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C O MM UNTICATTIONS

LENGTH, SHAPE AND AREA
BY ’

H. STEINHATUS (WROCLAW)

This paper is an invitation for the reader to solve the problems of
pure and applied geometry involved in its approach o the notion of
length and shape rather than an attempt of the author to answer the
questions by himself.

1. Historical background. P. 8. Laplace [9] suggested as early
as 1812 that probabilistic methods should be applied in moasuring lengths.
This challenge was answered in 1868 by M. Orofton who defined the
measures of gets of straight lines in a plane. Crofton’s discoveries [4]
met only in part with the appreciation they deserved; his methods were
applied to questions belonging to geometrical probabilities; E. Czuber
[8] devotes a book to them. R. Deltheil [7] published in 1926 & mono-
graphy in Borels collection; his ‘“Probabilités géométriques” are based on
the work of Blie Cartan on the principle of duality and the point of view
of differential geometry is maintained throughout the whole work —
in this chain no author is thoroughly conscious of his debt towards his
immediate predecessor. A great part of these investigations belongs to
the Integral Caleulus as is shown by the title of Orofton’s first paper:
“_.. the methods used being also extended to the proof of cerfain new
theorems in the Infegral Caleulus”. W. Blaschke [2] and hig collabo-
rators have derived many new results from Crofton’s basic idea. In Bla-
schke's “Integralgeometrie” we find the names of H. Lebesgue and
J. Favard (1932) as the first to propose the definition of the length
of an arc on Crofton’s principle — a short pamphlet [12] to the same
effect published by the author of this Note in 1930 seems to have
escaped general notice.

2, Mathematical background. To formulate Crofton’s main result
let us roughly state, that having extended the notion of measure on sety
of straight lines in a plane, we can speak of the probability of a line
cutting an are A in 0,1,2,... points, the probabilities in question being
proportional to the measures of the sets of lines defined respectively by
the condition of their cutting 4 in 0,1,2... points. Speaking the language
of the theory of random variables we can designate by x the number
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of intersections of a random line X with A and by E(x) the expected
value of z : Crofton’s result consists in the equality

(1) oB(x)=length of A,
¢ being an absolute constant.

In order to formulate (1) exactly let us call II the plane to which all
our considerations will be restricted. Let O be a fixed point and 0Q
a fixed direction in 77. Given any angle ¢ (0<{d<x) and any real number
P, we can find a direction OT defined by <r@QOT =+ and the point P on
OT g0 ay to have OP=p. We draw through P a straight line L perpen-
dicular to OT. Thus we have established a one-one corregpondence be-
tween the points (&,p) of the strip §=<0<P < n) of the (¥,p)-plane and
the straight lines L of I7. We can now define the meagure |Z| of any set
Z of lines L by setiting

(2) |Z|=plane measure of Z*,

where Z is the image of Z in §. This definition, which iy a modern
formulation of Crofton’s basic comecept, attributes a finite measure |Z|
to any set Z of lines I whose image Z* has a finite plane measure in
Lebesgue’s sense.

Let us now consider an arc 4 in I7 and let us eall 4 (k=1,2,...)
the set of lines I cutting 4 exactly in % points. Crofton’s theorem can
be written as follows:

(3) length of A= % DAy
k=1

To derive (1) from (3) we only have to restrict the plane I to the circle
of radius 1 and eentre 0, and to assume that the are 4 lies in this domain;
the constant ¢ becomes then equal to s The restriction is obviously
not essential and is needed here only to facilitate the tranglation of (3)
into the language of probabilities.

Let us call L(#,p) the image L in IT of the point (¢,p) in 8. The
number of interseetions of L(#,p) with an are A in IT is a function a(9,p)
of two variables. The formula (3) can now be brought inte the form

N 1 ® n
(4) length of A=5_£ Ofa(ﬂ,p)dﬁdp,

the double, integral being meant in Lebesgue’s sense.
The formula (4), however, is not the first to express length by a dou-

ble integral: we find as early as 1832 in the works of Oauchy [3] the
formula

1

(8) [Var+ g}Wdt:% [ [ |a() cosd + 4 (2) sin g at,

0 [
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for convex curves z=ua(t), y=y(t) (0<i<1). It is not difficult to verify
that in both formulae, (4) and (5), the double integral gives the mean
length of the projections of the curve in all directions. In the light of
this remark formula (4), which is a modern transeription of Crofton’s
theorem, appears as independent from probability considerations.

