On the degree of regularity of surfaces formed by the
asymptotic integrals of differential equations

by Z.SzmypT (Krakéw)*

Consider the system of differential equations

(0.1) dﬂi/dt=F(i)(771:“-7"7n) (i=1,2,...,m)
a.}ld assume'tha.t_the origin of the coordinate system 6,=(0,...,0) is its
singular point, i.e. that F®(0,...,0)=0 (6=1,2,...,n). Further, let
us agsume that all the characteristic roots of the matrix

0=(Gij)7 0i:I=F£1?(O:---yO) (t,j=1,2,...,m)
have t%le real parts different from zero and that there exists at least
one pair of roots whose real parts are of opposite signs. Let us denote
by 8 .the set made up by the trajectories of the system (0.1) tending to
the singular point 6, for {— oco.

L Gr Petrovskit showed in 1934 [6], under fairly general assumptions
rega.rdl.ng the regularity of functions F(i)(izl,z,...,%), that the set 8 ig
a continuous manifold. In 1940, M. Martin proved the analyticity of
the’ swface 8, assuming that the functions F®(;=1,2,...,n) are ana-
lytic and putting certain additional restrictions on th; 1’nat,rix C.

o ifI:hthe pregent p%)eag we prove that the manifold 8 is a surface of class
. e fUII.Gf:IOD.S- F(i=1,2,...,n) are of class (7 (p3=>1) (cf. theorem 1,

§ ) Besides, we give an effective construction of the sequence of functions
;IlllJiorm%y conyergent to the function whose graph is the surface §.
qu:n denva.tggi up to the pth order of the functions of the above se-

ce are i ivati
ey ormly convergent to the corresponding derivatives of the

The proof of theorem 1 is gi i i

x I given in § 8 (theorem 1 bis) in a special
eo:rdmate system (coordinates z,2,,...,2,). The passage from the coordi-
nates 71,...,7, t0 2,...,2, is given in § 2.

*) This result was communicated &
. o the VIII Congress of Poli M i-
clans (September, 1953). It is also mentioned in the palb)er {71 o Mathomati
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§ 1. Definition 1. We say that the real mafriz O=(Cy) (2,i=
=1,2,...,m) is of type T, (0<g<<w) if the numbers of the characteristic
roots whose real parts are negabive or positive are respectively ¢ and
n—{q.

Consider the system of differential equations

n
dm/dtT—jZ;%"?j (¢=1,2,...,m)

which, by setting

(1.1) H= (71, ,M); C=(¢y)
we may also write in the vectorial form
(1.2) dH |dt= CH.

It is known (cf. [B], chapter III, p. 207) that if the matrix ¢ is of
type T, the set made up by the trajectories of the system (1.2) ten-
ding to 6,=(0,...,0) for i—0 is a certain g-dimensional hyperplane pas-
sing through the origin of the coordinate system 6,. We shall call it the
negative characteristic hyperplane and denote it by N. Analogously we
define the positive characteristic hyperplane P as hyperplane of the
trajectories of the system (1.2) tending to @, for t—»—oo.

Let a system of differential equations

(1.3) dmgfdt=FDnyy..om)  (8=1,2,...,m)

be given. By introducing the vector-function F(H)= (FO(H),..., T (H))
(cf. (1.1)) we write the system (1.3) in the form

dH |dt=F (H).

Tumores 1. Let us assume that the function F(H) is of class C* (p=1)
in the neighbourhood of @,F(6,)=0 (i=1,2,...,n), and that the matriz
C'=(cy)y cij:F%?(Qn) (1,j=1,2,...,n) is of the type T,.

Under these hypotheses there exists a neighbourhood of the point O,
(@ homeomorph of the n-dimensional open sphere) such that all the trajec-
tories of the system (1.4) contained in this neighbourhood and tending to
0, for t—oo make up a surface S of class CF slight') with respect to the
hyperplane N and tangent to it at O, (interior point of 8).

Remark 1 (cf. [7], remarque 4). By the transformation ©=-—1
we obtain from theorem 1 an analogous theorem for the set B made up
by the trajectories of the system (1.4) tending to @, for t—+—oo. From

(1.4)

1) This means that every hyperplane parallel to the positive characteristio
hyperplane euts the surface S at most. at one point. :
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that follows the existence of a transformation of class C¥ (p>1) which
transforms the system (1.4) into a new system in such a manner that
the surfaces § and R are transformed into plane surfaces, 8% and
R, lying in the plane &,;=...=§,=0 and in the plane &=...=§£,=0
respectively. This transformation enables us to reduce the investigation
of the asymptotic behaviour of the integrals tending to 6, to the investi-
gation of a system of the form

agdt=GD(&,...,6,0,...,0)  (i=1,2,...,q)
which has a knot at the point 6,.

