arbi-
trary vertices, then at least one of the possible edges PP, PP, PP,
actually ocours in the graph. Originally Szekeres had countably infi-
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nite graphs in mind and deduced from this hypothesis the existence
of an infinite complete subgrapht®). Now this sort of restriction can also
be made upon & graph of finite order and the guestion arises how ‘‘large” a
complete subgraph is cerfainly contained in a graph of order n. It ecan
be shown that if s is an integer with s(s+1)/2<» then there is a complete
subgraph of order s, but the exact solution of the corresponding extro-
mal preblem is unknown (P113). Another sort of question arose from
an interesting remark of H. Rademacher). My theorem moentioned
above (2) asserts that in the case of m=2n',k==3 if thero are at least
241 edges in a graph of order 2n/, then it contains u complote sub-
graph of order 3 or, in short, a triangle and this cannot be asserted in
the case of only n”? edges. Now Rademacher assorts that having
(n'*4-1) edges wo have not only ome but »’ triangles at the same time.
Erdés has proved!?) for k<3 that given (n*+ k) edges in & graph of
order 2n' we have kn' triangles; as he has pointed out, this is false for
k==n but for 4<k<<n the question is open, as well as all similar quostions
concerning the number of complete subgraphs of higher order.

Appendix

We have discussed the relationship of Zarankiowiez’s Gheorem
and mine 5). 8ince the proof of my theorem has been given in a paper
written in Hungarian, to make it more accessible I reproduco it hore with
some simplifications.

We are going to prove the following theorem:

In the class A, (n) of graphs of order w, which have mo conwplele sub-
graphs of order k (3K k< n), the graph D(n,k) (defined in the seotion
after (2) and only that graph has the mamimwm nwmber of edges.

We denote this maximum number of edges in thoe class Ag(n) of
graphs by M, (n) and the number of edges in D(n,k) by di(n); then we
have to prove

M (n)=di(n),

and equality is attained owly for the graph D(n,k).
We have seen hefore that

(12) D(n,k)e A, (n).

11y See my paper ®) where a proof of this and also a generalisation can be found,
namely that the same conclusion follows when there iz an integer d with the anal-
ogous property, 1. e. at least two of any d vertices are connected in the graph by an
adge. Szekeres’'s condition corresponds to the case d=3.

1) Communication of P. Erdds, see ).

12) Bee 5).
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Next we shall prove the almost trivial inequality
(18) M, (ny> M, ,{n)

Let us consider a graph E of the class 4, ; (#) with M, _,(n) edges.
We add one more edge (this can be done owing to »<n) and investigate
the new E'-graph with M, ,(n)+1 edges. We assert that B belongs
to the class A,(n); by this (13) will be proved. Suppose — contrarily
to our agsertion — that B’ contains a complete E'’ subgraph of erder »
with the vertices Pi,...,P, There are two cases: cither the new edge
belongs to E’ or mot. Tho second casc is evidently impossible, sinco
it would imply E'e¢Ee A,  (n).

Consider the first case. We 'may suppose the new odge to be P P,.
Then the complete graph with the verticos P,, Py,..., P, would belong
to E, against its definition.

Now let ug prove the inequality

(r=3,4,...,n).

(14) My ()< (7” N 1) My (n— A1) (b—2) (= k-+1).

Consider an extremal graph B, of the class 4,(n), 7. e. one with
M, (n) edges. According to (13) B; bas a complete subgraph B, of order
(k—1); without loss of generality the vertices of B, are Py,FPs,...,Pp_}
we denote the set of the other vertices Py,...,Pn by C. We observe that
from every vertex of ¢ at most (k—2) edges can start to the vertices
of B,; since if, for instance, (k—1) edges started from P, towards B,
then the vertices P;,P,,...,Pp_1, P would form a complete subgraph
of order k in B,, contrarily to the definition of B,. Hence the number

‘of edges connceting the vertices of ¢ with those of B, is ab most

(k—2)(n—k+1).
k;1 ) and
the nmumber of those connecting the vertices of C is at most My (n—k-+1),
(14) is proved. .

