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Cc OMMUNTIOCATTIONS

ON A NEW ANALYTICAL METHOD AND ITS APPLICATIONS™)
BY
P. TURAN (BUDAPEST)

The theory of diophantine approximation has played a pars in the
analysis and in the theory of numbers for a long time, Two theorems of
that theory are mainly responsible for it.

I. Theorem of Dirichlet. Given = posifive numbers a;,as,...,a,
and an integer ¢33 we ean find a i-value in 1<{t<{¢" for which the
ta,-values ave all nearer to a rational integer than 1/g.

If {} denotes the distance of the real number @ from the next in-
teger, then it follows that for an arbitrarily small positive & there is a real
t, such that

(1) fton) <e (v=1,2,...,%)
and

1 n
(@) 1<to<(—) .

&

TI. Theorem of Kronecker. Given # positive linearly independent
Q1,0s,.. 0y, the real numbers fy,fs,....f, and a positive arbifrarily
small ¢, then there is a real & snch that {to,—B}<e (v=1,2,...,n).

Here no limitations for ¢, such as (2), can be given. Linear indepen-
dence means that no relation ra-+7sas-+...+7,a,=0 can hold with
rational 7, except if r=r=...=7r=0 -

To give an idea of the applicability of these theorems we mention
some examples. The first and simplest is of arithmetical nature and re-
fers to the non-trivial solubility of the Pell-equation

2 —dyt=1

(@ positive non-square integer; =41, y=0 are the trivial solutions}.
An important step in the classical proof of Lagrange is the proof of the
solubility of the inequality

Ja—p) <
Y d—dl< B

*} Lecture delivered in Warsaw, Wroctaw and Krakéw in October 1952.
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with integer x>1 and @, which follows easily from Dirichlet’s theorem
for m=1. The second example is of function-theoretical nature, due to
H.Bohr, and refers to the question, raised by Lindelsf, whether or
not the zeta-function of Riemann is bounded in the domain ¢>1, [#{>1
of the complex variable s=¢--it. This function — introduced by Rie-
mann in 1859 for the study of the distribution of primes. — is defined
in this half-plane by-the series

(3) : c<s>=2is-

By a very ingeniots, completely elementary proof, Bohr answered Lin-
delof’s question in the negative. Obviously it suffices fo show that for
an arbitrary large positive w there is an s;=o;-+d with o;>1 and

) RE(s) 1+Z cos tl logn)

n=2
To show this Bohr wrote first
cos( tlogfn, - 1 '
2w
The first sum is estimated at a fixed N from below for a suitable choice
of t. To do this he applied Dirichlet’s theorem with

Rc.(s>>1+2

n=2

1 1 ) .
E:szz_)', a,,:—z—‘_—zlogv (»=2,3,...,N).
Choosing the resulting ¢, as #; we have
2=
cos (1, logy) 2z cos — (»==2,3,...,N)
where for ;
(5) 1€
holds. Hence
REFENE 1 1 &
Ri{o+it)>cos—|— +—+...F 5] — $ e
5117 29 N7 71:‘7-{-1
Q,r 0 o0 ] DY
>cos; yv)r°~2 D N> (‘— — __._ﬁ) —_1__
5 nN1 3 (N+1) o—1
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as the integral-criterion shows at once. Now fixing ¢=0, with o;=1+1 /4w
we choose N so large that
L2 1
(¥t Ty

Then, choosing {; as in (3), Bohr obtained

R{(oy+it) >

—. e =0,

i. 6. {(s) assumes indeed arbitrarily large values in the domain o>1,

t} 1. Usually we express growth as a function of £; using in an essential

manner the limitation (5), we obtain also

3 7 Y 1 r ’ 3 K3 s !

(6) R (o1 ity) > Elog logty  (# arbitrarily big, o;>1).
Both former applications used Dirichlet’s theorem. To see one of

the numerous applications of Kronecker’s theorem, we consider the

analogous question concerning 1/f(s). We have for ¢>1

where w(n) stands for Mobius’ number-theoretical funetion, . 6. u(n)=0
if # has a quadratic factor greater than 1 and (—1)" if % is built up from r
different prime-factors. As Bohr showed, a similar reasoning — only
using Kronecker’s theorem instead of Dirichlet’s — shows also that 1/Z(s)
assumes arbitrarily large values in the half-plane o>1. This, in 1911,
was a very surprising result since it means that [(s) assumes
for 61 arbitrarily small values, whereas the famous conjecture of Rie-
mann, so far unproved, asserfs that all the zeros of [(s) lie in the
half-plane ¢<{1/2.

What is the essence of the preceding proofs ? In both eases we had
to estimate trigonometrical sums of the form

N
2. a, git log»
=1
) N
for suitable i-values from below by }|a,|. Applications to general Dirich-
v=1

let-series raise an amalogous question for sums of the form

N
1 + 2 a, GZnLayt

y=2

(< ay<<...<<ay).
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Now Dirichlet’s theorem holds again for the case when ¢,>0 and
q<o;<...; and Kronecker’s theorem holds if the o, are linearly inde-
pendent and the a,-coefficients are arbitrary. In the first case Dirichlet’s
theorem gives at once the existence of a # such that for an arbitrary
0<e<1/5

nw

'1_|_ 2 (L,(fmmvl'
e 1

— s 0% 2.