Remark 2. M. Martin [4] has shown the analycity of the mani-
folds § and E under the conditions of analycity of the function F(H)
and under a certain additional assumptions?) regarding the matrix (.
From our theorem it follows, without these additional assumptions re-
garding the matrix ¢, that the surfaces § and R are of class 0.
~ §2 Definition 2. Let D=(dy) (i,j=1,2,...,m) be an arbitrary
real matrix and W= (wy,...,w,) an arbitrary real vector. In the present

paper by the symbols [|D|| and |[W| we shall denote the square root of the
sum of the squares of all elements, 1. e.

n

Fart wi=( e

G

ID]} = (

d=1
In the proofs of the theorems we shall make use of the following
inequalities, which are immediately implied by the above definition:

D1+ Dol <IDo|l + IDell, 1Dy Dy| <Dyl 1Dl

t t
Hth(r)drﬁgﬂlW(r)lchr for t>1,
0 to

.
under the hypothesis that [||W(z)||dx exists.
£

0
N Let Z=(z,...,2,) be a vector in the n-dimensional space and ¢ a po-
sitive integer 0<<g<n. Let us write

Z=(X,Y), X =(#,...,2), Y= (2 1y 1%)

We denote by 6,,6,,0,_, the origins of the coordinate systems
Z,X and Y respectively.

Consider the system of differential equations written in the vecto-
rial form

(2.1) dX|dt =AX+IN(Z),  dY[dt=BY+I®(Z),

%) That is besides the assumption that the matrix O is ot type Tq.
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in which A,B are constant real square matrices and I'NZ) (i=1,2)
are vector-functions.

Hyporarsts K,. We say that the system (2.1) satisfies the hypo-
thesis K, (p=1) if the following four conditions are fulfilled:

W) IN0,) =0,  IP6,)=0,
W,) there ewists a number A>0 such that

et <ge ™, e P<(m—qe™  for 120,
W,) UAUS —A|UE for every vector U= (ur,...,%g),

W,) there ewist constant mairices GV (i=1,2) and vector-functions
ED(Z) (i==1,2) of class C7 in the neighbourhood of 6, such that

(2.2) INZ) =W X 4 29(2), INZ) =GO Y +IP(2),
(2.3) e <4 A (1=1,2),
(2.4) Lé]); (6,) =0y, I’g-)(@u)':@ﬂ—q (i=1,2,...,n)

Remark 3. From the condition W,) of hypothesis K, follows the
existence of a positive number R such that in the closed sphere WiT;h cenf.ire
at 6, and radius R the functions L?(Z) are of class (" and satisfy Lip-
schitz’s condition

(2.5) IL9(2) — IO Z)| <27~ PNZ — 2| (i=1,2).

Indeed since G®,G® are constant matrices and the functions
ED(Z) (1=1,2) are of class C” in the neighbourhood . of @, it follows
from (2.2) that L9 (Z) are of class 7 in the neighbourhood of . Inefqua—
lities (2.5) are obtained from the relations (2.2)-(2.4) on the basis of
the mean value theorem applied to the functions (%) (i=1,2), which
are of class ¢* in the neighbourhood of 6, (p=1).

Definition 3. We shall denote by Fp the common part of the
n-dimensional open sphere V(0,,R) with centre at 6, and radius R and
a cylinder defined by the inequality |X||<R/2q.

Definition 4. We shall denote by § the set formed by the tra~
jectories of the system (2.1) which are contained in Fg and tend to On
for t—oo.

In § 3 we shall prove the following theorem:

THROREM 1 bis. If the system (2.1) satisfies the hypothesis K, then
the set 8 s a surface of class CF (p>>1) slight with respect to the hyperplane
Y=0,_, and tangent to i at the point O, (interior point of 8).
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To reduce the proof of theorem 1 to the proof of theorem 1 bis we
make use of the following lemma:

LEMMA 1. If the functions FOH)=FD(n,...,n,) (i=1,2,...,n)
are of class O (p>1) in the meighbourhood of €,=(0,...,0), FH(@,)=0
(i=1,2,...,n) and the matriz C=/(cy), cy=TF(6,) (4,j=1,2,...,n) is
of type T,, then there exists a real non-singular constant matric M, such
that the limear transformation Z=MH transforms the system (1.4) into
the system (2.1), which satisfies the hypothesis K.

The proof of lemma 1, which is in fact based only on the classical
theorem of Jordan on reducing a matrix to the canonical form, will be
given in §4 at the end of the paper.

From lemma 1 it follows that the system (1.4), satisfying the assump-
tions of theorem 1, may be transformed by means of a suitable non-sin-
gular transformation Z=MH with constant real coefficients into the
system (2.1), which satisfies the hypothesis K,,. Since the negative cha-
racteristic hyperplane of the system

AX|#=[A+GY)X,  aY/d=[B+6¥]Y,

which satisfies the inequalities W,) and (2.3) is the hyperplane ¥=6,_,,
therefore, in view of the properties of the transformation %Z=MH, it
is evident that theorem 1 bis implies theorem 1.

§ 3. The proof of theorem 1 bis, to which this paragraph is devoted,
will be preceded by some lemmas.