3. Proofs and generality. To verify (1) we start with the special
case of A being a segment of a straight line; the proof in this case is
trivial. The next step deals with an are 4 composed of a finite number
of straight segments Cy,0C,,...,C,. If 2 is the number of intersections
of a random line X with 4, and #; (j=1,2,...,1#) the number of inter-
sections of X with C;, then we have

& =,2 &y
J=1
and, by a theorem on random variables,
n n
cE(v)=10) B(w;)=) length of C;= length of 4.
i=1 i=1

The third and last step consists in approaching a given are A by a broken
line composed of consecutive chords C,,0,,...,C,; a passage to the limit
for n—> oo leads eventually to (1). ) :

For brevity’s sake let us subsequently call ar¢ a one-one confinu-
ous image of a finite straight segment, and a curve & one-one continuous
image of a circle and let us call an arc or curve reciifiable if it hag a fi-
nite length in Jordan’s sense. Let us call a non-negative function a(4,p)
integrable in the strip § if it is finite in all points of 8, except a set of
plane L-measure zero at most, and if it becomes integrable in Lebesgue’s
sense over §, after changing its infinite values to finite ones — we shall
assume that the double integral in (4) is computed in this manner when-
ever we speak of its value. These conventions enable us to state the
following theorem:

(T) For any arc A the integrability of a(d,p) in 8 is & necessary
and sufficient condition for its being rectifiable, and for any reclifiable
arc A formula (4) holds, tts left term being read as Jordan’s length.

The proof we have outlined for (1) contains already all the cem-
ponents of a.proof of (T); the task has been done by W. Maack and
published in Blaschke’s book [2].

It i8 a natural guestion whether the double integral in (4) must
necessarily be a Lebesgue-integral. The generality of Lebesgue-integra-
tion has two reasons:

© 19 it can be applied to unbounded functions, or at least to some
of them,

20 it can be applied to very discontinuous functions.
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It could be supposed that it is only the first property which
accounts for the necessity of L-integration in (4) and in (T): there
are rectifiable arcs A for which the number a(L) of intersections of A
with L is an unbounded function of L. Thus one is led to the question
if the Riemann integral would be sufficient for ares 4 for which o(L)
iz bounded, a(L)<6 for instance. H. Fast and A. Gtz [8] have answe-
Ted this question negatively by constructing an arc A cutting no straight
line in more than 6 points and such that the function a(d,p) is dis-
continunous in a set of positive planme measure. This example shows
that it is impossible to replace the integral in (4) by an R-integral, even
by changing the values of a(#,p) in a set of vanighing measure.

Banach’s theorem. 8. Banach [1] has proved that the existence
of two simple integrals

o

Q) [ a(di,p)dp

—00

(i=1,2; 0 <By<im)

is a sufficient condition for A to be rectifiable. Banach’s condition
implies that a(9;,p) (¢=1 or 2) is finite except for a set of p-values of
linear measure 0. Banach’s theorem and (T) show that functions a(d,7p),
measurable in S and fulfilling Banach’s condition must be integrable
in § if they ave to correspond to any arc at all. The following question
arises (P106): if the integrals

Ed

) Jow,pyas,  [a(s,—p)an
0 ]

are finite for p=p,>0, is the double integral
(8) [ Ja(#,p)dddp
7y 9
necessarily finite, supposing a(#,p) corresponds to an arc A?

4. Definition of length. Dismissing the condition of 4 being an are

we can define the length of any plane set 4 by the formula (4) in all ca-.

ses in which the double infegral ig finite.
‘ The advantages of this definition are obvious: length .appears here
a8 an infegral and becomes independent of the parametric representation
of A, of the notion of a tangent or derivative and of the approxima-
tien of A by inseribed polygons. Our definition covers more than rectifiable
ares: & finite or an enumerable set of such ares gets a length in the new
senge if the sum of lengths of its components is finite. The field of appli-
cability of our definition, however, i3, as shown by §. Sherman [11],
larger than the domain covered by the preceding statement,
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The area of a surface can be defined in an analogous manner by
a fourfold integral: the integrand gives the mumber of intersections of
the surface with a variable straight line. This definition puts the paradox
of H. A. Sehwarz in a mnew light: the reason why the triangulation
of a surface (of a cylinder for instance) fails in certain cases to furnigh
an approximation to the area is the existence of straight lines cutting
the approximating triangles in more points than they cub the surface
itself — the paradox disappears when such approximating polyhedra
are excluded.