Now we can turn to the proof of our theorem. We fix k=3 and
proceed by induction from n to m-+k—1. The possible values for n are
grouped as follows:

Since the number of edges connecting the vertices of B, is (

k oh—1  3k—2

9 —_—
(15) e I
oh_2  8k—3  4k—4

We have to prove our assertion for the n-values of the first column
and then for each fixed row. However, we shall first assume that the
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theorem is already proved for the first column of (15), deduce from
it the theorem for each row, and afterwards verify it for the n-values
of the firgt column.

Thus we consider our theorem for

(16) n=(k—1)t4-7 ‘ (1 <h—1),

r, and % fized, £=1,2,... We suppose that the theorem iy alveady pro-
~ved for i<T (T>1) and investigate the case of 1=141, i.e. for

(17) My =(k—1)(L+1)4-7;.

Then from (14), using also the induction hypothosis for M), (1, —Fk--1),
we geb :

(18)  My(n) <(7‘;1) o @ (o= 1) T oy, ) - (B —2) (0 — e+ 1).

We have to find out when equality can occur in (18). Owing to the
deduction of (18) and the induection hypothesis (also conceming the
unieity of the extremal graphs) an extremal graph B, has the following
three properties:

I. From each vertex of C eoxactly (k—2) edges start towards
those of B,. )
II. After a suitable numbering of the vertices of € the edges coun-
necting the vertices belonging to ¢ form the graph
D((h—1)T+4ry, k).

III. The complete graph B, belongs to B,.

Graphs of order », satisfying I, II, and IIT can be realised in mawy
different ways; but if we can show that the only one among them which
does not contain & complete subgraph of order % is the graph
D((k-1)(T+1)—|—¢1 ,k) then first part of induction will be finished.

In order to show this we consider the part ¢ of B;. According to II
and to the definition of graph D((k—l)T —l—r,,k) its vertices can be split
into (k—1)-classes, each of the first r, classes containing 71 vertices,
and each of the remaining (k—1~r)-clagses T vertices. Further, accor-
ding to I, to each vertex P, of C there corresponds a uniquely determined
vertex P of B, with which it is nof connected. P, will be called the
associate vertem, or shortly the associate of P,. Flrst we agsort that tho
agsociates of the vertices of ¢ belonging to different classes are distinet
from one another. For, if they wore not, there would be two vertices
of 0, say P, and Py, belonging to diffevent classes and still having
the same associate P;. But according to the definition of the associato
both P, and P, are connected with P,,P,,...,P,_.; P, and Py
belonging to different classes, they are connected according to the dofinition
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of D((k—l)T-{—rl,k), aad finally all pairs of the vertices of B, are con-
nected accordiag to III. Hence the complete graph with the % vertices
Py, Py, ., PpyPryy would be a subgraph of B; which is impossible. Hence
the associates of vertices belonging to different classes are actually dis- .
tiact from one another. This we shall quote in the sequel as the first
observation. Next wo assert that the associates of the vertices of ¢ be-
longing to the same class are identical. For if they were not, Py and Py,
would be vertices of the first class of O with different associates, P, and
P,. Lot PyrayPrigy---y Papoy Do a Yepresentative system of the remaining
(k—2) classes of C; their associates, according to the first observation,
are (hsmnct from each other ag well as from P, and P,;, As a mafter of
fact thiz would give & different associates whieh is impossible since B,
has only (k—1) vertices. Hence the associates of vertices belonging to
the same clags are identical indeed. This we shall guote as the second
observation. From those two observations it follows that to each class
of ¢ belongs a uniquely determined associate. Now we adjoin to each
class of C the common associate of its vertices; the new classes do now con-
tain all vertices of the extremal graph B;, there are again (k—1) new
classes, the first 7, classes containing each T'4-2 vertices, the remaining
(k—1—r;) classes each T+1 vertices. Two vertices of the same new
class are never connected again, according to the definition of the asso-
ciates. Hence, if we succeed in showing that the vertices of different
new classes are always connected, theu we shall have proved that the
extremal graph B, is identical with the graph D((k—1)(T-1)+#,%).

