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par exemple

(4, positif et £1,.

f= {tsin wlog ¢ }

log 2y
8i (2), Péquation

(3) a'=f

n’est pas résoluble dans Q. En effet, supposons, au contraire, qu’il existe

un opérateur x satisfaisant & cette équation. Cet opérateur est réel

ou purement imaginaire, c’est-h-dire il est de la forme f/g ou bien

de la forme i f/g, olt les fonctions f et g (appartenant & ) sont réelles.
On a

T,ﬂ(m’)=(1"om)’=1’kf=—z§ =—ka’
d’ot
T 8= iAy@.
Or, ce n’est pas possible, car on voit aussitét que Lopérateur T,z est

réel ou imaginaire, suivant que » est réel on imaginaire.
Cette contradiction prouve que I'équation (3) n’est pas résoluble.

(Begu par la Rédaction le 27. 12. 1953)
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Singular integrals and periodic functions
by
A.P. CALDERON (Columbus, Ohio) and A. ZYGMUND *) (Chicago, Illinois)

1. The purpose of this note is to extend to periodic functions some
of the results about singular integrals known for the non-periodic case.
‘We shall be more specific later and begin by recalling basic facts.

Let o=(&,..., &), ¥y={(n1,---s7z),... denote points in the k-dimen-
sional Buclidean space E*. By z we shall also denote the vector joining
the origin 0=(0,...,0) with the point z. The length of the vector z will
be denoted by |#]. If #540, by 2’ we shall mean the projection of » onto
the unit sphere X having O for centre. Thus

&
3’ = m s o' =1.
‘We shall consider kernels K (») of the form
Q) Q)

(1.1) K(z)= ]a:’k - (7z]$|),

‘where 2 is a scalar (real or complex) function defined on X and satisfying
the following conditions:

1% Q(x') is continuous on X and its modulus of continuity w(8) sat-
isfies the Dini condition

1
é
fﬂj% dd <ooj
]

29 The integral of Q(a') extended over X' is zero.

Condition 1° is certainly satisfied if the function @ satisfies a Lip-
schitz condition of positive order. It could be considerably relaxed in
very important special cases, but for the problems discussed in this paper
it is the most suitable one. On the other hand, condition 2° is absolutely
essential, as explained in [2]%).

*) Fellow of the John Simon Guggenheim Foundation. .
1) Numbers in brackets refer to the bibliography at the end of the paper.
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We shall denote by K, (@), and call it the truncated kernel, the expres-
sion defined by the equations

K(x) for |z>e
0 elsewhere.

&0~

Let f(z)eL”, p>=1. The convolution
f. (@)= [ Efo—y)dy= [ K, (4)f (z—y)dy
B 2

exists as an absolutely convergent integral for all #. We write here dy
for dny...dny. The limit of f,(#) as ¢—0, if il exists, will be denoted
by f(x) and called the Hilbert transform, associated with the kernel K,
of f(z). The classical Hilbert transform corresponds, except for a.nume-
rical constant, to k=1 and K(x)=1[s.

We state without proof & number of kmown results concerning these
transforms2).

THEOREM A. The function §(#) ewists almost. everywhere if feLP,
p>=1. More generally, if F is a totally additive function of set in EF, the
limat

(1.1a) lim [K,(z—y)F(dy)

e—>0 Bk
exists almost everywhere.
TaEOREM B. If f() belongs to LP, 1< p < oo, so does f (z). Moreover,

1.2) N < 4plfllp-

Here and hereafter constants like A, are positive and depend not
only on the parameters shown explicitly but also on the kernel K (4. e.
on the funetion Q). By 4 (or B,(,...) we shall denote constants depending
at most on the kernel K, and we may use identical notation for different
constants. By [|f],, we mean the norm

([ 11 dme.
E*

Theorem B breaks down for p==1 and p=coc. If feL, the function §
need not be integrable, even locally. Nor does the houndedness of f imply
that of § (even if we assume the existence of §, which is not guaranteed
here by Theorem A). For these extreme cases we have the following res-
ults:

?) Theorems A-F, as well as part 1° of Theorem G, are proved in [2]. Cases
2° and 3° of Theorem G are established by Mr Cotlar [3].
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TarorEM C. If [fl(1+log*|f]) is integrable over EF, .then f is inte-
grable over every set S of finite measure and

1.3) gflf]M<Asi£lfl(1+10g+lf|)d$+35-

TuroreEM D. If feI, then [f|* is integrable over every set S of finite
measure if 0 <a<<1l. Moreover,

- 4 1—a @
(1.4) S'].[fi do <7 18] (E{Ifldw)-

TeEOREM E. If feL, then the measure of the set B, in which we
have |f(#)] >y > 0, satisfies the inequality

4
(1.5) 12 <7llﬂh-

~ TarorEM F. Suppose that |f(z)|<<1 for all », and let
(1.6) g(w)=sliniwfl{li;(m— v)—Ei(@—y)} @) dy.
Then, for any bounded set S,
(1.7) b[eXP Ag(a)lde<< 4s,

provided 0< A Ay= 24(S,K). If f is, in addition, continuous, the last in-
tegral is finite for every A>0.
THEOREM G. Qiven any f, let
®(z)=sup | [ K (2—1y)f(y)dy|.
>0 E*

Then in the three cases

(i) feL?, p>1;
(i) Ifi(1+1og*|f) e L;
(iii) feL,

the inequalities (1.2), (1.3), (1.4) hold, respectively, with | replaced by .

