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Introduction

For eurves in metrical spaces (Buclidean, Riemann-spaces, Finsler-
spaces, and the most general spaces introduced by Schouten and Haant-
jes [], p. 73-75) it is possible to deduce the formulae of Frenet or their
generalizations by means of differentiating unit tangent vectors with
respect to the length of the arc as parameter.

Hlavaty has introduced an avnalogue (not a generalization, howe-
ver) of these formulas for the case of curves in non-metrical spaces L,
(7. . in the spaces X, in which the principle of parallel displacement
of vectors and affinors has been adopted); for this purpose he introduces
the notions of the affine arc and affine curvature.

Following the idea of Hlavaty, S. Golab has defined, for curves
lying in p-dimensional (2<p<n—1) hypersurfaces embedded in L,,
the so called B-curvatures [1], which reflect the fact that the curve is
not considered as situated in I, directly, but as lying in X,, which is, in
turn, embedded in L, . If we take the space R, instead of L,, . e. replace
L, by the (metrical) Buclidean space, we can use the metrical arc instead.
of the affine one.

The use of the term B-curvature is explained by the fact that in the
case of the space L, these curvatures are obtained by differentiating
the field of the bivectors tangent to the surface along the curve.

The object of this paper is to develop the theory of B-curvatures
of eurves on developable surfaces in the gpace R,, and to ascertain what
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information about those B-curvatures is sufficient to determine the type
of the surface (plane, cylindrical, conical, a surface with an edge of regres-
sion).

1. General definition of B-curvatures for curves ¢ lying

on a hypersurface X, embedded in L,

An n-dimensional space X,, will be denoted (after Schouten) by L,
[5] if there is defined in this space a geometrical object with #® ecompo-
nents, I‘f,,,, called the parameters of linear displacement. By aid of this
object it is possible to define the parallel displacement of veectors along
any curve C, and consequently the parallel displacement of all other
quantities of affinory character, in particular of the p-vectors.

In the spaces L, one can also define the affine arc of curves in the
sense of Pick and Hlavaty [3]. This arc is defined up to the linear trans-
formations, just as the metrical arc in V,, is determined to within trans-
lations of the parameter.

If we are given a hypersurface X, embedded in the space L, we
can associate with every regular point of X, a simple p-vector (in the
case of p=2 a simple bivector) tangent to X,,. Let us denote this p-vee-
tor by B; it is determined up to a non-vanishing scalar factor o. In parti-
cular we can take as B

1) Bh-— gla__ Bhl
1 D
setting
a 08
(2) :3—77‘5’ r=1,2,...,n, a=1,2,...,p,
a
where
(3) E=£,..., 1), y=1,2,...,1n

denote the parametric equations of our X,.

Now let ¢ be a curve on X, parametrized by means of the affine
arc §; we set
(4) B=o0B

1

where B is defined by formula (1), and ¢ is a scalar field, not determined
for the moment.

Now we define by induction a sequence B,B,B,... of p-vectors

1 2 3

DB
(5) B=—t, k=23,
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where D/ds denotes the covariant differentiation with respect to the are s,
determined by aid of the parameters I
Let m be a positive integer defined (uniquely) by the following con-
ditions:
I. B,...,B are linearly independent,
1 m

II. B is a linear combination of the p-vectors B,...,B.
m4-1 1 m

It may be shown that number m thus defined satisfies the inequa-
lities
(6) 1gm<pn—p)+1

and does not depend on the parametric representation of the hypersur-
face X,; in other words, it is independent of the scalar factor ¢ of formula
(4). Number m may be called the local (since it may depend on the point
of the curve C) order of skewness of ¢ with respect to X,,. If, in particu-
lar, it is equal to 1 for every point of the curve C, the curve will be said
to be B-straight; if m=2 it will be termed B-plane...

We assume in the sequel that m is not constant along C. Since B
M1
is a linear combination of the p-vectors B,...,B, we may write
1 m

m
%) B=Y14B
m+l j=1 ]

where 1, are scalar functions of the are s. The factor ¢ has not been deter-
mined yet — now, we shall do it by adding the condifion that

(8) Am=0
along the curve (. For this purpose let us put
m—1 )
(9) D’”B:Z wD' B,
taking ) "
(10) p*+'=p(D", D'‘B=DB, D'B=B.