The only drawback to our definition of length is that it does net
show immediately the length to be am invariant of rigid displacements;
the proof of invariance is, however, very simple. To make our definition
perfect we should consider a sphere rather than a plane.

5. Length and area on the sphere. Instead of the plane IT let
us consider a sphere K of radius nuity. The great circles I on K will be
called lines. Any pair of antipodes on K will be called a point. For every
line I on K we can find as its image the point P defined as the pair of
poles coresponding to the equator L. Thus we have established a one-one
correspondence P=f(L),L=f"1(P), between the lines L and the points P
on K. We define the measure |Z| of any set Z of lines I as the spherical
Lebesgne-measure of the point-set Z*—=f(Z), presuming the measura-
bility of Z*. Tf A is an are on K and 4, the set of lines L cutting 4 in %
points, Crofton’s’ theorem can be written in the form (3), 25 in the case
of the plane. However, we have to remember that the arc 4 is composed
of points in the new sense adopted here — in ordinary terms it represents
two antipodal arcs 4’, A", If these arcs have ordinary points in common,
A is not an arc in the new language because it cuts itself. When speak-
ing of the length of 4, we mean the sum of the lengths of A’ and 47,
each of them being computed in the ordinary way, ¢.e. after Jordan’s
definition. The same remark is to be applied to the measuring of Z*.

Calling a(P) the mumber of intersections of L=f1(P) with 4, we
get the formula

1
) length of A=5Lfa(P)dK,

the domain of integration being the sphere K and 4K being the differ-
ential of area. (9) can be regarded as a definition of length for spherical
ards or, more generally, for sets of points on a sphere. This length does
not change when the are (or set) is subjected to rigid displacements on
K: its invariance results trivially from the invariance of the measures
Ay,.any rigid displacement being a rotation of K into itself; we have
only to admibt that such rotations do not alter the spherical measures
of point-sets.
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Duality. The one-one correspondence between points and lines
on K reveals a dual reciprocity of the concepts of length and area, which
could hardly be discovered without spherical geometry. Let O be a con-
vex Jordan curve on K; convexity meang here that no I cuts ¢ in more
than two points, and two ordinary antipodal Jordan curves ¢’,0" on I
with no points in common are called a Jordan cuwrve on X. Calling ¢,
the set of lines I cutting ¢ exactly in % poinis we obviously have |0, =0
for k2, and formula (3) gives :

(10) length of ¢ = [0,].

Now, the right-hand term in (10) is equal to the spherical measure
of the point-set f(C,). This open set is Limited by the points of F0D);
the set f(Cy) is a convex Jordan curve on K and may be called simply
f(0) — this-notation is compatible with the previous regtriction of f to
lines and sets of lines. D=f(C) is a eonvex Jordan curve composed of
two ordinary antipodal curves 0’ and O”, and the area of the annular
region befween O’ and (¢ is the spherical measure of f(¢,) and thus
equal to the right-hand term of (10). This enables us to write

{11) (D=f(C)).

To explain the geometrical meaning of (11) we have only to realize
that the symbol D=f(C) signifies that the curve D is described by the
poles of a mobile great circle touching ¢ during its movement.

Let us state that the transformation D=f(0) is an involutiop,
which means that D=f(C) implies O=7(D). To verify this statement
let us call I the mobile great circle touching ¢; the infinitesimal ares
common to ¢ and L may be ¢’ and ¢”, and I may be the diameter
of L connecting ¢’ with ¢’. The instantaneous movement of I iy a rota-
tion about I; the axis J, connecting the two poles of L) describey du-
ring its movement two infinitesimal ares, parallel to ¢’ and ¢’y these
ares lie on D and may be called d' and d”. The parallelity of ¢,¢",
@',d" and the orthogonality of I and J imply that the great circle M
touching D along 4’ and d’’ has I ag the axis connecting ity two poles;
it obviously hag J as the ingtantaneous axis of rotation when it mMoVes
in such a way as to remain tangent to D. It follows that the poles
of M describe ¢ during such movement, which fact _is gymbolized by
0=f(D). The involutory character of the transformation { having thus
been established, we immediately get from (11) the formula

(12)

length of € = area enclosed by D

length of D = area enclosed by C.

‘Thus we have defined an involution between annular regions on K
limited by pairs of antipodal convex Jordan curves, so a8 to have for
any two such mutually correspondent regions R, R, the dual relation

iom”®
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length of boundary of R, = area of Z,,

(13) length of boundary of R, = area of B;.