2. Let us now consider a system e,,e,,...,6;, of independent vectors
in E* and let @y=0,,,%,,... be the sequence of all lattice points gener-
ated by these vectors:
(2.1) B, =My €1+ M €y .. .+ My By,
where m,,m,,...,m; are arbitrary integers. If we define a function K* (=)
by the formula

o0

(2.2) E*(@)=EK(@)+ 3 {E(@—2,)—E(—a,)},

=1
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the series on the right converges absolutely and uniformly over any boun-
ded set provided we discard the first few terms. (Of course we can also
replace the terms in curly brackets by K(z-az,)— K(s,)). For if zed
and » is large enough, then
arean(i)
. — W
TlaF )

(see [2], p. 98), and condition 1% imposed on the kernel K implies that
the terms on the right here form a convergent series.

It is also easy to see that the function K* has periods e;,ey,...,¢.
For let us assign to the kernel K'(z) the value 0 at the origin. We may

then write the series (2.2) in the form 3 {K(z—,)—K(—a,)}. Hence
y=0

(2.3) | K (p—m,)—K(—

E* (@) —E*(z+ ¢)= Z{K(m—w,)-*K(ﬁﬁ*ﬁ:)},

»=0

where #f=®,—e¢,. The last series converges ahsolutely. Let us fix the
values of #m,,...,m; and consider the sum of the terms with -variable
my. This sum is zero due to the cancellation of “adjoining” terms and
the fact that K (») tends to zero as |#| tends to infinity. Hence the sum
of the whole last series is zero. It follows that K*(#) has the period ey,
and so also periods e,,...,e;.

Of course, the passage from K () to K*(v) is a clasical one. If k=1,
6,=2r, K(x)=1/n, then

1 1
E*(2)= 5 cot— .

T k=2, K(z)= 1/ then K*(z) is the classical p function of Weierstrass,
ete.

Let us now suppose for the sake of simplicity that the vectors
€1,€3,...,6, are all mutually orthogonal and of length 1. We may assume
that they are situated on coordinate axes. Liet f(@)=f(&1,&,..., &) be
a function of period 1 in each & and integrable over every bounded
seb. We shall consider the convolution

(2.4) - I (w)=Rf}‘(y)K*(m——y)dymeK'(y)f(m—y)dq )
Wﬁere R is the “fundamental” cube
®) i<y (=1,2,...,%

and the integral is taken in the principal value sense. For such functions
f* we easily obtain results analogous to Theorems A-G.
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In what follows, f(#)=F(&,&,...,&) Will systematically denote
a function of period 1 in each variable (for simplicity, we shall use the
abbreviation “periodic function”), integrable over R. By M, [f] we shall
denote the norm

(f \f{? ).

TeROREM 1. The integral (2.4) exists for almost every value of x. The
same holds for the imtegral

(2.5) . RfK*(w—y)F(dy)

for amy totally additive funmction of set F.
THEOREM 2. If feIP, 1<p<<oo, then f* also belongs to L and

(2.6) M, I 1< A, T, 11
THEOREM 3. If |f|log™|f| is integrable over R, then
(2.7) Rflf*IdwéAﬂHfl log™ |fldz+B.

TEEOREM 4. If f is merely integrable over R, then for every 0<a<1

and every set SCR,
= J fas).

TEEOREM 5. If | is integrable over R, then the measure of the set H,
of points weR of which [f|>y>0, satisfies the inequality

(2.8) f lf"l“dm< 18—
8

A
(2.9) IE,,K—y-‘JJZI[f]-

TeroREM 6. If |f|<<1, then

(2.10) Jewiiflan<d,
provided i is small enough, 0 <<A<1, (E*). If f is also continuous, then
the last integral is finite for every A>0.
Given a function f, lef
()= sup lff(w 9 E; () dyl,
0<e<]/2
where K () is the function equal to K*(#) except in the e-neighbourhoods
of the lattice points @,, in which it is equal to zero.
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THROREM 7. According as

() fel?, p>1,
(if) [fl log¥|f|e L,
(iif) feL,

we have respectively the inequalities (2.6), (2.7), (2.8), with f* replaced by g.

3. These results can be easily obtained from Theorems A-G. For
let R; denote the cube

(Ry) &< (1=1,2,...,%),

and let f,(z) be the function equal to f(z) in R, and to zero elsewhere,
The difference K*—K being bounded in R, :

|E*(#)— K (z)]<B for wel,

and the function f(w-—y) being identical with filz—y) for # and y in R,
we see immediately that the second integral (2.4) converges for zeR if
and only if the integral

(8.1) RfK(y)fl(ﬁ——y)dy (meR)

does, and that the difference between these two integrals is numerically
less than

B[If(e—y)ldy=B [ |f(y) dy.
R R

On the other hand, if we replace R in (3.1) by E* we obtain the
funetion f;(z), and the érror committed will not exceed

Cmfnlh(w—y)ld?/<0éf h(y)ldy= CRf If(¥)ldy .

Collecting results we see that, for 2 in R, the integral f*(x) exists
if and only if f; (#) does, and that

(3.2) If* (@) — fu ()| < A, [1] (weR).

In particular, f*(x) exists almost everywhere in R. A gimilar argument
applies to the integral (2.5) and Theorem 1 is established.

Pagsing to Theorem 2 we observe that (3.2) leads to

which completes the proof,
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If [fllogt|fj is integrable, (3.2) and Theorem C, with S=R, give
[1F*1do< [ \ful do+ A, [f]
b ]
<A [Ifil 10g+lflldm+A+A9R1[ﬂ<Akf [fl log*|fldz+ B,
Ry

and (2.7) is established. . )
Passing to Theorem 4, let us integrate the inequality

I 1< Al A1,
which follows from (3.2), over S. We get
[17*1ds < [ 1fil da + 18] A* M [f]
§ §

< ]

}flldm)"+ISlA“‘m§‘[f]

A
4 - . . N
Sy s (Rfm(l.r) + 18] A 1< T 18] <[f]

sinee |8]<1. This gives (2.8).