:1+2n7(z,,

»=1

(Ta) 1<i'< (i) (7h)
&

In the second case Kronecker’s theorem gives for an arbitrary positive &
smaller than, say, 1/4 a real 1" such that

14 3 4, gt
(8) —_— e 51
1+ )
p=1

but without any upper limitation for .

The solubility of (7) and (8) is a simple consequence of the theorems
of Dirichlet and Kronecker respectively. What can be said conversely %
First we consider the relationship of (8) and Kronecker’s theorem more
closely. We fix in (8) the positive |a,|-values and the linearly-independent
a,-8ystem. Then, if the trigonometrical inequality (8) has a solution in ¢
for an arbitrarily small positive ¢, we can easily deduce Kronecker’s
theorem for the same (a,,q,)-system. Hence, as fo their content, the so-
lubility of the trigonometrical inequality (8) and the theorem of Kronecker
are equivalent. The solubility of (8) can be proved also independently
of Kronecker’s theorem. This indeed has been done in essence by Bohr,
In the same way one ¢an show more generally that Kronecker’s theorem
is equivalent to the fact that for any special positive |a,|-system and a
system of #,2,,...,%, complex nwumbers with linearly independent
arguments and arhitrarily small positive ¢ the inequality

"
114 Y a2t
(9) e >1—c
143 s,
v=1

has a real i-solution. Of course the condition [#|=1 is no longer requi-
red.

The relationship between Dirichlet’s theorem and the simultaneous
solubility of the inequality (7) is more complicated. The difference is
caused by the fact that Kronecker’s theorem iy always stated only for
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arbitrarily small ¢ while Dirichlet’s theorem in the usual form iz stated
for all 0<e not larger than, say, 1/b, and not, as we did in (1)-(2), for
“small” e only. The reason for that lies obviously in the limitation (2).
Nevertheless, for most applications in the analysis the form (1)-(2) suf-
fices; we confine ourselves to the comparison of (1)-(2) with (7) if the po-
sitive a, and «, are fixed and ¢ is small. In the same way as before we can
show that they arve also equivalent. As to a proof of (7), independent of
Dirichlet’s theorem, it is highly probable that this can be done; I have
been able to prove it for special o,-sequences like g,=logy, and probably
the general case can be settled in this way after some changes. That x.vould
be very desirable; it would prove that the solubility of (7) is ¢ ‘essen’nmll.y”
equivalent to the form (1)-(2) of Dirichlet’s theorem. The connection
hetween Kronecker’s theorem and its trigonometrical form (see (9)) has
its counterpart in the following relation: the form (1)-(2) is “‘essentially”
equivalent to the fact thab for any special positive ¢-system, for any
system 2y,...,2, of complex numbers and for all sufficiently small & the
inequality
n n s
[14+ 3 a,2]] |14+ 3 a4 |
(10a) - = = > 608 3me
1+Zla,,|z,,1‘ 1+Z:a,vm\’

has a solution satistying the condition
1 n
(10b) 1€ (:) .

“Hssentially equivalent’”” means that from (10) we can ded‘uoe the
inequality (1)-(2) only in a somewhat weaker form, replacing & in (1) by
another function of ¢ which tends to 0 with &

The inequalities (9) and (10) both have a very similar form; both
estimate under special conditions the ‘‘power-sums”

n
1+ az|
from below for special t-values, by
N .
143 ) s,
p=1
The localisation of the f-values aceomplishing this is either impossible or
inexact but the range of this {-value depends only upon e; however,. in
many problems of analysis — as we shall see — a much better localisa-

tion would be necessary even at the costi of sacrificing something of the
strength of the lower estimation.
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In fact, the lower estimation is very strong if we take into account
that for all {-values

kd
14 3 a4 |
__..__7.:‘1,_ <1.
14 Yia| ],
: =1

The first question was to find appropriate expressions — which may
be called norms — for the lower estimation. In a systematic study of
this question I found that besides the expression

1+ a EA

the Bohr norm, also three other norms play an important role. These are,
if z,=1, ‘

M ()= max |3,  My(t)=( min [},

7=0,1,....n 5=0,1,...,n
My(t)y=(1+ 2; a,[* 12, %)%,

the last may be ealled, for certain reasons, N. Wiener's norm. It is not
impossible that in the course of research the necessity of other norms will
also emerge. Another important observation was that the lower estimation
can be allowed to depend also upon the coefficients @, in a reasonable way;
only % showld be independent of the configuration of the %'). At the cost of
tl}l\;ase concessions I have Deen able to prove two lower estimations of

1Y b,#] by the norms My(t) and M,(t) which hold for a ‘“sufficiently”

dense set of t-values and without any restriction upon the b,-coefficients
and z,-nuwmbers. The two main theorems I have obtained are as follows:

TEeoREM L. If m is an arbitrary positive number, then the inequality
|,‘§ [)v?.” " P

> >,
M,y () 6(m+n)/ 14

has am integer-solution t=t, such that m Lh<<m+n.