LevmA 2. Suppose that the inequalities W,) with respect to the sysiem
of differential equations

(8.1) dX |l =AX +I™(Z), dY/idt=BY +IL®Z)
are satisfied and the functions I®(Z) (i=1,2) are continuous jor ||Z||<R.
Then each integral 7 (t)=(X (), Y (2)) of the system (3.1) such that

(32) WZWISR for 1>t, X(t) =5,

52(517"'7‘5(1)7

satisfies the system of integral equations

i
(33) X () =exp[A (¢ —4)]5 + [exp (4 (¢t — 1)L [Z (1)]dr,

Y(t) = ——Lfexp[ — B(x—#)]L®[Z (v)]dx.
Proof. Every integral of the system (3.1) satisfying the second

of the conditions (3.2) satisties, for suitably chosen V,, the system of
integral equations .

icm
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¢
X(t) =exp[A(t—1)]Z —I—tf exp[4 (t — 7)1 LY [Z ()] dr,
(3.4) o

Y(t) =exp[B({f —1)]V(t), where
V)=V, —l—jexp [~ Bx—1,)]L¥[Z(z)]dr.

It follows that Z(f) satisties the first- of the equations (3.3).
To show that the second is also satisfied let us observe that by 1V @l
<lexp [—B (t—#) ]Il [ ¥ (#)], inequality W,) and the first of the conditions
(3.2) we obtain the inequality [[V(@®)[<RE(n—q) ¢ "% and hence
V (t)—>6Op_, for t—>co. It follows thatb

Vo= “TEXP[— B(x — 1)1 L9 [Z(v)]dz
&

which proves, together with (3.4), that Z(t) satisfies also the second of
the equations (3.3).

LeMMA 3. Suppose that the system (3.1) satisfies the hypothesis K.
Let R be a positive number such that the inequalities (2.5) (cf. remark 3)
hold in the closed sphere with centre ai 6, and radius R. Let us denote by w .
the g-+1 dimensional set of points (¢,5)=(t, &1,..., &) defined by the ine-
qualities

(@) 1B <r, B<t<oo  (r=R/20).

We assert that there exisis a function Z (t,E):(X (t,8), Y ,E)) which has
the following properties Py) and P,):

P,)) Z(t,5) is in the set o the limit of wniformly convergent sequence
of successive approximations “Z(t, E) = (xe,s), 'Y (t,E)) given by the
relations

(3.5) 1X(t75)=exp[-A(t_t0)]E7 IY(tNE) =0, 4
£
X (1, B) =exp[A( —1)]E +!f exp[4 (t — 7)1 LOT%Z (v, &) ]dr,
(3.6) ' (v=1,2,...)

1Y (t, 5) = — [exp[— B(r — )] LO["Z (v, 5)]dv.
i
For every fized E(|E|<r), Z(t,8) is an integral of the system (3.1)
and satisfies the conditions
(87 1Z2@,EN<E for 1=,

If 5=06, then
(3.8)

Z(t,8)->0, for X (ty,E) =4&.

{—= o0,

Z(1,0,) =6, for t=1.


GUEST


300 Z. Szmydt

P,) For every fimed t, t32t, the function Z(t,8) is of the class OV with
respect 1o E=={E,...,&) for ||Bl<r, where all the derivatives of order
1,2,...,p of Z(t,5) are limits of uniformly converging sequences of the
corresponding derivatives of 'Z(t,5).

Proof. For the sake of clarity, we divide the proof of lemma 3 into
four stages.

1. We-assert that the functions of the sequence "Z(t, 5)=(X(t,8),
*Y(¢,58)) formally determined by the relations (3.5) and (3.6), are defi-
ned and continuous in the set w for 1<v<oo and have the following
properties (v=1,2,...):

(3.9) P2 (t,5) —"Z(t, )| <gr2™  in the set o,

(3.10) [PZ(, )| <[1+27 ... +27¢ Vg <k in the set o,

(311) ACHX)jd=A""X +IO(Z),  ACPY)jdt=B"Y 4 L0 (7),

(3.12) *X(ty,H) = &,
(3.13) Z (8, 5) >0, for t-— oo,
(3.14) Z(,0,) =6, for t>1,.

Remark 4. From the assumptions W,) of hypothesis K, it follows
at once that the relations (3.6) define the function "*'Z(t,5), which is
continuous in the set w provided *Z(t,5) is a continuous function such
that ['Z(t,E)I<R for (f,5)ew.

We make use of remark 4 in proving that the sequence of functions
formally defined by (3.5) and (3.6) is infinite.

By (3.8) and inequalibty W,) we obtain, in view of r=12R/2g,
12, E) =M Xl < g exp[— A(t — 1) ]| El| < gr < B for 1 >4

Thus the relations (3.10), (3.13), (3.14) hold for »=1 and by remark
4 the relations (3.6) define the function *Z(t,5)=X(t,5), ‘Y (¢,5),
whenee, by assumptions W,), W;) and (2.5) (ef. remark 3), we obtain

12 2| < PX —1X| + [P Y|

12
<qtf exp[ — At — 7))LV ['Z (v, &)]|dv +

+(n—q>fexp[—z<r —)IILO [ Z (v, 5)]| dv

q 2 n—q A qr
<_._, Y — P ad
Fm T wm Ty
which proves that (3.9) holds for v=1.
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Let
(3.15) vty = sup "4, B) —"Z (8, 5)|-
lo<i<oo
We have
(3.16) Py mj2 (v =1,2,...)

under the assumption that *~*ZZ are continuous and that r'z|<R,
PZ|<R. Indeed, from (3.8) under the assumption that [[~'Z|<R,
PZl<R we obtain, by assumption (2.8) and remark 4, the inequalities

X —X|<q fteXP [—A(t—7)](A[2m)[VZ =]l dr <"mg/2n,
ty

Y — Y| < (v q)feXP [—A(z —0)1(2/2m) 12— 2| dz <"min — ) [2n

from which it follows that [[*'Z—"Z||<"m[2 for ¢>%,. From this and by
the definition (3.15) we immediately obtain the relation (3.16), which
was to be shown.