Flor[ the proof of Theorem 5 we may suppose 'that 9325' [fl=1. ?et; lus
denote the constants 4 in (1.5) and (3.2) by" A’ and 1{1} respee n;hz;
Let us also temporarily assume that y/2>A: Fro.m (3.2) wefsee‘ hat
the set of points zeR at which =y is cpntamed in the seﬁto pc(::;l dj; :
at which |f|>9/2 and so, by Theorem E, has a measure not ex

-1
A (i y) [ ldo=d2xsy,
2 E*

This gives (2.9), with A=2%+'4’, provided g!;zA”. Increasgllg
the constant 4 so that A [y exceeds 1 for 0< 5<C 24" we shall ha.fve lel
inequality (2.9) trivially satisfied for such #’s. Thus (2.9) holds for a
POEmSZ;)I:;I(‘)se now that |f|<1. The inequality (3.2) shows 1,1.13.11 i —jllth
in R. It we denote by g;(z) the function (1.6) corresponding to f,, then
clearly |f,— gi|<<A4 in R. Hence, by (3.2),

[*(@)— (@) <4
Using this and (1.7) for =R, we obtain
[expa|fi(z)|do< [P dn< A for A< hy,
2

for zeR.

* .
which is (2.10). Similarly we obtain the result concerning continuous
functions f.
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The proof of Theorem 7 is analogous to the proofs of the preceding
results provided we use Theorem G and the inequality

(fe(@) — fi(@)| <A [],
analogous to (3.2) and established similarly.

Remarks. 1° The best possible constant 4, in (1.2) satisfies
inequalities

A

(3.3) Ap<—1}—l for 1<p<?, A,<Ap  for p>=2

Moreover, if A,

is the constant corresponding to the kernel K (-aé),
then :

for p’ S

A= 4, "

(I<p<oo)
(see [2]). It follows from the proof of Theorem 2 that the same results
hold for the constant 4, in (2.6).

That the constant A, in part (i) of Theorem G satisfies inequality
(3.3) is proved in [3]. Therefore this inequality also holds in part 1¢ of
Theorem 7.

2° Using the second inequality (3.3) we can deduce (2.10) from (2.6)
by a familiar argument. For, if {f|<1, then

feXPll]‘ ]dm(’)fcoshl[f |G =2 (1 +Z’ ,flf |2vdm)

(24 M

<a42 FEM [jrancay s SRR

=GR =

and the last series iz finite provided Ad<ce ™.

Since the second estimate (3.3) holds if we replace 7* by @ in (2.6),
it follows that also in (2.10) we can replace f* by .

3¢ Theorem D has an analogue for the functions (1.1a), with 17l
in (1.4) replaced by the total variation of F over E* (see [2]). A corresp-
onding result holds for the function (2.5).

4.. AV.Ve now pass to a different group of theorems. Let us consider
a periodic function f(o)=/f(£,&,...,&,) and its Fourier series
(4,‘1) f(m) '\;Zcpx,lla.m,ﬂx 62m'0q£;+...+ BEER) =2 Omezn'i(m,m),

‘where Am:(pl,.‘.,yk), and (m,z) is the sealar product u,&,4-..

A
of m and 2. He s
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If feL?, p>1, or if only |filog¥|f| ix integrable, then the periodic
function f*(#) is also integrable and we may consider its Fourier series

(4.2) 7 (@)~ Yy D

Our next problem will be f,o consider relations between the series
(4+.1) and (4.2). For k=1 and K(x)=1/, the series (4.2) is the conjugate
of (4.1), and in the general case we shall also call (£.2) the conjugate of
(4.1), corresponding to the kernel K.

We first compute the Fourier coefficients v, of K*(z),

(4.2a) fK* e~ m ) gy

where the integral is taken in the principal value sense. That these coeffi-
cients exist, is clear if we observe that in the neighbourhood of the or-
igin K*(z) differs from K(«) by a bounded funetion, that for |z! small

E(2)e "= K (2){1+ 0 (o))} = K (2)+ O(|z]~*+"),

and that the integral of K over R, in the principal value sense, exists
owing to condition 2° imposed on K.

Next, we show that for m=:(0,0,...,0) we have

(4.3) = JE ye T Bgy —Yim [ K, (y)e 0y,

e—0 EX
i. e. the Fourier coefficient of K* is equal to the corresponding Fourier
transform of K.

One remark is indispensable here. The function K,, bemg in L%
has by the theorem of Plancherel a Fourier transform, also in T Thm
transform is, however, defined almost everywhere only, while here we
insist on its existence at the lattice points m. We must therefore show that
under the conditions imposed on K the last integral in (4.3), defined as
(4.4) Iim [EK,(y)e ™ ™dy=1lm [ K(y)e ™™y,

o~>00 |Y|<e e e<ivi<e
exists for each m. This will follow, as we are going to show, from the existen-
ce — already established — of the y,,. We may assume that m(0,0,...,0),
since in the remaining case the limit (4.4) clearly exists and is zero.

Let R, be the cube with centre z, and congruent to R; thus R=R,.
Let I'(e) denote the sphere with centre at the origin and radius &, 0<<e<{1/2.