Another, sometimes more convenient form of this theorem is the
following
[ A

') Added in proof. Since that time I realized the importance of lower estima-
tions independent of the ay coefficients only. In my book entitled Uber eine newe
Methode in der Analysis und deren Anwendungen printed in 1953 I did not realize
it fully, though this book contains results in that direction already.

icm®
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TaEoREM Ia. If 0<a<Cbh, then the inequality

ML)
has o solution t=t;, with a<t<b. Here 2 means ¢'°%% with an arbitrarily
fimed values of the logarithm.

The second main theorem refers to M, () and is of course deeper.
TrEOREM IL. If m is an arbitrary positive number and if 21| =) > ...
=l2,!, then the inequality
n
| 28,2
yml

[ "
= s in (b +Dyt... b
Ma () >(250 (m+2n)) ,:nf”n,J 1+ 7

has an integer solution t="1, for which m<t,<Lm-+n.

1502l y_an

The proofs of these theorems are elementary though somewhat
artificial; this refers in particular to that of theorem II.

Here is a sketch of the proof of theorem I. It is easy to reduce the
proof to the case when M,(f)=1 and m is a positive integer. Then we
form the auxiliary polynomial

n

ha=]] (1— ;) - Z:ZD'OIZZ

. =1
and the power-series
1. 5’ &7
fi(z) ~—Z=o :

which converges for [z]< 1; the absolute value of tfhe coefficients ¢, and
d; can be estimated easily from above. Forming the further auxiliary
polynomial

1 M0 ,
(11) fo(5)=1—fi(2)sp (—) =Yg

fl 1==0
of degree m--u (wheve s, (1/f;) denotes the m -th partial sum of 1/f;(2)),.
we may observe first that the coefficients dg,ds,...,d,, vanish, further

. that f,(2) assumes the value 1 for z=g2;,2=2,,...,#=2, and finally, that

the absolute value of the remaining coefficients d; can easily be estimated
from above. Herice, replacing in (11) # by #;, multiplying by b;, and 'sum-
ming for j=1,2,...,n, we obtain the identity

’Hl-}-n , n 7 n
X @l 3= by,
l=m+1 =1 j=1

Colloqninm Mathematicum IIT. 2 7
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from which theorem I follows at once if the estimations for |dj| are used.
The proof of theorem IT is based on similar ideas but is much more ela-
borate. Extensive use is made of the well-known theorem of H. Cartan,
aceording to which for a given polynomial g(z) of degree N and a given
positive H the inequality

holds on the whole complex plane except a set which can be covered by
at most N circles with the radius-sum 2H and of an integral-representa-
tion of the coefficients of the Newton interpolation formula due to Nor-
lund?).

The applicability of these theorems is indicated already by the fact
that they estoimatie a sum from below essentially by its minimal or max-
imal terms, practically without restrictions, which could not be said
either of Kronecker’s or of Dirichlet’s theorem. The advantages of much
better localisation will be clear from the applications. The dependence
upon the coefficients, as regards simplicity, leaves still much to be de-
sired, particularly in the case of theorem IT. This is the reason why the
appHeations of this theorem are confined to the case of positive b;, where
the critical factor can be replaced simply by minb;=min |b;l. To remove
this obstacle would be an important question of the theory. The  hope
that expressions on the right in theorems I and IT can be replaced gene-
rally by maxlb;] or even by min || is removed by the simple counter-
-example

b=1, b2=b3="'=b”=_;i_1’ B =m=...
It would he interesting to find another form of theorem IT, where the
right side depends only upon min [b,], even at the cost of imposing further
simple geometrical restrictions upon the z,, for it would also have appli-
cations. Amother unsolved question, important for applications in the
prime-number theory, concerns replacing theorems I and II by one-
-sided theorems. Counter-examples show that even theorem I cannot
be replaced by one-sided theorem if only the positivity of the coefficients
b, is required. It is not impossible, however, that for

1+ 2
f=2
%) Added in proof. Recently we showed with Vera T. Sés that the denominator
250 (m+2n) can be replaced by 104 (m+n) and the new proof can dispense with
Cartan’s theorem. What is the best-possible constant instead of 104 we do not know.
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there exists a one-sided theorem. In a particular case this problem
has also been stated by 8. Chowla in the following form: if X is an
arbitrarily large positive number and the number s of the different
integers A,,...,4, exceeds a limit depending only upon K, then the

K]
minimum of the polynomial } cosAx is less than —K.

ya=1
The theorems I and II, as regards their dependence upon m and n,
are nearly the best possible if m is large, as one can see from suitable
examples. They become not very exact, though not trivial, also in the
cage of m=1, by=by=...=b,=1; since also this case has an interesting
application, as we shall see, it is Worth-whﬂe to improve it. One can easily
show that the inequality

\Zfl
AT

has an integer t-solution for 1<¢<n, where equality can be reached.
Concerning M, (¢) I can show that the inequality

2 log
(2 wmy Ti 1, 1
The Tty

has an integer i-solution with 1<(t<{n and my late pupil N. Schwei-
tzer showed the same solubility of the inequality

lZ'z‘l 1
ML) Z3 '

in the interval 1<<$<2n. The interesting question whether or not in the
inequality (12) the right-side can be replaced by a constant independent
of n is left open in spite of the efforts of some mathematicians (P 126);
an affirmative answer would be of significance in the approximative
solution of algebraic equations.