Suppose that the functions *Z(t,8) (v=1,2,...,p) are continuous
in the set o and the inequalities (3.9), (3.10), (3.14) hold for v=1,2,...,p~1.
We shall show that the relations (3.6) define the functions PHY PH1Y and
that the inequalities (3.9), (3.10), (3.14) hold for y=p. Indeed,

PZ\<IPZ—"""2)|+ P2
<@ Vgr 4 [14 27 4. 4 27N =[1427 .. 4270 gy
T4 follows by r=R/2¢ (cf. the definition of the set o) that PZ||<E, and
thus, by remark 4, the formulas (3.6) determine the functions Py pHY,

and since by the induction hypothesis we have also [P Z||<R, we obtain
from inequality (3.16)

(3.17)

Since (3.9) holds for »=p—1, we obfain from (3.17) and definition
(3.15) the inequality
Pz —-rZ|<2 Pqr  for

Pl <P (2.

134,

and from (3.6), the induction hypothesis (3.14) and W) it follows that rela-
tion (3.14) holds also for »=p.

Thus we have proved the existence of the sequence *Z(t,E)=X(,5),
*Y (t,5)) satistying the relations (3.5, (3.6), (3.9), (3.10), (3.14) and the
relations (3.11), (3.12), which are simple consequences of the relations
(3.5) and (3.6). For the inductive proof of relation (3.13), which, as has
been shown, is true for y=1, let us suppose that

(8.18) 1-17(4,58)>0, for oo,
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Since |[P~'Z(¢,5)||<R, we obtain from the assumptions W,), W,) and
(2.5) the inequalities

i
IPXI< q exp[—A(t—t) 17+ q(A/2n) fexp[—— A=) P Z (v, B)||dr,
fy

Pri<(n—aq) (2/2"')tfwexp (A= )1""%(x, 8)||dx,

from which, by A>0 and assumption (3.18), follows
IPZII< IPX]|+ [P X0 for

t—>oc0

on the basis of PHospital’s theorem applied to the integrals

i t
Ji= [ exp[=Ali— )P L (r, S)dr= e[ |4 (x, 5) | dr,
o ty

Je=if exp[—A(v—1)]IP'Z (7, B)l|dv= e“tf 6P E (v, B)| dr.

i.l?he sequence {”Z(t,E)}, which we have defined, satisfies also the
relations (3.13).

Now we pass to the second stage of the proof of lemma 1.

II. We assert that there exists a vectorial function Z (t,B)=(X(t,5),

17‘(3: ,E)) which is continuous in the set » and satisfies the following con-
ditions:

(3.19)  ’Z(t,5)>%(t,8) for y->oco in the set o,

(8.20) X (t,5)=45,

(8.21) IZ(#,5)|<R in the set o,

(3.22) Z(t,0,)=06,, for 1>t

(3.23) Z(t,B)~>0, for every fixed & when t—>co (| &||<r),
(3.24) A" X)/di= dX |dt, A*Y)/dt=>dY|dt in the set o.

The exigtence and the contin uit y of the funetion Z t,5) satisf ying
( H )
the rela tion (3 ‘19) follo WS fI'Om the uniform conver gency of the Series

’Z(t,E)—]—’g,;["“Z(t,E)—"Z(t,E)} (cf. (3.9)). The relations (3.20)-(3.22)

follow from (3.19) by (3.12), (3.10), and (3.14) respectively. To prove

(3.23) let us choose an arbitrary 6>0 and fi
nd
(cf. (3.19), (3.13)) ind % and Tg so large that

12 (2,8)-"2(t, )|<8/2
2, 5)l<s/2

in the set o,

for =T, (8 being fixed).
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Trom the above inequalities it follows at onee that

Wz, E)<o  for t>2Tx,

which shows that relation (3.23) holds true.

From (3.11), (3.19) and the uniform continuity of the function I9(Z)
follows the uniform convergeney of the sequences {d(X)/di},{d(’Y)/dt},
from which by applying once more relation (3.19) we obtain the relations
(3.24).

TIT. From (3.11), (3.19), (3.24) we obtain

AX |dt=AX +LM(Z), dY |dt=BY +I?(2),

which, together with the relations (3.20), (8.21), (3.23), proves that for
every fixed E(HEH<?‘),Z(t,E):(X(t,E),Y(t,E)) is an integral of the
system (3.1) satisfying the conditions (3.7).. Tt follows, on the basis of T
and II (ef. in particular (3.19), (3.22)) that the property P,) holds true,

1V. In the proof?) of the property P,) we make use of the following
theorem of the theory funetions of real variable (theorem A) giving only
an outline of its proof.