Jsing (2.2) we have
[ R e=itnigy
R-T&
(4.5) .
= [ K{ye ™= tmUgy -3 |

R-I(e) r=1R>I()

{E(y—a,)— K (— ) e 00y,

Studia Mathematica XIV 17


GUEST


258 A.P.Calderén and A. Zygmund

Owing to the convergence of the series of the right sides in (2.3)
we see that if in the last sum in (4.5) we replace the domain of integra-
tion R—I'(s) by R, we commit an error O(c). Suppose that in the new
geries we only retain terms with |z,| < o. The contribution of the omitted
terms tends to zero as g->oo, and the sum retained is

> [IE@y—a)—K(

0<|zpi<e R

__.'I?,,)}e-h—i(m,!l)dy: 2 fK(?I)ﬂ—Enf(y)r‘y)d;l/.

0<|@u|<e Ry

Observing that the measure of the union of the sets R, with |z,|<g,»+# 0,
differs from the measure of the sphere |y|<<p by 0(¢*"), and that K (y)
=0 (ly|™*) for |y|>oo, we can wrile (4.5) in the form

f K*(y)(f Qni(m.ﬂ)d?/+ (_’)(8)_{_02(1)Y

RI(e)

_zni(m,y)dy: !J‘ K(y)e‘
2<lyl<e

where o,(1) is a quantity tending to zero as g—oco. This formula not
only proves the existence of (4.4) but also the equations (4.3), provided
m+(0,0,...,0).

If m=(0,0,...,0), the preceding argument shows that

p=—1lim 3> K(-—

e—rco D<lwy|<o

@)=—1lm > K(z).

o> 0<iTyisCo
The latter quantity need not be zero and the formula (4.3) fails then.
However, y, is zero, for example in the case when the sum of the K(=,)
extended over the w, situated in the ecircle |#,|<Cp is zero. It is clearly
80 in the classical case n=1, K(x)=1/s. If k=2 and

&me g

E

K(z)= (p=argz, m==4+1,4+2,...),
we have y,= 0 if m is not divisible by 4. In particular, y,= 0 for K (s)=1/7".

Remarks. 1° An argument similar to the proof of (4.3) shows that
if the integral of f over R is zero, 4. e. if 6,=0, then

flo)= [ f)K(@—y)ay=ltm [lm [ K()f(o— )},
Fo3

e=0 Yoo esiy|<o

the inner limit existing for all # and the outer one if and only if the inte-
gral (2.4) converges. Also

fj y)dy=1m | im [ 1)K (@—y)a).

£>0 lp—oo e<Y|<o J
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2® We might slightly modify the definition of K* so that all the
previous results hold and (4.3) is also valid for m=(6,0,...,0). For if
we sef

I,=ff(fl/)d:ll,

+.>J{

the new kernel K* differs from the old one by a constant only and we
now have y,=0.

5. THEOREM 8. If f*(x) is integrable (in particular if fel?, p>1)
then the Fourier series (4.2) of f* has coefficients

K* (@)= (@+a,)—1},

(5.1) G:n: Cm Yms

where y, is given by (4.2a) or, for m#(0,0,...,0), by (4.3).
Given any trigonometric series Xe,, ¢ ™% we may call

Z’ CmVm o2 (m,2)

the conjugate of the former, corresponding to the kernel K* Thus the
result may be stated that if the conjugate function f* is integrable, the
Fourier series of f* is ‘the conjugate of the Fourier series of f.

This theorem is very well known in the one-dimensional case (see
[8], pp. 153, 163). It is obtained there either through complex methods
or by considering a certain definition of integral more general than that
of Lebesgne. While the first approach fails for general k, the second is
applicable straightforwardly.

Let f(@)=f(&,...,&) be measurable and periodic. Let us consider
any partition P of the cube R into a finite number of parallelpipedes
with edges parallel to the axes. These parallelpipeds will be denoted by
dy,4,,..., Ay and their measures by |4,],...,|dy]. Let o= (&, &,..., &)
he any point of A; and let t=(7y,7,,...,7%) be any vector with 0<C7; <1.
Let us consider the sum

N
(5.2) 21 Fla;+1)] 4y
=

It will be denoted by 8 or S(#), S[f], S{f,t);
on P and the points a;.

If § converges in measure to a limit 7 as the norm of the part-
ition P (i. e. the largest diameter of the A;) tends to 0, we shall say that
the function f(#) is integrable B over R and that

(B)gf(m)tlm=

of course it also depends

17*
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This is an immediate extension of the definition familiar in the case
k=1 (see [8], p- 151) and the same proof as there shows that, if f 4s nt-
egrable T over R it is also integrable B and both imegmls) ha've. the same val-
we. Therefore, Theorem 8 will be a corollary of the following result:

. TgEoREM 9. Suppose that f(z) is periodic and L integrable. Then the
fundtion {*(z), as well as the functions fx)e ™D gre B-integrable over
R, and the Fourier coefficients of ¥, in the B-sense, satisfy the equthn (5.1).

We first observe that, if f is a trigonometric monomial A0 then
the conjugate function is (see (2.4))

{]‘r*(”) ezxi(m,:r——y) dy= (,:_—xi (m,m)f‘](*(rl/) Cﬁzni (m,¥) Ch/ =Y eﬁni(m,:r).
& ’ b4

Hence, for any trigonometric polynomial N, ™0 the  conjugate
function is 3 ¢y, ¢ 9.