Wow I shall turn to the applications of the theorems mentioned above.
They concern, at present, the theory of power- and Dirichlet-series with
gaps, the theory of quasi-analytical functions, the approximative solu-
tions of algebraic equations, differential equations, the approx ‘mation
by the translations of a function, inaugurated by N.Wiener, various
questions of the prime-number theory and of the zeta-function of Rie-

7%
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mann. But before turning to them I shall discuss another application,
which shows most clearly the advantages of better localisation. It con-
cerns the estimation of the N-number of real zeros of generalized trigo-
nometrical polynomials

kid
Flay= Y ¢eosd,z where 0=4<L<...<],
v=0

and positive ¢,-coefficients in an interval (0<)a<o<La-td. In the cuse
of integer i, we obviously have N<(1+[d/x])4,, independently of the
individual values of the ¢, and of 4;,4,...,4,_;. To obtain a similar result
in the case of arbitrary real I’s we shall cover the segment oo <{a+d by
a cirele |z—2y|<{r and estimate, instead of N, the number N’ of zeros
of f(2) in the cirele |z-——2|<{7. Applying the well-known estimation of
Jensen we have

(=)
f(z)

The whole difficulty obviously lies in defermining a z, — we may assume
it as real — so that |f(2)| should not be too small. Essentially, this can
be done by Dirichlet’s theorem. But then as regards z=um,, z, being
real, we can only give the following estimation: 1<#,<<100"; since the
circle |¢—a,|<{r must cover the segment a<{z<a-d,r must be chosen
very large, about (a--d)100" which spoils the upper estimation of

N'< max log

|g—z0f <<er

max [f(z)]
|g~—zoj e
congiderably. Similarly, to use simply a covering circle around the origin
leads o a too rough estimation. But using Theorem Ia, instead of Dirichlet’s
theorem, we can choose @, in (@,a-+d), ¢. ¢. & suitable r is not greater
than d, and although the lower estimation of f(z,) thus obtained is weaker,
it is compensated by the advantage that a mueh better estimation of

max [f(z)|
[e—mo| e
is offered in thiz way. We obtain the estimation performing the details
6 7
(13) N<Qn+1u@—@%11+3mm

1. ¢. the estimation is again independent of the ¢, (apart from their posi-
tivity) and of the exponent 4;,4,...,2,_1; however, it is dependent upon
the number » of terms, upon a, ¢. ¢. upon the position of our interval
of length'd. As the example f(x)==cosl,z shows, (13) is essentially the
best possible. By the way, it would be an interesting task to investigaté
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whether or not a similar theorem holds for arbitrary real coefficient and
also for the general polynomials (P 127) :

. .
(@, co8 4,5+ D, sin ,3), 0= Ay Ay < A%
v=0

We turn next to applications in the theory of power- and Dirichlet-
-series with gaps. First we sketch a proof of the classical gap-theorem of
Fabry; this asserts that if

where the integer A, satisfy Fabry’s gap-condition A,/v—oco then every
point of the convergence circle is a singular point. To prove this we
need first the following theorem (which has been recently rediscovered
and generalized in several directions by Bochner). Let

gw=§&f

be regular in |z{< 1 and in the sector lz|<1+4, laxczi< 6. Then there is
a summation-matrix
: Cooy
G0y Cn1y

dependent only upon 4 such that in the domain 2| < 14-6/2, larce|<(6/2

& : '3
(14) lg(2)—Pu(g)i= Ig(Z)FZGGn,B,Z”Kﬁ
for a suitable-positive $=15(5,9)<<1. Further we observe that a simaple
application of theorem Ia shows that for arbitrary complex C,-coefficients

’ n . 4:8 n n o
(15) max |ZC’,0“"’!<(—-51) max | 3 C,6%).

0 x2n p=1 asrLat+s v=1

3) Added in proof. A further theorem comparing 1+ 5 b,7, with its Bohr norm
v=1

gives as an application that the number of zeros for a<<zr<la+d in this general case
is less than 9dA, - log (4n+2)--2nlog (104,/d) with d= min (4, —»). It would

v=0,1,...,5-1
be of interest to remove also the dependence upon &, if possible.
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In order to deduce Fabry’s gap-theorem simply from (14) and (15),
we may proceed. as follows. If Fabry’s gap-theorem were not true, then we
might suppose without loss of generality that the circle of convergence of

f(z)=§ A,
with 2,/v-+co is the circle jo|=1 and. f(2) is regular for a sector [s] <147,
larez| < y. Putting 2=pe™ in P,(f) (see (14)) we have

n

P (N—=P3(f)=2 {(‘72,.+1,1,, = Oaa) 4,0"} |- W Y G

p=1

Using (15) we obtain for 1—gn/2<e<1+9/2

96x \"+*
() maxip, ()Pl (SE) T max PPl
|arcz|=<9n,/2

But using (14) we obtain
max [P, (A—P, (A< max |P,,, ()—f)|+

12| =¢ z]=p
|are zl<n'2 |arce| <w/2
+ max P, (f)—f ()| <ot f O <200
!arI:fLIZen/z

Thus from (16), using the gap-condition for the first time, we should

obtain
' 967 \ (V1)) An 1§\
max 2, (-2 <2 fo(22) 7 <2 (M)

jl=c | 2

for all n>n,, 4. 6. the series

2 (PrnH—Pa(h)

would be uniformly convergent for 1—n/2<|?|<<1-+9/2. But this would
mean that f(2) is regular in the circle |2{<{1-+%/2, which is a contradic-
tion already. The same method is applicable also to Dirichlet-series and
vields the theorem that for the function
h(s)=3 D,e~"*, h<k<...,
n

if %,/n->co for m-—>oco, the points on its convergence-line are either all
regularity-points or all singular-points of h(s).