Let us apply the formula of Leibniz
il
(11) B=) (;0)0-(7—16)DkB
41 k=0

where o) denotes the jth derivative of the function o with respect to s,
and o®=o. For j=m this gives

(12) B=DB=Y (;’”) o™ D*B.

m+1 m k=0
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Computing succesively D*B from the equations (11) we finally obtain

(13) DB=0D"B-+-mo' D" B+ ...

To transform the right-hand side of this formula we express the quanti-

ties D*B by ?,...,B and caleulate the coefficient at B; after some com-
1 m

putations [2] this gives

: ma’
(14) A==l _1+ *G— 1
whence in virtue of (8)
mo’

(15) Hm-l‘f‘“g—:o,
which, finally, leads to

a 1.
(16) o=(, exp (— anj /zm_lds) R 0, = const.

Definition. The coefficients 4,,...,4,_; in (7) are called the B-cur-
vatures of the curve C, and the integer m — the order of B-planity of C [2].

Since the affine arc in I, is determined to within affine transforma-
tions §=as+p, we infer by a simple and short computation that the
B-curvatures are invariants of such kind that if we pass from one affine
arc to another by the above formula, they are multiplied by a constant
factor equal to a power of a. In the particular case of L,=R,, the B-cur-
vatures become absolute invariants if we take the metrical arc instead
of the affine one.

2. B-curvatures of curves lying on surfaces embedded in three-dimensional spaces

If n=3, then p =2 and (in virtue of (6)) the curve C may be B-
-straight (m =1), or B-plane (m =2), or B-skew (m =3). If, moreover,
L;=R,, then instead of the affine arc defined by the integral

S/ dt &t
(17) s=“ ]/dEt(t’ZZE’W) du,
it is more convenient to introduce the metrical arc
(18) s= [t tdu

(where t denotes the vector tangent to the curve: t=dx [dw, u being the
original parameter on the curve, and x—the position-vector of the curve 0);
it is also convenient to replace the bivector

et g

4 ~ o o,

Annales Polonici Mathematici IT,
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by the vector orthogonal to B, i.e. normal to the surface X,. Therefore
we set

gt 98
B—| = i
(20) [anl > nz]
(where [,] denotes the cross-product), and then
LB ' aB . B
1 BX.B BX_L B 2 BX_ s
1) 1 o 2 ds’ s ds’ 4 ds

(for L;= R, the covariant differentiation is identical with the usual one,
whence D /ds==d[ds).

The normalization of the vector B [formula (20)] by aid of the factor ¢
(determined by the condition 2,,=0) does not lead, however, to the same
result as the normalization of the vector orthogonal to the surface. This
will be proved in the next chapter.

Now we shall discuss in detail the cases of m=1, m=2, and m=:=3.

I. Let us suppose that the curve ¢ on V, is B-straight, i. e. that m=1
for every point of the curve.

Let the vector B (normal to V, along C) have the components (not
all equal to zero):b,(s),b,(s),bs(s). Then in virtue of (7), (8) and (21)

(22) o'b;+0b;=0 (¢=1,2,3) along C.

Formula (22) may be considered as a system of three equations
with one unknown ¢, a non-null solution being sought. Then
(23) o= (4=1,2,3)

b,,; .
where ¢; are constants of integration different from 0 (if any b, were
identically 0 along the curve C, then the corresponding equation (22)
would be satistied for every o). From (23) it follows that the vector B
is parallel along the curve O to a fixzed line.

The hypothesis that the curve € is B-straight implies that the vector
normal to the surface along this curve ig parallel to a fixed line. Conver-
sely, if a non-null vector normal to the surface along a certain curve is
constantly parallel to a fixed line, then we can determine from (23) the
factor ¢ so that the equations (22) be satisfied, and this means that the
curve is B-straight.

Thus we have proved

TEEOREM 1. A necessary and sufficient condition that a curve C lying
on a surface V, embedded in R, be B-straight is that the vector normal to the
surface along this curve be parallel to a fived line.
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For B-straight curves B-curvatures do not exist.
Let us consider the next case.