THEOREM A. If E=(&,&,.., &),

WEDW(E)  for

and all the derivatives of fumeiion *W(E) (v=1,2,...) up to the order p
with respect to the variables &,&,...,&; are bounded in common and have
a common module of continuity®) in the sphere | 5||<r, then the limit function
W (5) is of class G in the open sphere [E[<r and all the derivatives wup
to the order p of function W(5) are the limits of wuniformly convergent
sequences of the corresponding derivatives of functions "W ().

Proof. Denote by *F(5) the vector made up of all derivatives of
the function *W (£) up to the order p. By Arzela’s theorem (cf. [1], p. 132)
and the assumptions of theorem A it follows that from every sequence
%F(8)} chosen from the sequence {'F(8)} one can choose a sequence
#F (&)} which is uniformly convergent in the sphere ||§||<r. Thanks
to the choice of the sequence {a,} being arbitrary one ean easily show

y—>co in the sphere |S<r

3) This proof has been simplified thanks to a certain remark of A. Pl

4 Let f(Z) be a real valued function defined in the set Q. Let us set o(d,f)
—sup|f(Z)—f(E) for all £,£cQ such that ol&, £)<6. The function o(é,f)
is called the module of continuity of the function f(Z) if ¢(8) >0 when 6-0. We say
that the functions f belonging to a certain family F are equi-continuous in the set 2,
or that they have a common medule of continuity, if there exists a function o(d)
detined for 6>0 such that limo(8)=0 for -0 and o(J, fi<<o(8) for every function
f belonging to the family F.
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(cf. [3], v. II, p.127) on the basis of relation (8.25) and the definition
of the function *F(5) that all the derivatives up to the order p of the
sequence of functions *W (&) are uniformly convergent to the correspond-
ing derivatives of the limit-function W(Z). Thus the function W(Z)
is (cf. the assumptions of theorem A) of class C? in the sphere |5|<7.
5. We shall denote by DP*W(E) an arbitrary (fixed)
H) with respect to the va-

Detinition 5
derivative of the order % of the function W (
riables &, &,..., &,

From theorem A, definition 5 and relation (3.19) it follows at once
that in order to prove the property P,) it is sufficient to show that the
sequence {*Z(¢,5)} hag the following property P;):

PROPERTY Pj). There exist finite constants ay,ty,...,a, and increasing
functions oy (w),0y(u),...,0p(u) such that for every (t,E)ew,(t,E)em the
following inequalities hold:

(3.26)  |DFZ,B)i<a  for 1<v<oo  (k=1,2,...,p),
sory D BGA DTGNSl IE= B for v=1,2,.
St op(u)>0  for w-0  (k=1,2,...,p).

Proof. First we show by induction that for every (t,5)ew, (t,._.)é‘a)

we have
(3.28) Iz, 5)—
Indeed, from (3.5) and inequality W;) we obtain
I'Z (¢, 8%,
while (3.6) and (2.5) and inequality W,) imply the inequalities
nk“m B) X (2, 5)|

7, 8)<2¢|E— &  (»=1,2,...).

A< qlE—E,

<qn’7—"u+q}exp[ At—1)1(4/20)|*% (v, B)—*% (v, 5)||dr,

1% (¢, 8) =¥ (¢, 5)|

<(n— Q)fexp[—l(f—t)](l/%)}]"z(f,ﬁ)—'“Z(T,é)lldf,

from which, under the assumption that (3.28) holds for »=%, we obtain
the inequality
12 (t, 8) "% (1, )| < g||& — 8|+ (¢/2) (A[2n) 24\ E— &)+
+ [(n—g)/1)(4/2m) 2|5 — 5||=2¢ |15 5]
which shows that (3.28) holds for y=Fk-1.

icm®
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We shall denote®) by L, (Z) the Jacobmn matrix of the vector-
funetion L(Z) (¢=1,2) with respect to the vamables Z=(2,...
From agsumption (2.5) we obtain

(3.29) 1T (2)|I< A[2n IZI<R

and from the uniform continuity of the function L@) (%) in the bounided
and clogsed set |Z]|<R follows the existence of an increasing fumction
d(r) such that

' 12 (2,
8(r)—0

From (3.28), (3.10), (3.30) and by the monotonicity of 6(r) we
obtain the inequalities (v=1,2,...) .

(331)  |LE 074, 51— LY 2, 5)<s(2¢|5— i) 1,2),

from. which, by (3 29), it follows that for two vectors W= (w,.
and W= [wl, ,w,,) such that [|[W|<g, ]]W[1<ﬂ the inequalities

NIz, B W — (T Tz, 2 W |
(Af2n) [W =W+ Bo(2qI1E— B (i=1,2

2%n)-

for (i=1,2)

— L) (Z2)I< 8(12:— Zy)),

(3.30)
(i=1,2).

for r-0 -

(i=

L, Wy)

(3.32)

y=1,2,...)
hold.