But it is easy to prove this last assertion. Let us consider two ver-
tices belonging to different new classes. If both vertices originally belonged
to ¢ then the assertion follows from II and the definition of the graph
D(k— 1)T+7~1,k) If both belonged to B, then they are obviously con-
nected since B, iy a complete subgraph of B,. Finally, if one vertex, say
P,, belonged to ¢ and the other ome, say Py, to B,, then — according
to the comstruction of .the mew classes — P, is not the associate of Py,
i.e. they are connected according to the definition of the associate.
Hence the first part of the induction is completed.

We have still to prove the theorem for T'=1, i.e. o invesbigate

My (b—1+4r) (1<r<h—1).

From (14) we get

Jf,,,(7c~1+o-])<(k;1)+Mk(n>+<k—2m

< (k;1)+ (g‘)+(k~2) -

(19)
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We have to investigate when the equality-sign can occur in (19).
That is the case if and only if

I ¢ is a complete subgraph of order 7,

IT each vertex of ¢ is connected with exactly (k—2) vertices of B,.

Hence ‘we can define the associate of a vertex of ¢ as before and,
analogously, it can be seen that the associates of different verticos of ¢
are distinet from one another. But of course not all vertices of B, are
now associates in general; with a suitable notation we can arrange that
P, should be the associate of Py, P, that of Pyy,..., P, that of Pp_yy ;5
if r,<k~—1, then Py q,...,Pe_; are not associates now. Now wo form (k—1)
classes, the first class consisting of P, and Py, the second of Py and
Py, ..., the r-th of Py, , and P,, and if r;<k—1, oach of tho remain-
ing (k—1—r;) classes consisting of the single vertices Pup,...,Pry
respectively. In order to identify this graph ¢ with D(k—21--ry,k) we
only have to show that two vertices of different classes are always
connected and two of the same class never. The second assertion follows
immediately from the construction of the classes and from the notion
of the agsociate. To see the first assertion it is sufficient to romark that,
aceording to the construction, all pairs of vertices are connoctod by an
edge except the ones in ¢ with their agsociates. Henco the proof iz com-
pleted.
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ON THE SEPARABILITY OF TOPOLOGICAL SPACES
A SUPPLEMENT TO 4 PAPER OF R. SIKORSKI
BY
L. DUBIKAJTIS (TORUN)

R. Sikorski considers in a paper?) six properties of a topological
space, marked as

(%) (B), (M), (M), (I), (D), (8).
It is known?) that the following implications are true:
. . (M)—(I)=(8)
() + (N
(B)>(M)—~(D)

The author’s intention igz to prove that these implications are the
only true logical connections between the properties (). Of course, in
order to prove this it suffices to show that for each conjunction

(*+*) {P1)(Ps) (Pg).. - (Py)

((Py) being one of the properties () or its negation), which is not false
owing to the implications (xx), there is a topological spaee for which
this eonjunetion is true.

Sikorski considers the following nine conjunctions:

@ DDy, (2) (My(M), (3) (M)(DY,

(4) (BY(M) (M), (8) (M)(M)y(D),  (6) (I)DY(8),

(1) (M)(M)(I) (D), (8) (B), 9 (8,
regarding them as all tho cases not contradictory o ().

The last rvemark is not true. A conjunction not contradictory fo
(#%) wag omitted by Sikorski.

Let B,M,M,I,D,8 be the classes of all topological spaces for
which the respective properties () are true. From the implications (sx)
there follow certain inclusions between the classes B,...,S.

Congider the following diagram where the largest square represents
the class of all topological spaces, and the remaining squares represent
the classes B,...,8.

1) R. Sikorski, On the separability of topological spaces, Colloguium Mathe-
maticum 1 (1948), p. 279-284.

%) See E. Marczewski, Séparabilité et multiplication cartésienne des espaces topo-
logigues, Fundamenta Mathematicae 34 (1947), p. 127-143. .
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