We shall now show that for any fe L and for any lattice point m the
tunction F(z)e~2™? is integrable B over R and the integral is cyyy,.
In view of the preceding remark we may assume that ¢, = 0./ Let us set
F=f'+7, where f' is a trigonometric polynomial and ML [F] is small.
Without loss of generality we may assume that the coefficient of e*@ ™
in § is zero. Thus f*=/"+f" and

(53) S(f:e—iﬂ'i (m,x) ’t)____S(fI*€~2ui(m,m) ,t) _Q_S(fu*e-—ﬂni(m,a:) ) l) R

The first 1erm on the right tends to zero as the norm of the part-
ition approaches zero. The ahsolute value of the second term is

\2 f"*(.i';.- - t)t,—z::i(m,m,) :11]\ i
i=1
and the sum hetween the signs of absolute value is the conjugate g* of
the funection o
g(t)= 31" (@ t)e O 4]

By Theorem 4, with a=1/2 and S=R, the quantity M,[g"] does not
exceed a fixed multiple of
~

DL (1< 3 14yl [ If s +-0) L= [If' (1)1,

and so is small. Tt follows that g*, and so also the last term in (5.3), is
small except for #’s belonging to a set of small measure, no matter what
is the partition P. Therefore the left side of (5.8) is small except for t's
in a small set, provided the norm of P is small enough. This shows that
f*(@) 62D ig integrable B over R and the integral is zero. Thus the proof
of Theorem 9 is completed.
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6. We shall now give a few illustrations for the results obtained.
Suppose that the function 2 in the numerator of the kernel K is
@ spherical harmonic ¥, of order n. In other words, ¥,(=")|#/" is a hom-
ogeneous polynomial P of degree »n in the variables &,&,...,&, sa-
tisfying in these variables Laplace’s equation AP=0. Thus
(6.1) K ()= Y?‘;f( ) (n=1,2,...).

In the simplest case k=2, we have ¥,=¢"?,
It is well known that the Fourier transform of K in (6.1) is a numeric-
MR

al multiple of Y,; more precisely,
1
I (—-_; )z)
(6.2) (._!:zri.-z ' TI.- _(J—.‘.-u'{f,y‘}(l‘,’:"ﬂ1'7‘(.”!)._—“3 - 3

I Lo
B v 1’(—- oA — k)
m S

= =

).

Cfombining this with previous results we hawve the following theorem:
TaEOREM 10. Let P(x)=P,(r) be a homogeneous polynomial of
degree n in the variables £y, &, ..., 5, satisfying Laplace’s equation AP = 0.
Given any L-integrable function
((.;.3’ f(‘..;) ,\_E‘,m{ﬁ.‘ri(lu‘,r).

consider the series

Y . ) { .
(6.4) Y e Pty et N P P
m A o,
i - S
n=0 forprrd :
Then,

(i) If feIP, p>1, the series (6.1) is the Fourier series of a function
7 of the class IP, and f* satisfies (2.6);

(i) If ifilog™ f, is indegrable, (6.4) is the Fowrier series of an f el
and satisfying (2.7);

%) See Bochner {1]. A different and independent proof for the case k=3 was
obtained at about the same time by Prof. Szegd, but never published. In the case
k=2, y,=¢€"%, n >0, the proof of the formula (6.2) is very simple and the formula
itself apparently much older though we cannot give any reference. See also Giraud
[4]. It may he added that Bochmer sums the integral (6.2) near y==co by Abels
method but since the integral converges the sum in both cases must be the same.

Developping the function 2 into a series of spherieal harmonics, 2(y)~Z ¥, (y").
and using the formulas}(6.2) we formally obtain the [Fourier transform of the ker-
nel K=0/fr". It ecan be shown that this argument is justified under very general
conditions on 2. We shall return to this problem elsewhere,
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(iii) If f 45 merely integrable, (6.4) is the Fourier series, in the B-sense,
of @ function f* satisfying (2.8);

(iv) If [fi<1 the function f* satisfies 210)

The simplest cases here are

(6.5) P(z)=Py(zx}=§&,
or
(6.6) Pla)="Py()=§ ¢ (54 19).

In these cases part (i) of Theorem had been proved by Marcinkiewicz
[5]. His method does not yield the remaining parts of Theorem 9 since
it consists of repeated application of a result from the case k=1 and
somewhat looses strength as % increases. His proof works for more general
cases than (6.5) or (6.6). Of course, also the argument given above applies
to general series (5.1a), provided we know that the multipliers y,, are the
Fourier coefficients of a suitable kernel K of our type. To the problem
what properties of the y, guarantee that assertion we shall return else-
where.

7. We shall now prove results concerning the behaviour of the con-
jugate series in the case the function f satisfies a Lipschitz (Holder) con-
dition

H(@-+1)— F(@)| < C [RI,

with ¢ independent of »# and h. If this condition is satisfied we shall
write
fed,.

If we disregard constant functions, only the case 0 <<a<{1 need be con-
sidered.

In the one-dimensional case there is a familiar result, due to Pri-
valov, asserting that if fisin 4,, 0<a <1, so is f* (see e. g. [8], p. 156).
The result is false for a=1 (see below). The theorem which follows is
an extension of Privalov’s result to the k-dimensional case:

TEEOREM 11. Suppose that f(x) is periodic and of the class A,
0<a<l, and that Qed, pf>a, on X. Then f*eA,.