The involution is defined above: the poles of the great circles, touching
the boundary of B, (R,), describe the boundary od E, (B,). L. A. Sa,.n-
talé [10] seems to have been the first who discovered the duality

in question.

6. Practical computation of lengths. To measure the lemgth of a
river or a highway traced on a mayp, in conformity w1th formula (4),
we employ a transparent sheet with a family of equidistant parfmllels
L; (i=...,—2,—1,0,1,2,...). The arc 4 o be measured ojuts L; in @
points, and s,=Y'a; is the number of all intersections. E[.‘urnmg t‘he sheet
through an angle akjm (k=0,1,...,m—1) we get s intersections and
the grand total is

m—1
N= Z 8.
k=0
Calling d the distance IL;L;,;, we get the expression
(14) Na=/|2m

as an approximation of the length of A. The accuracy [13, 14] depel}ds
on d and m: the expression (14) tends to the length of A for d—0,
m—>o0o — we do not take into account the example mentioned in §3.
However, the question, whether in this case the convergence is a]m.ost
gure in the stochastic sense, remainsg open (P107). In most practlt?a,l
a,i)p]ications d=2mm and m=6 give a sufficient accuracy. The merits
of this technique appear clearly when 4 is a set of curves. Th? problem
of the determination of the average declivity of a distriet fq:rmshes such
an example: we have to multiply the total length of the 1soh?71?ses by
the vertical distance of two neighbouring isohypses and to divide the
product by the area of the district. It is. much eagier %o cou.nt the
intersections of the straight lines of the tramsparent sheet with 1':he
family of isohypses, following the straight lines, than to drive a mea,su.m'ng
wheel along the sinuosities of the curves or to pace along the.m with
a compass; the results obtained by these familiar method_s are more
liable to personal and instrumental errors than those obtained in the
same time by our method. .
Length of objeets. A river on a map 1:100000 has in most
cases a visible breadth. The geographer is interested in the length of the
Yiver, not in the length of its bapks. Thus arises the concept of 1.:]10
length of plane objects. The method described above 'solves the“qufastlc:{l
in a natural way: we have to count as one intersection every bndge R
i.e. every segment of a straight Line L; connecting one bank of the river
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with the opposite bank and only such segments; such procedure is equi-
valent to the computation of the length of the shortest submerged rope
connecting the source with the mouth of the iver.

?. The paradox of lepgth. Length is a discontinuous functional.
This means in plain words that we can trace in the vicinity of any recti-
fiable ar¢c 4 another arc A’ whose length exceeds an arbitrary, pre-
vieusly prescribed limit, or even is infinite. This fact is something more
than a mathematical curiosity: it has practical congequences. When
measuring the left bank of the Vistula on a school map of Poland, we
get @ length which i3 appreciably smaller than that read on a map
1:200000. When comparing the length of the present frontiers of Poland
with their length in the year 963 we cannot use maps drawn with the
same aceuracy for both cases because of the lack of information about
the precise course of our frontiers a thousand years ago. The same diffi-
culty arises when measuring such objects as contours of leaves or peri-
meters of plane sections of trees: the vesult depends appreciably on the
precision of the instruments employed.

This paradox of length is not to be confused with the fact that
every measurement of physical quantities, such as areas, volumes, mas-
ses or forces, is liable to errors: when measuring an area we can fit the
accuracy of ingstruments o the postulate of an error of lesy than 19/4;
we can, if needed, increase this accuracy to meet the demand of rvedu-
cing the error beneath 1/3°/,. In most cages, it is impossible to apply

such procedure to lengths. The left bank of the Vistula, when measured

with increased precision would furnish lengths ten, hundred and even
thousand times as great as the length read off the school map. A state-
ment nearly adequate to reality would be to call most ares encountered
in nature not rectifiable. This statement is contrary to the belief that
not rectifiable ares are an inventions of mathematicians and that natural
arcs are rectifiable: it is the opposite that is true.

Our method permits us to master the paradox of length in most
practical problems: for this purpose we only have to stop the summa-
tion of series (3) at the m-th term and to write

ki

' 1
(18) length of order m of A== 3"kl dy
< k=1

ag a definition of the “length of order m”. Likewise, we could modify
formula (4), writing the length of order m as its left-hand term and
replacing the function «(#,p) in the right-hand term by o™ (3,p),
where o™ =a for a{m and a™=m for a>>m. The computation of the
length of order m by means of the transparent sheet deseribed in § 6is
perfectly simple: we have to count the intersections of every line I;

icm
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with A; if their number a; exceedes m we have to replace a; by m; prac-
tically this means that we should stop counting when m iz reached;
this rule shortens the procedure of § 6.