II. We suppose that C is B-plane, i.e. that m=2 at every point
of the curve. Then by (21)

B:UB,
1
dB
24 ’ B=-—1. =4 —
(24) L s dB+o—,
dB
4B
B=-1 =¢" 2 —_—
B=y =0 BF2 G Togms
but in virtue of (7) and (8)
(25) B=1B+4,B and J,=0;
3 1 2
hence (24) and (25) enable us to write
iB &*B
(26) lhoB= O'”B+2‘IIE + UAds?T
aldng the curve (. Hence and by (9)
I’ 4 dB
27) 24 0B= (0" + o) B+ (20" + o) =

The vectors B and dB/ds being linearly independent (for ¢ is by hypo-
thesis B-straight), formula (27) gives

(28) 2¢'+ opy =0,

(29) 6"+ (pg—A)o=0.
Formula (28) gives

(30) o=k exp (W%jmds)

(k is a constant of integration). Differentiating this formula twice we
get

/=g tmexp(~ 5

) /‘1d3)7

1, 1.
a”:—i— ku; exp (“EJ .ulds)

— kuy exp(——fpl )

2%
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the substitution of these quantities into (29) gives

T, 1,
(31) ll=—7M1+Z/L1+/"o-
‘The coefficients u, and u, may be determined by aid of (9). Denoting,
as above, the components of the vector B by b;(s) (4=1,2,3), we infer
by (9) that

(32} #obi‘I‘MlbvlLEb';,

along the curve €. This is a system of three equations with two unknowns;
by hypothesis it has a solution, whence the determinant [b;,b;,b;]1=0
along the curve C. :
We shall prove now that the rank of the mafrix b;, by, b7 is equal
to 2 along . Indeed, if it were equal to 1, then the vector B normal to
the surface along the curve ¢ would be parallel to a fixed line, and this
means that ¢ is B-straight, which contradicts our hypothesis.
Conversely, if the rank of the matrix |b;,b;,b;| is equal to 2, then
the system (32) has one solution for u, and . Then we can determine
J, and o from (29) and (31) and the curve ¢ is B-plane. Hence we get
THEEOREM 2. A necessary and sufficient condition for a curve O lying
on the surface V, embedded in R, to be B-plane is that the vedtor normal
to the surface along the curve C would be constantly parallel to some fiwed
plame, and would not be parallel to any fized line.
Any B-plane curve has only one B-curvature expressed by formula
(31) if we substitute in it the solutions of (32). To calculate it, let

(33)

(i=1,2,3)

aZbyby—byb,

and suppose that az£0 (this is justified by the fact that the rank of the
matrix ||b;,b;,b; ] is equal to 2). Then

(84)
where a,-= b'b,—b; b;. Introducing the expressions of (34) into (31) we
finally obtain

1 a”
35 T
(3) t 2 a

3 a/2+a0
4 ¢ a

This formula expresses the sought B-curvature of a B-plane curve O,
a denotes an arbitrary non-null determinant of degree 2, whose elements
are components of the vectors B and dB/ds, and a,—the corresponding
determinant formed of the components of the vectors dB/ds and @*B [ds™.
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1II. Finally let us consider the case of m=3. Since every curve O
on the surface ¥, embedded in R, is B-straight, or B-plane, or B-skew,
we geb

THEOREM 3. A necessary and sufficient condition that a curve C lying
on the surface V, embedded in Ry be B-skew is thai the vector mormal to
the surface along the curve C would not be parallel to any fized plane.

From the above theorems it follows that the degree m of skewness
of the curve C lying on V, is equal to the rank of the matrix composed
of the components of the vector normal to the surface ¥, along the curve,
and of the components of the first and the second derivative of this vec-
tor.