Now we shall prove the relations (3.26) and (3.27) for k=1, showing
)ew, (t,8)ew the inequalities

(r=1,2,...),

by induction for every (3,
(3.33) ID"-*Z(t, 5)|< 2¢
(3.34) |\D'-%(t,E)— D' ‘"Z(LE)IKMM"1 5(2415— &)

The relations (3.33) and (3.34) hold for »=1 since from (3.5) and W,)
we obtain

(»=1,2,...).

D2, B)l<g, D%, 8)— D5, E)| =0

Agsume that (3.33) and (3.34) hold for y=1,2,...
they also hold for y=m--1, let us observe first that

(3.35) D'-{IO[Z(v,8)]} = (L ["Z (v, B)]} D' - "% (v, 5)’

,m. To prove that

(2=1,2).
From (3.29) and the hypothesis of induetion (3.33) it follows that

(3.36) LB ™2 (z, B} D' "Z (z,5)|<2qh/2n  (i=1,2)

s) Since p>=1, the functions L()(Z) (i=1,2), which are by hypothesis of the

class CPin the set |Z||<<R, are of the class O* in this set.

Annales Polonici Mathematici IT 20
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and by the hypothesis of induction (3 34) and mequa.hty (8.32), in

which we set y=m, W=D'-"Z(t,5), W=D'-"%(i,8), f=2¢, Wwe obtain

(3.31) LG 2> E)]}DI-MZ(T,E)~{LE’“Z))[’”Z(r,E)]}DI‘mZ( ,8)||
< (A/2n)(4gn[A) 5(2¢115 — El)+ 298 (2¢ 15— B))=4¢5(2q||E—E]).

From (3.6), (3.35)-(3.37) and W,) it follows (cf. [2], v. I, p. 233) that
DIix(E,E) =exp[A(t—14,)]D' 5+

#(3.38) + fexp[A t—)NLPH "2 (v, E)} D" Z (v, E) dr,

DY (3, E) = — fexp[ —B(r —) LG ["Z(x,5) 1} D" Z (v, 5) dv
[

and
D" X (¢, B < g+ (g/4) 2¢4 2,
(3.39)
(DY (8, 8)| < [(n— g)[A]12¢4/2m
and . R
|ID! "X (1, 5) — DX (5, )| < (a/4) 498 (24118 — ),
(3.40)

[D*-™+1Y (1, 8) — DY (1, B) < [(n — )/21448(2q|1E — 5I).

From (3.39) we immediately obtain relation (3.33) for »=m 41
and from (3.40) relation (3.34) for v=m-+1.

Assume that the relations (3.26) and (3.27), which are satisfied,
as has been shown, for k=1, hold for %#=1,2,...,h—1, where 2<h<{p.
The proof of the property P;) will be finished if we show that they hold
for k=h. )

It is obvious that if the function *Z(f,Z) has derivatives up to the
order h with respect to the variables &,...,&,, then

(341) DMIOrZ(,5)])="Ft,5)+ (L2, 8| D" Z(t,5) (i=1,2)
where the functions *F®(¢,5) (i=1,2) are aggregates of the product
of derivatives up to order A—1 of the functions *#(¢,5) by the derivati-
ves up to the order  of functions Z®(Z) in which "Z(¢,5) is substituted
for Z. These factors are, by our assumptions, bounded by constants inde-
pendent of v and have a common module of continuity independent of ».
It follows that the functions *F® (¢, Z) (i=1,2) are bounded by constants
independent of »

(342) [FFO@E,E)|<M in the set o for »=1,2,... (6=1,2)
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and the existence of an increasing function 6°(r) such that
PED (1,8 —FO (1, 5] < 6* (15 — 5)),

(i=1,2), &()->0

(3.43)

1<r<<oo for r-0.

‘We shall 'show by induction that for all positive integers » the
inequalities ’

(3.44) D Z (¢, B)| < 2nM /2,
(3.45) |D**Z(¢,8) — D*" Z (¢, 5)|

<(2nfA)[6° (|8 — Bll) + (2nM [3) 6 (2¢ )15 — ZI)))

hold; from which follow at once the relations (3.26) and (3.27) for k=h.

For the proof we observe that from (3.5) we obtain the relations
ID"2%(t,8)i=0, |D":'%(t,8)— D" Z(tE)| =0,

which show that (3.44) and (3.45) hold for »=1. Assume that the ine-
qualities (3.44) and (3.45) hold for every »<m (the hypothesis of induc-
tion). From (3.29) and the hypothesis of induction {3.44) it follows that -

(3.46) IO 20,5 D" 20, 5) <(A[2n)(2nM[A) =
v=1,2,...,m, i=1,2

and by the hypothesis of induction (3.45) aud the inequality (3.32), in

which we set W=D""Z(t,5), W= D7t ) B=2nM [}, we obtain
for »=1,2,...,m, i=1,2
(8.47) LYz, 5} D" 2,8 — (L 12, .é)]}D’”-”Z t,é)u

<(A2)En i) [ (|E— &) + (2nM[A) 6(2q|& — BT +

1 (202 [3) 6(2¢ |5 — Ell)