Another application concerns a theorem of P6lya dealing with in-
tegral functions satistying Fabry’s condition. His result, a little vaguely

icm
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expressed (a special case of which has been rediscovered by Zygmund
and Marvcinkiewicz) shows that an integral-function of finite order
satisfying Fabry’s condition has the same order and type in an arbitra-
rily small angle as on the whole plane. Now let

e an integral function satisfying Fabry’s eondition. A simple approxima-~
tion process and suitable application of Theorem Ia yields the following
general theorem.

Let M(r,f) denote the absolute maximum of f(z) on [2|=r and
M{r,f,a,f) the abgolute maximum of f(z) on the arc aarc2< f of the
cirole || =7.Then for arbitrary ¢ with 0<C2<{1/2 there is an 7, =1,y (f,e,f —a)
such that for all r>7, we have the inequality
487
B—a

Inequality (17) is not trivial if M(r,f) increases ‘‘mot too quickly’?,
and that is amply satisfied in the case of integral-functions of finite order.
One easily obtains from it the above mentioned theorem of Pélya in a little
strengthened form, and varioud theorems can also be obtained in this
way, approaching a conjecture of Pélya according to which for an integ-
ral-function f(2) of finite order satisfying Fabry’s gap-condition the
relation -

17) ' M, NH<

M 20, 1) M(r,f,a,B)

— logm(r,f) _
o log M (r, f)
holds (Wheré m{r,f) denotes the minimum of |f(2)| for [¢]=17).

Next I consider briefly an application in the theory of differential
equations where the results, though very imperfect in form, seem to me

to contain something new. We consider systems of the form.

dm, ,
(18) d’t’” = 3 150)a5(0) (»=1,3,...,n).

The classical theorem of Poincaré, perfected by Perron, asserts that
if for suitable constants a,; we have

lm f,{t)=0,,
then i too ‘
— 1 .
lim -—log (1P 4105y o [l
f— oo 4T .

exists and is equal to one of the n quantities Eg, where the o, are the
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zeros of a certain characteristic equation of n-th degree. The significance
of this result lies in the faet that with its help one can decide without
knowing the explicit form of the solutions whether or not a slight change
of the initial values changes the solutions ““finally”, 4. ¢. for large f-values
sometimes considerably; these are questions of stability. The question
how Poincaré-Perron’s theorem can be “finitised” is of interest in itself,
but it can also be of importance, perhaps, in astronomy. First of all the
interval 0<t< oo must be replaced by a finite one, say a<{t<<a-+d, ¢ being
positive. Then the lim in the hypothesis must be replaced by an expli-
cit estimation of the quantities

(19) M, = max If,(1)—f,(a)]
egiSat+d

Since in lim we have a lower estimation of “big” values assumed by

S, @) for 0< i< 00,

y=1
therefore in the finitised form we expect a lower estimation of

n

max Y|z, (1)
agigat+d v=1
Owing to Theorem ILa this can actually be done if the quantities A, are
small and the estimation '

(90) Zn: ) e2la a LITANE Y
2 max Y&, (> = |- M, (0)F
a<t<a+dv=1! ol il (6(a+d)) r%/lilv(-())\ )
where | denotes the minimal value of the above Rg,, can be proved. What
makes this result unsatisfactory is only the circumstance that, at present,
very strong restrictions must be imposed on the M,; roughly speaking
we must have essentially
ki
(21) S MI<dnem et
re=l
whejn‘a C depends only upon the system, not upon « and 4, i. ¢. not on the
. position of the interval (4,a4-+d). It is very probable that (20) holds
essentially under the much weaker assumption that

n

2=

r=1

(22) '

if C sufficiently small but independent of & and 4 (P 128).
.Next let us say a few words on quasi-analytical functions. In a less
precise and more general formulation, as usual, we shall deal with the
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COMMUNTIOGCATIONS 105

question of characterising classes of funetions in e<{x<b with the follow-
ing property: if two functions of the class show “a similar behaviour
in a neighbourhood of a ¢” where a<¢<(b, then they are identical almost
everywhere in a<Cz<b. The expression “similar behaviour in the neigh-
bourhood of ¢” can be interpreted in different ways. I mention here only
two possibilities. In the usual sense we shall deal with infinitely often
differentiable functions; the “similar behaviour of f;(#) and fo(z) in o’
means in this case that