This device enables us to compare the lengths of rivers or frontiers
drawn with different accuracies: for instance the frontier of Poland
in the year 963 is outlined in a general manner so as to have no more
than 8 points in common with any straight line; the length we can obtain
from such a map is exactly the length of order 8, whatever instruments
we use; to compare this length with the length of the actual frontiers
weo must compute the length of order 8 of those fromtiers, discarding in
this way all those details of the modern map which would disappear if
the cartographer had such gcarce information about the frontiers of our
time as he has about the oufline they had in 10-th century [15,6].

Relative length. The idea presented above leads to the compa-
rison of lengths of non-rectifiable arves. Let us write |4{, for the length
of the order m of A; |Al, is always finite but lim [4[, is infinite if A

m-—>o00

is not rectifiable. It may h@pen that the arcs 4 and B are both not
rectifiable, but the limit

(16) lim | A, [ |Blpn=c

N =00

ig a finite number ¢. We may then write 14|/|B|=e¢, which means that
A is ¢ times as long as B. The device of a transgparent sheet carrying
parallel lines makes it possible to compute ¢ with any desired accuracy
in such practical cases as the comparison of the respective lengths of
both banks of the Vistula. . :

8. The distance. Let A and B be two ares (or Jordan curves) and
let us designate by b(#,p) the funetion which corresponds to B in the
same way as a(?,p) corresponds to 4 in the text of § 2. We set

an (4, 8= [ [ 10,1~ 009, p)1apap

a8 a definition of the distance (4,B) of the arcs 4,B. If both arey are
rectifiable, (4,B) is finite. In this case we have (4,B)=(B,4). We
obviously have (4,.4)=0. The triangular property (4,B)--(B,0)=(4,0)
obviously holds for rectifiable ares. If A remains fixed and B is displaced
rigidly to infinity, the distance (4,B) of the rectifiable arcs A, B becomes
equal to the sum of their respective lengths. To understand preperly
the notion od distance as defined here weé must appeal to the theorem
stating that (4,B)=0 implies the identity of 4 amnd B. A simplified
version of that theorem is this (P108): If 4 and B are ares (or Jordan
curves), A(L) designates the number of intersections of A with L, and
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B(L) the number of intersecions of B with I, then the identity of the
functions A(L)=B(L) for L in IT implies the identity 4=2DB. We believe
without proof this theorem to be truel).

The-digtance defined above summarizes in one number all differen-
ces between two arcs. It can be computed by means of the transparent
sheet deseribed in §$ 6; we only have to count the intersections along
I, with the ares 4 and B: if the regpective numbers are a; and b;; we
form the sum s,=) [o;— b;| and analogous sums s, and finally we em-

ploy formula (14). This procedure enables us to answer such questions
of geography as how to determine numerically the amount of change
in the course of a river.

(4,B) has the dimension of length. To make of it a pure number
we have to divide it by the sum |A|4-|B| of the respective lengths of
A and B. In this way we get an index changing from 0 %o 1; the last
value is assumed in the case of one of both arcs receding to infinity
or shriwking to a point.

In practical problems it may be necessary to avoid the paradox
of length, which affects the notion of distance as well as the notion of
length itself. This is done by replacing the numbers a; by m whenever
they exceed m, and modifying b; in the same manner — the result is
a distance (4,B) of the order m, which can easily be computed by means
of the transparent sheet described above.

Aproximation. If ¥ is any family of curves and € a given curve,
we can choose a curve D, belonging to F and minimizing the distance
(C,D) in F. If, for instance, F' is the family of all circles, this procedure
leads to the best approximation of O by a circle. The minimum distance
(C,Dy), or rather the quantity I— (C,.Dy)/(|C[+|D,), gives a measure for
the “roundness’’ of C; the centre of the circle D, can be considered as
the centre of ¢ in the.case of a unigue solution, and the radius of D,
may be called the radins of C.

Let any curve for which m is the maximum number of intersections
with & straight line be called a curve of the order m. Taking for F the
family of all curves of order <{m we may define the best approximation
of 0 by a curve of order <(m. Thig is an approach to the notion of gen-
eralization employed in cartography and in other practical questions.