=618 — B+ (4ndj2)0(24) £ — &) v
From (3.6), (3.41), (3.42), (3.46), (3.43), (3.47), it follows that (cf. [2],
v. I, p. 233)

i
Dhmty =tj expl4 (¢t —)I{'FV (v, 8) + T "2 (z,8)] D" "% (v,8)} dv,
0

(3.48) DhmAly = —Texp [—B(x—)}{'F(z,5) +
t

+ LG ["4(2, B)) D" 24 (v, E)} d;

20%
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moreover, the inequalities
(3.49) |DF x| <2qM R, IDMTTY S 2(0— M4,
D+ X (2, 8) — DM"HE (1, 5)|

: (/226" (18 — £1I) + (4nL[2) 6(2q15 — B},
(3.50)

D™ Y (1, B)— DY (4, B)|
<[(n—q)/A1{26" (18 — BI)) + (4n ] [2) 5(2q||5 — 5]}
hold.

Since (3.44) and (3.43) for y=m-+1 follow from (3.49) and (3.50)
respectively, therefore the inductive proof of the relations (3.44) and
(3.45), and thus also of the property P;), is completed.

Lemma 4. The system (3.1), satisfying the hypothesis K, has precisely
one integral Z(t,8)=(X(t,5), Y, E)) satisfying ‘the conditions (3.7).
E(rr every fiwed t (12%,) the function Z(t,5) is of class C° with respect to

=(b1,b0y.-r 8 for El<r.

Proof. The existence of the integral Z(¢,5), which has the pro-
perties mentioned in lemma 4, follows from lemma 3. Denote by Z* (¢, 8) =
=(X"(t,8), ¥"(:,8) any integral of the system (3.1) satisfying the
conditions (3.7). From lemma 2 and inequalities W,) and (2.5) we obtain

IX (¢, &) — X*(¢,8)|

3
<q fexp[—A{t —)1(A20)]|Z (v, 8) — Z*(x, B)| dr,
(3.51) o .
¥ (@,8) — X (£,8)

< (n—q)fexp[—ur—tn(z/zn) 12(v,8)— 2" (v, 5)| d.

Let us set m= sup ||Z(z,8)—2Z" (v,E)|. From (3.51) we obtain

fyr<oo
IZ(t,8) —Z° (¢, B < (g/2) (2 /2n) m 4 [(n — @) /A1 (A[2n) m = m/2,
whence, by the definition of m, it follows that
Z(t,E)=Z"x,8) for t,<r<oo.
This inequality implies the unicity of the integral of the system (3.1)
satisfying the conditions (3.7). Thus the proof of lemma 4 is finished.

Proof of theorem 1 bis. Let Z(t,&) be an integral of the system
(3.1) satisfying the conditions (3.7). By lemma 4 there exists precisely
one such integral, and function Z(t), =) and therefore also the function
¥ (#,Z) are of class O for |&|<E/2q.

TS‘urfaoas formed by asympiotic integrals 309

It follows that the function

(3.52) Y(X)=Y (,X)

of the independent variable X is of class 07 for |X|<R[2¢. By W;)
one can prove that Z(t,5)eFg for t>t, (see def. 3). Since the
right sides of the system (3.1) are independent of the time i, it follows
from the definition of the funetion ¥(X) that ¥Y=¥(X), [ X[ <
<R/[2q is the equation of the set § (cf. definition 4, § 2). To prove
theorem 1,bis it is sufficient to show the contact of the surface § with
the hyperplane Y=6,_, at the point @,. Since the surface § is of class
C"(p=1), it must be shown that ¥ (0,)=0, , for i=1,2,...,q, o,
by (3.52) that

(3.53) Y, (4,0,)=0,_4 (i=1,2,...,9)
Let us observe that from lemma 2 it follows that
(3.54) Y(t,5) = — fexp[—B(r—t)]L('“” [Z(z,5)]dT.
£
Making use of (2.2), (2.4), (3.8) it is easy to show that
0 a2y«
(3.55) {E sz) [Z(t,E')]}szefz {L{Q) [Z(t,@q)]}Z& (t,0,) =GV Y, (1,0,).

By (3.55) we obtain from (3.54) (cf. (3.29), (3.21), (3.33), P,), W,))

2

(3.56) Y, (8,0,) = — Texp[——B(r —1)]GD Y, (v,0,)dx.
t
From (3.56), W,), (2.3) it follows that
(3.57) HYei(t,@q)K(n—q)(l/4n)szp[~Z(T—t)]!EY;‘(r,@q)lldr for ¢ 1,.

Let us set m;= sup || ¥y (z,0,)l: Now we obtain from (3.57)

tp<r<co

1 ¥, (8, O [(n— q) A [4n] (m;[1)< myfd  for 121,
whence, by the definition of m;, follow the relations
Y, (t,0,)=6,_, for i=i, (i=1,2,...,q),
and thus in particular also the relations (3.53), which were to be shown.