1(0) =1 (0) (n=0,1,...)-

Tn this case the well-known theorem of Denjoy-Carleman states that
the class of functions satisfying
i", 1
max |f™ (6)}= M where —— =
agxsblf (@) " ~4 min ]/M,

=
form such a quasi-analytical class. 5. Mandelbrojt defined, for a fized
positive g, the “similar behaviour of the functions f,{#) and f.(») in 67
by
14
(23) Hm ¥ [ 1, (8)—fa ()] dt<< oo

S0  eoh

+ oo

where a<<¢<D, and he was able to characterise quasi-analytic classes
in this sense for a=0, b=2x by expanding the functions into Fourier
series and restricting the actually occuring exponents. Now the Theorem Ia
makes it possible to find “dual” theorems if we replace Mandelbrojt’s
definition by the slightly narrower one

(24) hm 62 max |f; (1) —F (1) < oo.

h—>40 e-hgtge .
The functions of a quasi-analytical class either in the sense of (23) or in
that of (24) are of course not necessarily derivable. One ean also charac-
terize quasi-analytical classes in the sense of (24) in the whole interval
(—oo0, co). Such a class is formed by all functions of the form

(23) fo)=23 a,6™*
with the coefficient conditions

(26) lim o®elog Ve ¥ |q,] < co.

w—>00 n>w
Thus we have found that all funections represented by series of the
form (25) with restriction (26) form a quasi-analytical class in the sense
of (24) for (—oo, 4 o0).
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The next application concerns functions of the form

! n
(27) G(Z)=Z; a,f(b,2)
_ where f(2) i3 an arbitrary integral function of finite order, the @, and
b, arbifrary complex numbers. As the example

o

= 3L

p=1

A5 _
v ¢ b ﬂ'v =1 2

(28) n=3, b
shows, @(z) can identically vanish, 4. e. can be of smaller order than f(z)
itself. Such expressions as the one in (27) occured first in Wiener’s theory
of Tauberian theorems on functions of real variables. As regards funetions
of complex variables, A. O. Gelfond has discussed the following inter-
esting question: what are the necessary and sufficient conditions which
the integral functiom f(2) must satisfy in order that all function F(z)
regular for |2|<CR should be uniformly approximated by a G(z) of the
form (27), the a, and b, being chosen appropriately. The question of uni-
city of such an approximation leads in a mnatural way to the question
of giving a lower estimation of max |@(z)] by max |f(z)|, i.e. to the ques-
2} =1 8| =1
tion when G(z) — which, of coulrée, is always [(if not greater order than
f(z) — is of the same order as f(z). As the example (28) shows, one cannot
expeect such result without any restriction upon f(2). Theorem Ia makes
it possible to characterise a general class of integral functions f(z) of finite
order such that G(z) is an integral function of the same order as f(z) itself
n
if only > a,70.
el

So far all applications have referred to Theorem I. We have. men-
tioned that if m =1, then both theorem I and II become rather weak,
and in the case of equal coefficients we have replaced those theorems,
uging another method, by a stronger estimation. Even the estimation
belonging to Theorem II has an application in the approximative solu-
tion of algebraic equations. There is a well-known rule, the so-called
rule of Graeffe-Bernoulli, according to which, having the equation

;fo(m)=£: a,i&" =0

p=0

t0 solve, we have to form the sequence

fl(m)=fo(l/9’7)fo(“]/;';}v

(@)=t (V) ot (—13);

(29)
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and if
(»=0,1,...)

it has been asserted thaf; denoting by #;, one of the zeros of greatest abso-
lute value we have .

i1ram
aﬂ-—l,v !

(31) |2y =1lim.

»—>00

Oy

This is actually true if 2z, is the zero with the greatest absolute value,
but — though never explicitly mentioned, not even in Runge’s Enzyklo-
padie- article — false in general. Ostrowski gave in 1940, in a very
thorough paper in Acta Mathematica, 2 modification of the rule of
Graeffe-Bernoulli by means of which he was able also to replace the
lim in (31) by an inequality for all »-values. His idea, essentially, was ’70
correspond to the coefficients of f,(x) (n+1) other values by & egrtzun
polygon-construction and o work with those. Now the above-mentioned
form of Theorem II makes it possible to save the rule in another way.
Among the many possibilities T mention here only one. Let ns form
again the »-th Graeffe-transform

() =g, ty, B+ .., 8

and with these coefficients determine the quantities 8,,82,...,8m SUCCes-
sively by the Newton-Girard formulae

=1, .

814 @po1 =0,
8+ 0'11_1,,‘81+2a'nw2_v=07
(32} St 1,801t + Oy, 81 410800, =,

Sant G181 F - 0180 + 8, 8, =0.

Then the maximum of the quantities |s;|*/ (j=1,2,...,2n) will be the
approximative value |%|%; more exactly we have
1 N 1211 U
—) < — L2 .
(33.) (”) T ( mnax |sM)? -
F=1,...,20

We have already mentioned the conjecture that the above-mentio-
ned stronger form of Theorem II for equal coefficients and m=’1 i§ not the -
strongest. If this were true, it would have an important appheatxon here,
since then max |s;|"/ would be replaced by max 1,7, which would re-

j=1,..2n .

f=1,..,%
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duce the calculations very considerably. By the way, we notice that all
necessary computations are built up from the four fundamental opera-
tions and the extraction of roots; hence the above theorem can perhaps
serve as the theoretical basis for a computing machine solving algebraic
equations.