Symmetry. If ¢ is a given curve, we may define as ity agymmetry

relatively to a straight line M the digtance (C,0’) where ¢’ designatios
the reflection of ¢ in M. The line M, which -minimizes the asymmetry
(C,0"), may be cailed the awxis of 'symmetry of U, and the difference

1) (Added in proof) It has been proved meanwhile by H. Fast; his result
has been presented. to the Wroclaw Section of the Polish Mathematical Society the
30 October 1953. -
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1—min(C,C")/2]C) — the index of symmetry of €. We do not insist
upon further details: the concepts of approximation and symmaetry are
not yet ready for application and are published here to give the reader
an opportunity for improvements. The notion of. central symmetry

- can be treated along the game lines. The same applies to the notion-of

the excentricity of a curve: if @ is any point and C(a) is obtained from

0 by turning it round @ through the angle «, we define the excentncmy
of ¢ as the min max(O C(a)).
Q

9. The components of distance. Let {B} be the set of all ares con-
gruent to B and let B, be defined by

(18) (4,B,)=min (4,B)=
Be{BY

We set

(19) (4,B)=(4,B)+d=c¢+d.

d is the component of (4,B) due to the displacement A--B, whereas
¢=(4,B,) is the change of gshape which is necessary to change A into B.
The change of shape is a new sort of distance — we may call it ((4,B)).
‘We have ((A,B)) =0 if and only if 4 is congruent to B. We have
((4,B)) = ((B,4)). To prove the triangulaxr property of the chauge of
shape let us write

((AﬁB))“_“(A‘yBD): ((B,O))=(B,00).
Let us connect rigidly B with €, and digplace both 5o ag to bring B into
the position B,; C, becomes 0, and we get

(20) ((4,B))+((B,0))=(4,By) +(B,0)=(4,Bo)+(B,,C1)>(4,0y).
Now, ((4,0)) is the minimum of (4,X) for all X congruent to C; as Cy
is congruent to ¢, and C, to C, we have (4,C,)=((4,0)); comparing this
with (20), we get

(4, B) = (B, 0)=((4,0)), a.e.d.

‘We can spht up the displacement into two components, the trans-
lational and the rotational one. Let {B} be the set of all ares obbained
from B by translations and let B, be defined by

(1) - (4,B)=min(4,B) =
Be{BY
we obviously have m>=¢ and thus from (19)

(4,B)=(4,B)+d=mt,
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where d'<(d. Thus we can write
(22) d=d'+7,

and call 4 the translational component and 7 the rotational component
of the displacement d. As to the change of shape we can split it up into
the component due o the- dilatation-concentration and the pure dis-
tortion. We shall not insist here on a detailed study of these questions.

10. Convergence, Let {0,,} be a sequence of rectifiable arcs. The
following modes of convergence deserve our attention:
1° lim eard 0, =C,,, which means that for almost all lines L tho
" eardinal ;;;ber of IO, tends to the cardinal number of L0.;
. 2* lim card 0, exists, which means that for almost all lines L the

00

cardinal number of LC, tends to & limit;
30 1im 0, == 0, which means im(C,,0,)=0;

N-r00 N> 00
4° limC, exists, which means lim (C,,,C,)=0.
Wer00 ";;}-—»oo

It is evident that 1° implies 2° and 3° implies 4. We do not know if 2
implies 1° and 4° implies 3°; if it ‘were true the question of the equivalence
of 10,29,3% and 4° would still remain open (P109). It is obvious that 3°
implies
(23) ~ lim length ), =length 0y

N N+
but we do not know if 1° implies (23) (P110). We could define other
modes of convergence based on the convergence of the sets 0, L to lim-
iting sets, which means that for large n every point of C,L has a small
distance from the limiting get. In this manmner we should get six modes
of convergence 5°-10° but we have mnot succeeded in establishing impli-
cations between the modes 1°-4° and any of the six modes spoken of?).

There are many questions left which deserve consideration. For
instance: replacing, in the integral (9), a(P) by a*(P), we could define
the “mean square length of 4’ and derive from it the “variance of A”.
We could algo replace la—b| in (17) by (a—b). We confine onrgelves
here to these vague indications and confess that we have not surmounted
the difficulties encountered on the way to these and many other pro-
blems.

%) H. Fast has established meanwhile the equivalence of 3° with (23) plus to-
pological convergence Op->Uy,. He has also found a simple example against 4°=)3°
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