Proof. Suppose that [h| is small. We may assume that the integral
of K* over R is zero. Then, denoting by I'(#,r) the sphere with centre x
and radius r, we may write f* in the form

f*(-’ff)=f[f(m—t)—f(ﬂ?)]K*(t)dt
(7.1)
= [ [flo—0)—f@)]E*(@)dt+ O ([h]),

R—rio,3/h))
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since the integrand.here is O(]t|°)- O(}t|~*), and the mtegral of the latter
funetion over I'(0,3[h]) is O(|h[®). Thus
fHla+h)= [f(@+h—1)— f(@) 1 E*(t)at 4O (|4]*)

(7.2) R—I(0,311))
= 1) [f(@—1)— f(#)1E*(t+4 h) dt+4- O ([A[),
R(—h)~TI(—h3]h)
where E(—h) denotes the cube R translated by —h. A simple caleul-
ation shows that if we replace in the last integral the domain of integra-
tion by RB—I(0,3|k]) we commit an error O(lh])+ O([h[*)=0O([h|)% for
in the neighbourhood of the boundary of R the integrand is O(1), and
in the shell |h|<C[t|<C3|h| the integrand is O(|h|*)-O(|h|~%).
Thus

(1.3) fH(@+h)—f*(2)=O([p|*)+ f Ef-’v ) — (@)L E*(t+h) —K*(t)]d.

B~

The first factor in the 1nteg'ra.nd here is O(}t|?). In estimating the
second faetor, in which |h|<[t]/3, we use the series (2.2) and the form-
ula

QUE+R)T Q@) L2[E+h)1-2(F)

[t+ B t* [t+h*

1 1
T [ N —"itT"“]‘

The contribution of the term K (I) on the right is

1RIP | 28
i) +liee) = v
and the contribution of the remaining terms is
O(Ihf")+ O (In))=O([nl?).
Thus, collecting results, we see that the last integral does not exceed

r at
OUM) | ~mege -+ O [ O)E=0 (A" + O (hf)= O (1he),
U R

which shows that ffeA..

The following result is an obvious corollary of Theorem 11:

THEOREM 12. Suppose that the function f(z) given by (6.3) is of the
dass A,,0< o<1, and that P(x) is the same as in Theorem 10. Then the
séries (6.4) is the Fourier series of a function in A,.

Let now f(x) denote any, not necessarily periodie, function defined
in a domain DCE®. We shall say that the function f(s) satisfies condi-
tion A,, and write

fedy,
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if f(#) is continuous and if
(7.4) {2+ h)t-f (2 —h)— 2/ (2)| < O[R],

for any « and k such that 2,24 are in D, with ¢ independent of # and A.

Clearly, A,CA,. If the left side in (7.4) is o(|h|) as |k|—0, uniformly
in xeD, we shall write fei,.

In a number of problems the class A, seems to be a more natural
one to consider than A;,. For example, the theorem of Privalov quoted
above does not hold for a=1, but it can be shown that if f(z)~ 3 ¢,,™
is in 4, (in particular, if fe,) then the conjugate function

. Do ( —4 signm) g*ime
is also in A, (see [7]). An analogous result could be established for
the k-dimensional ease, but the proof then is decidedly more difficult
and unlike the proof of Theorem 11 is not an imitation of the argu-
ment in the one-dimensional case. For this reason we shall confine our '
attention here to a rather special result which is of interest on account
of certain applications.

Let us suppose that f is periodic and of the class A, and that Q is
merely bounded. We then still have (7.1) and (7.2). For f*(x-+h)+ f*(x—h)
— 2f*(@) we get an expression analogous to the right side of (7.8) with
E*(t+ h)—E*(t) replaced by K*(t-+ h)-+E*(t— h)—2K™(t). Suppose that
for |¢|>2/h| we have an inequality '

[y

(7.5) [E @+ k) + E(i—h)— 2K ()< 4 —

]tlk+y (»>1)

valid for some y and A independent of ¢ and k. Then, using formula (2.2)
we find, as before, that

1

R+ h)+K*t— h) —2K*(t)= 0 (L{) L O(RP)
and BT

FH(@+h)+ (5 — h) — 2f* ()

—0m)+0(n) | e +0(n) [ 0)di=0 (),
1£]353iy fl &
50 that f*e,.

A’similar argument shows that if 7 is continuously differentiable (by
this we mean that all derivatives of f of order 1 exist and are continuous)
then f*el,. For we may write f=f,4f,, where f1 is a finite polynomial
and {fy(z+1)—fy(@)]<elt| for i small enough. Then clearly,

[f3(e+h)+ fi(z— h)— 3 ()] < Ce Al
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for |k] small enough, and sinee f{ is a trigonometric polynomial and so
satisfies condition 1,, the function f*=fi -+ f5 also satisfies condition A,.

Inequality (7.5) is ecerfainly wvalid, with y=2, if Q has bounded sec-
ond derivatives with respect to the spherical coordinates. For assuming,
as we may, that Q is real-valued, by the Mean-Value Theorem

K({t+h)+K({—h)—2K@)=1h*K"(t 4+ 6h)= 0(|h}H

for tj=21p|, K"
—1<0<1. Thus

THEOREM 13. Suppose that K satisfies (7.5). Then the assumpiion
fed, implies f*e Ay, and if f is continuously differentiable, f* satisfies con-
dition Ay. The conclusions hold, in particular, if f* is defined by the series
(6.4) and P(m) is the same as in Theorem 10.

In the concluding section of this paper we shall give a few observa-
tions about functions fei,.

denoting here the second directional derivative and

8. In this section we prove a few results about discrete analogous
of the Hilbert transform.

Let X=(...,_1,&4,%1,-..,8,,...) be any two-way infinite sequence
of real or complex numbers. For any p>0 we shall denote by i|X], the
p-th norm of X:

[‘Iﬂpz (Z im'n‘:p)l'p'

The class of sequences X with || X|j, finite will be denoted by I".
Let X =(...,&_;,&,,,...) denote the sequence
- v I,
(8.1) P —

. 1
Sk _—
Py He—n

the prime indicating that the term n=m is omitted in summation. This
is a diserete analogue of the Hilbert fransform

(8.2)
and it is very well known that

X< A A,
a result which was extended by Riesz [6] to
(8.3)

IEp< A Xl p>1.