Finally we turn to applications which are perhaps the deepest, and
use Theorem II. They concern the distribution of prime-numbers and
the theory of zeta-function of Riemann. As is well known, Riemann intro-
duced in 1859, essentially for fthe proof of the prime-number theorem
conjectured by Gauss and Legendre, the function {(s) of the complex
variable s=o--4, defined for o>1 by the series

(34) )=

W

as I'have mentioned. The paper of Riemann consists only of 9 pages, but
its influence is as great now as it was at the end of the last century, when
Hadamard was able to make the first steps to prove some of the asser-
tions stated in it without a rigorous proof. Now all of his unproved asser-
tions are proved except one. This, the famous conjecture of Riemann,
asserts, as I mentioned formerly, that the function {(s) (whiech can be
analytically continued over the whole plane and has only one pole at s=1),
does not vanigh in the half-plane ¢>1/2. This conjecture has been a con-
stant challenge to all analysts till now, and advance can be made only
by the héaviest weapons. Hilbert said once that if he slept for 500
years and then awakened, he would first ask is Riemann’s conjecture solved.
or not. Also the papers left by Riemann show how much effort lies behind
the few lines he has written on this subject. Some of the assertions of his
paper have turned oub to be false, e. 9. he asserted at the end of his paper

that the number = () of the prime-numbers not exceeding x is always
z

less than the Gaussian approximative-value [dvjlogv, and after Erhard
2

Schmidt’s first results Littlewood disproved it in 1914. Perhaps
this is one of the reasons why some analysts have doubts as to the correct-
ness of the conjecture. Anyway, it is known that the strip 0<<o<<1 con-
tains an infiniby of zeros (so called won-trivial weros) of {(s) and they
lie symmetrically o the point s=1/2; this means that no half-plane
o>% for $<1/2 can be free of zeros. Thus the proof of Riemann’s conjec-
ture would also mean that all non-trivial zeros lie on the line o=1/2.

Now, in the investigation of the question there are five trends; to
some of them I have nothing to add. The first consists in estimating
the number of zeros in different subdomains of the strip 1/2< o< 1. After
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the first results of Bohr, Landau and Carlson, the sharpest results
have been Teached by Ingham; to give an idea of them I mentior} only
that denoting by N{a,T) the number of non-trivial zeros of {(s) in the
domain o>>a, 0<t<<T, he shows, for & fixed a where 5/8 LaLland I 22,
the estimation

(35) N(a,T)<e, T log” T

with a numerical ¢,. This — together with a result to be mentioned later
and with another estimation of the same sort but valid for 1./2 <aLbH/8 —

has been of great importance in the theory of numbers, for it .has epabled
Ingham to prove a theorem which 25 years ago seemed entirely 1mpo§-
sible, namely that between n® and (n-1)° there is a prlme-number if
n is sufficiently large. For 1/2<a<(5/8 he proved — not in the strongest
form — the estimation

(36) Na, T)< e T * Log® T.

This and (35) shows anyway, that the estimation is more difficult near
the line o=1. As Ingham has remarked further, one could even pro::—e;
that for each fixed positive & and n>>1,(e) there is a prime between #~ i

and (n4-1)°* if, instead of (35) or (36), we had for 1/2<Ca<1 the esti-
mation

(37) ' N(e, T)<e; T =9 log* T,

where 5 — and later ¢,,... — are all numerical constants. Now Theorem IT
has made it possible to prove (37) essentially near a=1, more exactly
to prove the existence of a ¢,, where 1/2<6,< 1, such that for o, <axcl
we have

(38) N (a, T) << 05 T2+ 000 —a7 g6 Tt

Tt is interesting to note that our method works in the inost critical re-
gion; here it constitutes the best estimation at presex?t ).‘ )

The proof of this, as well as the remaining alpphoat.long, Is rather
complicated; for lack of time I have to confine myself to indicating how
Theorem IT will be applied. We have a rational function of the form

where

4y ddded in proof. After some improvements the right side can be replaced
yu1

by TH-)+ (1
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and a real m much greater than #. Then we have, for an infeger & with
m<L k< m~+n, the inequality, 4. ¢. the k-th derivative of U (2) for a suitable
k from a “small’’ interval can be estimated from below by mawimal term
alorne.

The second trend consists in finding in the strip 0<<o<<1 possibly
large domains without zeros of {(s). In this respect the results are rather
poor at present. Using the ideas of Littlewood and Landau and recent

- estimations of Vinogradov on trigonometrical sums, one can show
the existence of a ¢, such that {(s) does not vanish in the domain

(39) P T
(logt log logt)

3 12>04.