§ 4. To complete our considerations it suffices to prove lemma 1
only (cf. § 2). To begin with we shall recall some theorems of the
theory of matrices and linear transformations.
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Let O=(¢y) (4,j=1,2,...,n) be an arbitrary real square matrix and
Mshyye.. Ay the full sequence of all its characteristic roots. We assume
that there exists a positive integer ¢ such that 0< g<n and

Rei<...<Redy<Redy 1 <...< Rel,.

It is known (cf. [8], p. 295-296) that for every >0 there exists a non-
-singular matrix M such that the matrix

J=MO0M "= ( 0 J,
hag Jordan’s canonical form such that

1) A,44,...,4, is the sequence of all characteristic roots of the ma-
trix J;,

2)  Agr1shg4as---yAy 18 the sequence of all characteristic roots of the
matrix Jy,

3) the matrices J; and J, have the form K
[N, L,
N, Ly
’ lVr—l Lr-—l
K= N,
Uil E2p 1

gy €1
Uy

;i — . ;0 )
Ni:[;:]i gj]s Li:'[g 8,-] (1=1,2,...,7), l|egl<e N

7

where

for every index %, w (k=1,...,s) and g, (k=1,...,r), denote respecti-
vely the real and the imaginary parts of the roots of the matrix €, f,0
and the vacant places are occupied by zeros.

Denote by N the matrix

I,

, where sz[aj _ﬁf] (J=1,...,n).

B
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Obviously
(4.1) IE— Nj|<s'e

and on account of the form of the matrix &

e*eosfit — €sing t]

here §;=
» where S [e“"sinﬁjt e cos ;i

(j=1,2,...,7), the inequality

T 8
(4.2) . <2 S et 3 o
n=1 p=2r41
holds.

The above considerations lead to the following lemma:

LemMA 5. Let C be a matriz of the type T, (cf. def. 1, § 1). Then there
ewists @ number A>0 (dependent on the matriz C) such that for every >0 one
can find a real non-singular matriz M, and the ¢ matrices A, G, and
n—ig matrices B, H, satisfying the following relations:

43) MOM = [;?5] Jy—A+G, Jy=B+H,
(4.4) IGI<g s, [HI< (n— g%,
et < ge¥, le B (n—gq)e™  jor 130,

(4.5)

UAUK— AU for every vector U= (uy,...,%u,).

Proof. Denote by 4,,4,...,4, the sequence of all characteristic
roots of the matrix ¢ of type T, and assume that (cf. def. 1, §1)

(4.6) Rel < Reh<...<Rel,<0< Redy ;<. . < Red,.
Let 4 be an arbitrary number satisfying the inequality

(4.7) 0<<i<|Rek;] (1=1,2,...,n).

The existence of matrices 4, B of type N and of the matrices &, H,
M satisfying the relations (4.3) and (4.4) follows immediately from
the considerations preceding lemma 5. A;,2s,...,4, and A,1,4.0,...54,
are sequences of all the characteristic roots of the matrices 4 and B res-
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pectively. The inequalities (4.5) hold by (4.6), (4.7), the inequalities
of the form (4.2) and by the identity

UNU= (Ll('u’%_}' ug) +... + a7-(u§r~1+ 'M'iz)'r) + Tgpg1 (‘§r+l+ e + asui'

satisfied by the matrices 4 and B of the type N.
LemMMA 6. Assume that the matriw C of the coefficients of the system
of differential equations

(4.8) AH @t =CH+® (H)

18 of type T, and that D (H) is of class O° in the neighbourhood of 6,(p>1)
(4.9) D(6,)=0,,

(4.10) 3,(0,)=0,  (j=1,2,...,n).

Then there ewists a real mon-singular Uinear transformation Z=MH,
which transforms the system (4.8) into the system '

(4.11) AX|i=AX+INZ), aY|#=BY+I%(2),

where Z=(X,Y), satisfying the hypothesis K,.

Rroof. Let M be a matrix chosen according to lemma 5 for the
matrix ¢ and the number e=1/4n?. It follows that the linear transforma-
tion Z= MH transforms the system (4.8) into the system (4.11), which
satisfies the inequalities W,) and the relations

(4.12) IMNZ)=GO X +IM(Z), I®(Z)= @O Y +E9(Z)

where ¢ are constant matrices satisfying the inequalities (2.3), and
the function

(4.13) (E9(2), 29 (2)) = Md (M~ Z)

is of class OP in the neighbourhood of 6,°). By (4.10) we obtain from
the formula (4.13)

I/g)(@n>=@q Lg (@n)=@n~q (f’=] :27"‘!”’)

and since from the relations (4.12), (4.13), (4.9) it follows that Z™(0,)=6,,
I6,)= &, _, therefore the proof of lemma 6 it complete.

Remark 5. Lemma 1 is the immediate consequence of lemma 6.
Indeed from the assumptions of lemma 1 it follows that the function @ (H)
defined by the relation &(H)=F(H)-—CH, F(H)=(FOH),..., I!‘(’”’(H))
is of class C” in the neighbourhood of O, and &(8,)=6,, cb,]i(@n):@n
(i=1,2,...,n).

®) This follows from (4.13) since & (H) is of class CP in the neighbourhood of
Gy, and M is a constant non-singular matrix.

icm
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