The best value of A, is =; for ofher p’s the best value of 4, is unknown.
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Riesz [6] deduced (8.3) from the inequality |fll,<Ayllfll,, valid
for the function (8.2). His argument is applicable t0 & more general class
of discrete transforms which we are going to introduce now.

Let us again consider the space B¥, and a kernel K (z)= Q(a')/|z/*
with properties described in section 1. Let é,6,,...,6, be a system of
k linearly independent vectors in E¥; thus. in particular, all the 6; are
different from zero. Let p,=0,p;,9,,... be the sequence of all lattice
points in E* generated by this system, 4. e. the p's are of the form ue,
+ post. ..+ pop ez, where the coefficients u; are arbitrary real integers.
For any sequence X==(u,,&,%,....) of real or complex numbers we de-
fine the transform ¥=(z,, 951,52,...) by the formulae
(8.4) By=2" 0, K (P — Dy)-

For such sequences X we have the following result generalizing
(8.3):

TEEOREM 14. If Xyis in 1P, p>1, so is X, and

£, < 4,1 X,

where A, depends only on p and the kernel K.

The series on the right are all absolutely convergent if Xel®, p>1.
For p=1 this is immediate, and for p>1 follows by an application of
Holder’s inequality; for since K(z)=O0(lz|™*) as |#|->oo0, the series
21K (p—p,)|? is finite for every ¢> 1.

For the sake of simplicity we assume that the vectors e, e,,...,6,
are all mutnally orthogonal, of length 1, and situated on the coordinate
axes. The proof in the general case remains essentially the same. Let
R, denote the cube with centre p,, and edges of length 1, parallel to the
axes. By R,, we shall denote the concentric and similarly situated cube
with edges 1/2. Given a sequence X=(y,&;,...,&y,...) let f(#) denote
the function taking the value ,, at the points of Ry, (m=0,1,2,...) and

equal to zero elsewhere in B*. The function f is in L? if and only if X

is in P, and the ratio ||X|,/||fl,, depends on %k and p only. Hence, on
account of Theorem B of Section 1,

(8.6) 2 flf )P da = f ()P da<[|FIp< ABNAB< A2 X |7
UR, m

For zeR,, we may write
(8.7) =Xz [K F— 1Y)y + 7, fIx (62— y)dy.

neEm,
m

Let w(8) be the modulus of continuity of 2 on L. Without loss of gen-
erality we may assume that (8)>>4, since otherwise in the inequalities
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that follow we replace w(8) by w,(8)=Max(8,w(s)). We easily verify
that, for zeR,, and yeR,

)
K@ —y)~K(pn—p)i< 4 TR

and (8.7) may be written

.
- e
fo) =27 X B (pn— o) [ Ko=)y +0} 30— B

nFEM R
m

1
=2 + :ﬂmtpm x)+-0 { Zm&‘ Pa— Pml” -k (!Z’m—‘pnY)} 1

where ¢,, is the characteristic function of the cube R;,. Thus |7,|” does
not exceed a fixed multiple of the sum of the three expressions

Slelpn = pal~*0 (—3——) .

1f (‘”)lpy lmeme(m)Ipa = !pm_p”]

Let us integrate these expressions over the cube R, and sum the
results over all m. It is enough to show that all the three sums are major-
ized by a fixed multiple of X |z,[".

This is certainly the case for the sum involving [f|* (see {8.6)). Since

f 7 ()" A< | @mllp < Al mllp < A7,
- R

'™

also the seecond sum satisfies the condition. Finally, setting

1
G =1Pm| 0 (v—]) for m>0, =0,

1Pm

and observing that the Dini condition imposed on w implies that Za,,=a
is finite, we may write the following inequalities, in which p’ is the expo-
nent conjugate to p:

E {_5: u"nl am—n}p=2 {Z ]wn a}wlbp na;np,n}p
m m n

m

NN e 2 3l pip' . pin’ }
< ‘__\_, {2, [ am—n} {Z aman} y {Z am £
mn n n

L w10 P NV |2
= Z By U= A _>4 Wy
n n

This completes the proof of Theorem 14.
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Of course,” Theorem 14 can be restated in the language of bilinear
(or quadratic) forms:

tz mmynK(pm'— pn)l

9. Let us now change our notation slightly and let m, and similarly
n, denote the general lattice point in E*, 4. . m= pe;+ ...+ g€y, Where
the w's are arbitrary integers and ej,...,6, are unit vectors mutually
orthogonal.

<A1 Xllpl ¥lly,  2>1

TarOREM 15. The series
(9.1) 2 K (m) i

s the mee; series of a bounded function x(x). The number
M == ess sup |y (@)
is the norm of the linear tramsformotion

= K(m—mn)a,,
n

considered as a transformation from I* into I°

‘We already know that the transformation (9.2) is bounded and
from this fact we shall be able to deduce the boundedness of the
function (9.1). Since Z|K(m)® is finite, (9.1) is in any case the Fourier
series of a funetion yeI” Similarly, if 3 |a,[* converges,

Z'nm Pgni(m .I)Nw( )EL'
2), ) & €™ g the Fourier series of the integrable function
(9.3) p(z)=1p(@) g (2).

Since '|#,/* is finite, the function ¢ is even quadratically integrable
and we can write

S’”‘xm\ _H‘l‘ (“'w’ '4" 1zl (l)“ <t l iyl d‘l’::ll erl1

80 that the number M (<oc) is not less than the norm of the transforma-
tion (9.2). Moreover, one immediately sees that M is actually equal to
the norm of the transformation. Since the transformation is bounded,
the theorem follows.