As we have observed above, B-skew curves have two B-curvatures,
4, and %, which we shall compute now. By (21)

B=0B,
1
aB
aB
By =Bty
(36)
B_d?_ Bao IdB+ B
3*@___0 +20 as ds
dB 2 3
dB aB aB
=__’_3_'= 1re § v ’ 4o
13 PR GBT?’Udstadsg'adss
But in virtue of (7)
iB
(37) B =—d§ = 1,B+,B+ 1B
4 1 2 3
whence (8), (36) and (37) imply
8 1oBnloB dB) g 3”dB ‘3'd2B+ad3B
(38) 1‘7+2(U +0"‘Cis’“—'°' +U%T0’d82 i

The formula (9) yields, however,
@B
a8
Substituting (39) into (38), we get

dB &B

(39) =#0B+I/’1’h‘s' +/12'EST-

(40) .
aB - » aB , a'B
(1104'120’)3”5‘120"(1? =(¢"""+ oup) B+ (30 +G:“1)—ds’+(3‘7 +GM2)TJE2_
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whence, the vectors B,dB/ds, d’B/ds® being linearly independent (f r
m=38), we deduce further
(41)  dyo+ Ao’ =0""+ auy,

ro=2380"+ o, 0=230"+ gu,.

From equations (41) we determine (just for B-plane curves) 4;, 4,
and o by aid of uy, u, and u,; whence

30‘” o'lll 36”(", al
(42) Ag== p +u; and A= PP T H1t oy
1.
(43) g=1 exp{— 3~J s 08

where k, is a constant of integration. Differentiation of (43) gives

’

o =T g
" 1, 1,
(44) o =—§,uza+~§,uza,
111 1 ’” 1 ’ 1 3
o ="§.‘42 G""é“ﬂzﬂz"“é‘,l;/‘za-

Introducing these expressions into (42) we obtain

;01 a2 0,01
(45) ﬂz=~ﬂz+—§ft§+un Mm—— g — gyt - i g,

3 27 3
and developing formula (9) we geb

(46) Hobit b+ m by =B (i=1,2,3).

This ig a system of three equations with three unknowns u,, #;, ¢, which
we are seeking.

If the curve O is B-skew the system (46) has only one solution (for
the determinant [b;,b;,b;' 1540 along the curve) expressed by the formulas
(47)

O P16 DTN 0700 DR S 1) 1170 W
07 Ty T T R S S R
Bobi,b1 - W T e T W T b T W

where

at vt o 1 ’ 1" 1" "
W=[b,bi,bi 1, We[o), 0,01,  WoZ[b,,8", 05 1.
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Now let us calculate u; and u,", which appear in formulas (45)

v 'u, W” W/:Z
2= T
(48) v W
Wur W”W’ 2W”W/ 2Wl3 _ Wlll 3'WIIWI 2W13

"__
5 =

wow W W T w W W
From formulas (45), (47) and (48) we finally obtain
Wn 4 WIZ Wl

T Ty w T
(49)
1 WIVI WII'WI
- —

AETE W T W

% W 1 WW W,
——— i — . e
2% W3 W W
These formulas express the first and the second B-curvature of
B-skew curves lying on sufficiently regular surfaces V, -mbedded in R;.
W denotes the determinant formed of the components of the vectors B,
dB/ds and @*B/ds’; W' and W'* denote the first and the second deri-
vative of this determinant with respect to the arc; W, is the determinant
whose terms are the components of the vectors B, d*B/ds®, and d*B/ds*,
and W, is obtained analogously from the vectors d°B/ds®, dB/ds, d’B/ds’.

5. B-curvatures and the curvatures o,f,y

We have stated in chapter 2 that the normalization of the vector B
(see formula (20)) performed by aid of the factor o (4, =0 along the curve)
does not lead to the same result as the normalization of the length of
the vector normal to the surface. Now we supply the proof of this fact.

Let us associate with every point of the curve €' a system of three
mutually orthogonal unit vectors: the tangent veetor £,, the vector i,
normal to the surface and the vector f, direeted so that the system ;,1,,;
is right-handed. For this system of veetors

(50) b5,
called the system of Darboux, the following well-known relations hold
at
F{ —at,+yl, where a is the geodesic curvature,
s
dt, . . .
(1) dsi =—at,+ft, where § is the geodesic torsion,
dt, . - ;
o =—yt,—pt, where y is the normal curvature.
s
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Besides this system of Darboux, let us associate with every point of the
curve ¢ another system T,,T,,T; of orthogonal vectors defined (when
»>0) as:

Ty g

ar,
s T

a5 and Tsf—leng.

(59) T 2t,, where =
Now we shall deduce equations analogous to the formulas of I'renet
by differentiating the field of unit vectors normal fo the surface with res-
pect to the are as parameter.

