On the ergodic theorems (II)
(The random ergodic theorem)
by
C. RYLL-NARDZEWSKI (Warsaw)

1. H. R. Pitt, S.Ulam, J. von Neumann and 8. Kakutani
have formulated the so-called random ergodic theorems!). The most gen-
eral one is that of Kakutani. :

In a part of his proof Kakutani uses the theory of Markoff processes
with a stable distribution.

E. Marczewskihas proposed that a direct proof of Kakutani’s theorem
should be found which would not use the hypothesis that the considered
transformations are 1-1. In this paper I give a brief and direct proof
of "Kakutani’s theorem thus generalized and I also prove that the limit
function f is essentially independent of the parameters f,,t,,... The

existence proof of J is a reproduction of the first part of Kakutani’s

proof.

2. Let m be a o-measure in a o-field M of subsets of a space X. Let
us suppose that m(X)=1, and that m is complete (. e. that if 4eM,
BCA and m(A4)=0, then BeM).

We consider a family {g);,» of transformations of X into itself,
which are measurable and preserve m, 4. e. such that for every tel and
every HeM we have g7 (B)eM ond mo; (E)=m(E). Let p be a complete
o-measure in a o-field P of subsets of 7. We suppose p(T)=1. The family
{tp,(a;)} may be treated as a transformation of Xx7T into X; let us sup-
pose that it is measurable with respect to the completed direct o product
MmXp.

A transformation @ of X into itself.is colled indecomposable if we
have m(E)=0 or 1 for every set EeM which is almost @ invariant (4. e.
such that the symmetric difference F-—¢~'(E) is of m-measure Zero).
The family @, is indecomposable it m(E)=0 or 1 for every set H which

i almost ¢; invariant for almost (in the sense of the measure p) all teT.

1) Pitt [2], p. 342, Ulam and von Neumann [4], Kakutani [1].
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In the sequel we shall consider the products

XxTyxTyx...

where T;=T for j=1,2,...
TyXTypr X -

i ‘ i -products of measures enu-
and, in these spaces, the completed direct o pro : ;
mer;l.ted above. The;e product measures are defined for sets which will
briefly be called measurable. . .

g real {or complew) fumciion defined on the spaces 'cons1dered is
called measurable if the converse image of any open set'ls measurable.
We write f=g¢ if f and g are equal almost everywhere in the sense of
the considered measure.

Now we shall prove the ‘

RANDOM ERGODIC THEOREM. For every m-integrable fundtion i)
there emists an m-integrable function f(z) such that

1 & -

(%) tim — 3" f{gy, (). -galo)) =F(@)

n—soo 5y
for almost all ®,t;,%,... The limit f'zmqtion 7 is almost invariant with res-
pect to the transformations g, . 6.
Flou@))=F(=)
for almost oll %,t. Hence, if the family {%} is indecomposabls, then f is con-
stant. ) .

Proof. Let us consider a tra.nsforma.tmg Y .of the ﬁrfg;u::
Y=XxT,xT,x... (where T;=T for j=1,2,...) into itself, de
follows:

"P(mytlytmtaz-'~)=(%($)7t2,t37~--)-

From the hypothesis on the family {9} it follows easily that v is

' in Y.
measurable and preserves the product me'f»sure' ) i
By treating the function f as defined in Y (i.e. by putting

i i individual ergodic
(@t 1, ...)=F(2)) and by applying the ord: a.r;);l mdgvilsdgapﬁo gode-
theorem?) for f and yp, we obtain the formu'la (c)., where f
pendent on 21l variables #,%1,%,... and v mva.?lant, trom tho followltg
The remaining part of the theorem results directly from
TaEoREM 1. If the function g(@,8;,1,---)
almost y-invariont, . e.

(1) g(w:tl’tzy"')Eg(q’fa(m)’tz"”)’

is measurable in Y and

%) See e.g. Riesz [3], p. 224
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then g essentially depends only on w, 4. e. there is a function g(x), defined
in X such that

9@t )=g(@).
Obviously

9(pe (@) =g ().

Proof. We may suppose, without loss of generality, that ¢ is bounded.
Let h(t,ts,...) be a measurable function with |4|<M and such that

(2) Rty ty,.. ) dtydty... =0
Let us set

H(m)= [g(a,t;,bs,.. VBt 1y, ... At ALy ..
‘We shall prove that
(3) H(5)=0.
It follows, by iterations, from (1) that
g(wytlytzr")Eg((pln_l(m)' "(pll(w)" ':tmtn-l-l"");
whence, putting
Hn(‘vﬂfl!tm"')Efg(mytuth"-)h(tmt’n-}-lv'")dtndtr;+l""
we obtain
) Hn(mytl;tb .. )E fg(q’t,,_1(w)' . "Pt1(m) )tmtn-x»ly . ')h(tn:tn+17 o ')dtndin»f-l' .
=H (g, ,(®)...0(@)).
We choose a function g,(z,#,t,...,¢y) such that

(5) g — gl dadt, dt,. .. < —
Jlg—g.l 1Ly <ﬂ1

where N depends on .
If n>XN, then in view of (2),

Hn(wJutu“-)Ef(g’“gs)h’(tnstn+1:'--)dtndtnﬂ"‘
whence it follows from (3) that
N 13
S L (,8),8,,...) | dodt, dt,. .. <T[-M=e.
The identity (4) implies
[1H (=) ldo=[|H (g, ,(®)...qy(®))|dvdt, dt,. ..

= [|Hy,(@,b,2,,...)| du di, dt,... < &
and, consequently, (3).

On the ergodic theoremis 301

Applying the auxiliary theorem (see Section 3) for y={(t,b,...),
we obtain the proposition of our theorem.

The random ergodic theorem is thus proved.

Finally let us observe that it follows from this theorem that the
family ¢, is indecomposable if and only if the transformation ¢ is such3).

3. We shall prove the above mentioned auxiliary theorem. It con-
cerns measurable functions of a pair of variables (#,y) running on the
direct product of two o¢-measure spaces (with normed measures).

THEOREM. [f
[flg(z,y)ldwdy<oo

Ja(@,y)h(y)dy=0

and if

" almost eberywhere for every bounded function h such that [h(y)dy=0, then

g essentially depends only on m, i. e. there is a function g*(x) of one variable
such that g=g* almost everywhere. '

Let f(x) and h(y) be arbitrary bounded functions. By applying the
hypothesis to the function k(y)— f k(y)dy, we obtain the identity

Jo(@,9)h(y)ay=[q(x,y)dy [h{y)dy
almost everywhere, whence

[[lg(@,9)—[g(=,y) dy1f () hiy)dody =0.
Tt follows from the arbitrariness of f and & that

g(@,y)—[g(@,y)dy=0
almost everywhere, and consequently we can put

g (@)=[g{z,y)dy.
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3) Cf._Kakutani [1], p. 258, Theorem 3, the equivalence of (a) and (f).
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