An interesting illustration is provided in the two-dimensional case
by the transformation

(9.4) =y
=/ (m— n)

where m and % denote complex integers. This seems to be the most nat-
ural extension of the elassical Hilbert transformation (8.1) to the
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two-dimensional case. The norm of (9.4) ix the upper hound of the
modulus of the funetion given by the Fourier series
, (21i(pr= »y)
;‘ (11 + ir)?

The latter function oecurs already in the work of Kronecker on elliptie
functions and is expressible in terms of elliptic theta funetions.

10. We conclude by a few remarks concerning smooth functions.
Suppose a function f(z) is debermined in the neighbourhood of a point
ze B*. We say that f is smooth at z,, if

f@o+B) + fmg—h)—2f (zp)=0(R)  as

If f is smooth and continuous at every point of an open set .D, f will be
called smooth in D. The latter notion has close connection with condi-
tion A, introduced in Section 7, the only difference being that the notion
of smoothness in D does not presuppose the uniformity of the *‘0” in
(10.1) with respeet to xyeD.

Clearly, if f is differentiable at z, (4. e., if it has a total differential
at @,), then f is smooth at x,, but the converse need not be true. Thus
smooth functions may be considered as a generalization of differentiable
funetions. Similarly, functions of the class i, may be considered as a gen-
eralization of continuously differentiable funetions (4. ¢, functions
with continumous first partial derivatives).

(10.1) 1] 0.

The notion of smoothness of functions is familiar in the simplest
case k=1 (see [7]), and the definition {10.1) seems to be a natural exten-
sion of that special case to general k. In what follows we shall prove a few
simple results concerning smooth functions. We shall not presuppose
any longer that the funections f considered are periodie, and the results
themselves will have little connection with the previous discussion.

(a) If f is smooth in D and real-valued, and if f has a mazimum (or
manimum) at 2y, then f is differentiable at x, and the partial derivatives
of f at @, with respect to the coordinates are zero.

This is immediate since (10.1) can be writiten

{F o+ 1) — (o)} + {F (o — B) — f (o) } = o (1B]),
and since for || small enough both terms in curly brackets are of the
same sign, we get f(w,-+ h)— f{#)=0(|h]), which is the desired result.
b) If f is smooth in D and real-valued, then the set S of the points of

dszerentwbzltt?] of f is dense in D; indeed, it is of the power of the continwum
i every sphere K totally r’onmnml in D.
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We may suppose that the closure of K is in D. Let g(x) be a real-
-valued and continuously differentiable function vanishing on the bound-
ary of K, positive inside K and taking a large value at the centre of K.
Then the sum h=f-+g¢ certainly has a maximum at a point x,e K, and
so is differentiable at @,. Hence, also f is differentiable at @y, which shows
that § is dense in D.

Let now l(#)=a; &+ ap &s+...+ o & be a real-valued linear fune-
tion with coefficients o,,a,,...,0; numerically small but otherwise
quite arbitrary. The function h(z)=7f(x)+ g(2)+1(@) will then still have
a maximum at a point #,(&,...,&)eK, and so will be differentiable
at that point. Moreover, the first partial derivatives of h(2) at @, (&,..., &)
will be zero, and so the first partial derivatives of f(s)+-¢ () at that point
will be — ay,...,— az. Thus the point %y(ay,...,a;) varies with the system
(a1,...,0%). It follows that the set of points #y(ay,...,a;) is of the power
of the continuum, h=j74-g+-1 is differentiable in a subset of K of the pow-
er of the continuum, and the same holds for f.

(¢) The partial derivaiives wg(&,...,&;) of the potential

(10.2) Wy E) = (@ f i) *ﬂﬁ—“ (k>2)
corresponding to a continuous density f, satisfy condition J. in every finite
sphere.

Without loss of generality we may suppose that f(y) vanishes for
ly| large. It is a classical fact that under the assumption of continuity
of f the partial derivatives u, exist everywhere, are continuous and giv-
en by the formulae

b ’7;_ ay.
le—yl®

(10.3) g (1) =—(k—2) [(9)
Ek

It is also very well known that the second partial derivatives of % need
not exist at individual points, and statement (¢) is & substitute for the
existence of these derivatives.

It is enough to give a sketch of proof since the whole argument fol-
lows familiar lines. On the right of the last formula we have a convolu-
tion of f with the kernel K (z)=—(k—2)&/|z|*. In the integrals

E{f(y)K(w—y)dy, ff (W) E (@t h—y)dy,
we consider separately the parts extended over the sphere |y—x|<2 k|
and over the remainder of the space E*. Since 7 is bounded, and
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K (2)=0(jzi ") for small |z|, the parts extended over the sphere arc
all O(lR|). Since

@ E (2 +h—y)+ K(@— h—y)— 2K (a— y)} dy!
Jvm>2lhl
<O(R®) [ f@lle—y ™ dy=0(h),
Ty >2h

collecting results we see that uf‘(m+h)—i—u,&(a;-—Iz)—?u&(m)=0([h}).

So far we have only used the boundedness of f and showed that then
1, (#) satisties condition A, in every sphere. Since in the formula (10.3)
we may replace f(y) on the right by f(y)—f(«), the condition A, refines
to A, if f is continuous.

Of course, (¢) also holds for k=2 if we replace (10.2) by the logarithm-
ic potential. The result in this case was pointed to us by W. H. Oliver,
and clearly the proof for k>2 is essentially the same.
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