The first of these equations is given already by the definition

dr
(63) ¢ %T—l =T, where »= — and »>0.
s
Let us set
ar,
(54) —(i; =0T +4-0. T +0, T3,

and let us determine the scalar factors g,,g,,0;. Since the derivative
of any unit vector with respect to the arc is either a null-vector or ortho-
gonal to the vector itself, we may write (g,=0)

ar, :
(55) ‘T; =0T +0,Ts,
but T,7,=0, whence

ar aT
56 i T
(56) g5 Lot 5o Th=0,
that is

arT, aT

(57) Kle“*dsz=+Ql==”V1'
Further let us set
(58) 03y,
Thus the second equation may be written in the form

aT
(59) ?Zf =—u T 4T,
Setting 1

aT

(60) . S OTiH0 Tyt 0T,
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we likewise obtain
(61) §,=20,=0, Sp=—1¥,
Hence, finally,
ar arT dar,
(62)  —t=nTy,  E=-nTinT,  —2=—nT)

where », and v, are the analogous of the first and the second ecurvature
in the ordinary formulas of Frenet. Let us express these quantities in
terms of the curvatures a,f,y defined by formula (51). By (51) and (52)
it follows that

(63) n=VE+v.

The second of the equations (62) gives

ar,
(64—) 3'2=“‘1; Tg;
by the first we sbtain
ar, dT —y
(65) PR S R——,
ds ds g Y+

whence, differentiating with respect to s, we get

ar, _ pirB'—y'B)+eB (' +6),

(66) E - (y2+l92)3:ﬂ
At 0 e d i R PR Vi d RPN
'+ B YT
By formulas (52) and (65)
(67) O

Sl /’T*'—ztﬂ’
Vv EE VY B
whence by (64) and (66) and (67) we finally obtain

a(y* +84)+(8'y—87)
68 Pgrm e

( ) 2 72 + /32

By (63) and (68), it follows that the mew curvatures are expressed in
quite a simple manner by ¢, § and y.
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Our problem is whether or not, in the case of a B-skew curve, the
curvatures », and », coincide (are identical) with the B-curvatures A;,2,
of this curve. Therefore let us express 4; and 4, in terms of «, §, and v,
and let us compare the results.

Notice first that the vectors B and T, are parallel and that T, is a unit
vector. Let us denote its coordinates by 7; (¢=1,2,3) and set

(69) BT,

whenee b;=w7; where o is the scalar field along the curve C. Further,
. write

dr; &,
U=[1,,T, where 7} =—, 7i=-—"
[ 1y viy 74 :] i ds H 1 d82 H

_ ) @ Ty , au

(70) U,=[7,7;",%;'] where t'= == U:—ds_’
" ., @U &U
Uo=[7"y7,7;] where U = U"’z*ﬁdss,,

If the carve C is B-skew, we may write the formulas for the first
and the second B-curvature in the form

v o4 U U1

Ao = — —
i R

(71)

10" U'U 16 U° 1_U U k

15 3

3 U vt T

Let the veetors t;, of formula (50) have the coordinates by, , 6, (k=1 ,2,3);
then by (51), (52) and (70)

Ty =1y,
7 o= — Yty — Bly;,
(72) T ==y Bty (—F — ay)ty+ (— — B

% = 20 Lty By —y )
F(—a'y—2ay'+a2f— "+ By*+ F)ty+ (— 3'F—3y'p)ty:.
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By aid of these relations, we can compute the values of the determinants
U, U, and U,. Thus

=a(B2+y?) (8" y—By'),

U =a'(B2+y?)+2a (8 B+y'y)-+H(B" v —By"),

U =a” (Br+y*) +4a' (B B+ y)+2a (B B-+B"2+y" y+y'%)+
FB By~ —BY""),

(73) U =a" (%) +6a" (B'B+y'y)-+-6a’ (B B2 +y" y+v'?) +
+2a (B B3 B " y 3y Y )+
HBETy28"y — 28"y — By,

1 =—[0* 4B+ 1[a (B2 +y?) + (B — By ) 1— (B —y" ')+
+aly"y-+p"B)—a' (B’ B4y y)—2a (B2 Hy") +
+2a*(By’ —B"),

=[a’(B*+y*)+2a (B B+y"¥)+ (B y—By' 1B ++")—
—=3(B' B+ y) [a(B2+y?)+(By —B'¥)]

Finally, using the formulas (71) and (73), we can write down the relations
holding between the B-curvatures of a B-skew curve and the curvatures
a, # and y of formulas (51).