This result is also a very important tool in the proof of Ingham's theorem.
To this field I have nothing to add at present. Nevertheless I think it very
probable that Theorem II will give results also in this field; I mentioned
it only as an introduction to the third trend. By this we see that we are
not moderate if we confine our attention to the so-called guasi-rieman-
nwian conjecture which asks only the existence of a & with 1/2<{#<1 suech
that £(s) hag in the half-plane o> at most a finite number of zeros.
As @ matter of fact, for most applications the validity of this weaker
hypothesis would be sufficient. The third trend tries to find equivalent
formulations for Riemann’s conjecture; we try to do that only for the quasi-
-riemannian conjecture. Theorem II has made it possible to show that
the quasi-riemannian hypothesis is completely equivalent to the following.
There are an o and g where a>2, 0<<8<1, such that for

N
1>y, t“<§—<N1<N2<N,
we have
: Nlog™ N
it <
(40) |V X K 82| < g, - .
NP Ny L5

If NV is greater than o, it is easy to prove this inequality. What is surpri-
sing in this result, is this. Replace in (40) the quantities logp by log™”p
or log""p respectively. Then the corresponding inequalities can be pro-
ved in an elementary way, with the aid of Vinogradov’s really ingenious
method. The same is true when we replace logp by logp (log logp)™" and
logp(log logp)~%" and so on.

The fourth trend refers to the mysterious connection between pri-
mes and non-trivial zeros of ((s). Let us suppose that the half-plane
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o> is the “argest” halt-plane without zeros of {(s), roughly speaking.
Then it is known that

Fodv 21

10g;l; | < 0" lOg 2.

Now the question arises whether or not a better estimation of |A(x)}
can be derived. The answer, as Phragmén showed, turns out to be ne-
gative, . e. the abscissae of the “‘greatest” half-plane containing no zeros
and the “smallest” exponent @ in (41) are found. to be equal. As a maitter
of fact, we do not know at present any 41 with this property; at pre-
sent we know only the estimation given in (39) and what we can hope
is to diminish the exponent 3/4 in it. From the hypothesis that {(s) does
not vanigh in a domain

(42) e>1— e Y,

for a fixed 0<y<1l we can deduce only ‘the egtimation

(43) . [ A(z)| < peomlos 1 gy,

Tt has been az long-standing question, particularly important in the
case, when even the quasi-riemannjan hypothesis is false, whether or not
a better estimation of |4(#)| can be derived from (42). Theorem IT
enables us to decide also this question negatively, i.e. from (43) one can
actually deduce the non-vanishing of {(s) in the domain (42). Hence
the ezact connection between the remainder-term |4(z)| and the domain
of non-vanishing of £(s) is found also for this case.

The fifth trend concerns the lower estimation of zeros of {(s) on the
line ¢=1/2. But since my method has nothing to do in this direction,
I do not go into it in detail.

The last application I am going to speak about deals also with the
remainder-term |4 (z)| and I shall only touch it. As I have mentioned, the
knowledge of the “largest’ half-plane o>%, not containing zeros of [(s),
determines the order of |A(x)], 4. e. infinitely often we have
(44) |4 (@) >a)"

a

But the former method is purely an existence-proof, gives no informa-
tion about the z, and is indirect. As Littlewood has remarked, all those
disadvantages would be eliminated if the lower estimation of |4 ()] could
be made dependent not upon the largest half-plane not containing a zero,
about which we know nothing definite, but wupon a single zero of £(s).
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Theorem IT enables us also to prove Littlewood’s desideratum and to
prove the following theorem: if gy= fy+ 70 for B,221/2 is a non-trivial
zero of £(s), then for 7> ¢, and T > e we have

log T log log log T
Jog* o8 log

max |4 ()] > TFe™" ~ Tloglog?

e T
Here ¢;; and ¢, are numerical constants whose values can be given expli-
¢itly. To get finer results in this way we should need the one-sided refi-
nement of our theorems mentioned in the first part.

The list of applications is still incomplete. But perhaps those discussed
above already show that the way of inferpretation of Dirichlet’s and
Kronecker’s theorems which we have systematically followed, is a fruit-
ful one. I hope T have also succeeded in showing that this theory is at
the very beginning of its development and many more applications can
be expected.
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ON A THEOREM OF F. AND M. RIESZ
BY
HENRY HELSON!) (NEW HAVEN, Conn.)

The theorem in guestion is the following ([3], or [4], p.157-158):
Let

Fre®) = 3 a, "™
T=0
be an analytic function defined in the unit cirele, and suppose that
2
of [f{re™) da

is bounded for r<1. Then there s & summable function fo(6%) defimed on
the boundary of the cirdle and summable, such that

lim [ 1y (6%)— J (o) da=0,

1 0

and the Fourier series of fy is

=
fold®)~ 3 0 6.
7n=0

The statement of the theorem and its original proof are function-
-theoretic. The purpose of this nobe is to give a new proof from & different
point of view, which is closer to the spirit of some of the applications
of the theorem?).

We shall have to consider bounded complex-valued measures defi-
ned on the field of Borel subsets of the interval (0,2x). Associated with
such a measure g is a function of bounded variation on the interval de-
fined by

ple)=p (L),

where I, is the sef of y satisfying 0<<y<{w. It will be clear from the con-
text whether a symbol is being used to denote a measure or the corres-
ponding function of bounded variation.

1) Jewett Fellow of the Bell Telephone Laboratories.
) The author expresses his indebtedness to Dr. 8. Kakutani and Dr.
J. Wermer for conversations about the subject of this note.
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