Comparing formulas (63) and (68) with (71), account being taken
of (73), we find that the B-curvatures are not the curvatures which may
be obtained by the normalization (with respect to the lenght) of the
vector normal to the surface. The difference of these two mnormaliza-
tions can be shown in a much simples way than has been done_'here.
We have chosen this way in order to show simultaneously how the
B-curvatures of B-skew curves may be expressed by the curvatures a,
f and y.

4. The investigation of the rank of skewness of curves lying
on developable surfaces

From Theorem 1 (chapter 2) we know that a curve C lying on a sur-
face V, embedded in R, is B-straight if and only if the vector B normal
to the surface V, along this curve is constantly parallel to a fixed line,
4. e. if the vector T'; (see formula (69)) is constant along C. Hence, by (51)
and (52), a curve O lying on a surface V, embedded in Ry is B-straight if
and only if it is the line of curvature and simultaneously the asymptotw line
(=0, y=0) of the surface V,.
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Hence we deduce the following corollaries:

a. All eurves lying on o plane are B-straight.

b. The generatrices are the only B-straight lines on developable sur-
faces (the cylinder, the come, the surface with am edge of regression).

From Theorem 2 (chapter 2) we know that the curve O lying on a sur-
face V, embedded in Ry is B-plane if and only if the vector B or T (for-
mula (69)) normal to the surface V, along this curve is parallel to a fi-
xed plane, and is parallel to no fixed line, that is if the vector T, (s:const)
is constantly orthogonal to a fixed vector D=0. It follows that the en-
velope of the planes tangent to the surface V, along B-plane curve (U is o cy-
linder circumseribed on Vs, since every two planes of this family intersect
along a line parallel to o fiwed vector D.

The above proposition implies the following corollaries:

¢. On a cylindrical surface every curve different from a gemeratriz
is B-plane.

d. There are no B-straight lines on & conical surface and on a surface
with an edge of regression, since the envelope of planes tangent along an ar-
bitrary curve, different from a gemeratriz, is identical with the surface it-
self. AIl curves lying on these surfaces (ewoept the generatrices) are B-skew.

From the above considerations, we see that the knowledge of the
rank of B-skewness of a curve lying on developable surfaces does not
enable us to decide whether the curve lies on a conical surface or on a sur-
face with an edge of regression.

The subject of this paper has been suggested to me by 8. Goigb.
I wish to express my sincere gratitude to him for his helpful advice and,
criticism during the preparation of this paper.
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Appréciation du domaine d’existence de l'intégrale
d’un systéme involutif d’équations aux dérivées
partielles du premier ordre

par W. PAWELSKI (Gdansk)

Considérons le systéme @' équations

0z 0z )
(1) 'ﬁZ—FHa(tﬂ,mu%,z):O (a,f=1,2,...,m; i=1,2,...,n)
pour lequel a liew la condition de compatibilité
0H, 0H, 0H, 0H,
: i — Hyem — H
@ G Hea Tm, T T
> (0H, [0H, 0H, 0H, (0H, 0"
v ( 5 ﬂ)_ s (0H, W__,,)}EO.
! -:{l dg; \ 0x; % 0z dgq; \ 8o, +a oz

Supposons que les fonctions H, de variables réelles t,,1;,q;, # sotent de classe
2 dans Uensemble

(3) t,— ol <o, o — 2| <o, lz—2g|<e, 14— g3l <e.
Soit
(4) @(@yy e yity)

une fonction de classe O dans le cube |1;— 3| <o. Désignons par M le nombre
constant positif tel que

0H 0H, |
0 ~ a a | M
1 |H, <M, . < M, % }< s
0H 2 H, *H
e ] - 2 e M
‘5 dg; <M, O, 0; <M, 1| <"
*H, O H, 0% H t
““‘_’_a‘ a M a;
) ET T IR o Dk I *F Y A
#H,

H
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